## Communication Networks 2

Gusztáv Adamis BME TMIT

## Analogue <-> digital telephony

$\square$ Analogue: 4 kHz Digital: approx. 64 kHz
$\square$ Then why digital?!

- Because:
- simpler and more reliable
- nowadays it is cheaper (10-15 years ago was more expensive)
- signal/noise ratio independent from the size of the network
- production of digital equipments does not require individual adjusting
- smaller equipments
- lower voltage / smaller power consumption
- more intelligent services can be implemented
- more sophisticated signalling
- integrated data and voice transmission
- simpler maintenance
- switching can be implemented without moving parts
- in mobile systems: new codec types -> smaller bandwidth
$\square$ In developed countries the switches, core network pure digital


## Analogue<->digital telephony

$\square$ But: terminals in fixed networks are mainly analogue

- quality is acceptable
- lot of users do not want to pay for the new services
- lot of new services can be accessed by analogue equipments, too:
$\square$ intelligence in the switch not in the equipment!
$\square$ digital extensions in analogue equipments: number presentation (display), SMS
- See in ISDN chapter!


## Introduction

$\square$ Basics of telecommunication networks

- Analogue and digital transmission
- Topological overview of telecomm. networks

- Numbering
- ISDN



## Topological overview of telecomm. networks

- Topology of Public Switched Telephony Network (Hungary)




## Geographical topology - example


------ : alternative or direct connection

## Metropolitan network architecture


------ : alternative or direct connection
$\square$ E.g.. Topology in Budapest:

- approx. 30 local switches
- 2 tandem switches
$\square$ Tandem switches:
- at the hierarchial level of the local switches
- Bp.: Városmajor, Angyalföld (local + tandem switch)
$\square$ Special primary area:
- Metropolitan network (local switches + tandem switches) = primary area, without a primary switch


## Nationwide \& metropolitan network (integrtd)

$\square$ There are 2 international gateway switches in 2 secondary switches in Budapest

- Kelenföld, Józsefváros (local, secondary, international switch)
$\square$ Integrated topology (simplified):

int. = international


## Structure of the telephony network of a country competitive service providers



## International telephony network

- Larger service providers have international gateways
$\square$ Several competiting international service providers
$\square$ No need for direct connections between any two countries
- ... but 1 international connection may contain maximal 6 trunks ( 7 switches)
- (including national parts)



## Introduction

$\square$ Basics of telecommunication networks

- Analogue and digital transmission
- Topological overview of telecomm. networks
- Numbering
- ISDN



## Numbering (addressing)

$\square$ Called party's number: identified originally the location (address)
$\square$ Now tendency: identifies the subscriber itself (name)

- mobile networks - obviously
- examples in fixed networks:
- number portability
- premium rate, freephone (green), shared cost (blue) numbers
$\square$ E. 164 Recommendation (ITU-T, http://www.itu.int/rec/T-REC-E.164/en)
$\square$ An international number: max. 15 digits
- country code (1-3 digits) + national destination code (area code, service or network identifier) + subscriber number

| 1 | North America |
| :---: | :--- |
| 2 | Africa (+Greenland) |
| 3,4 | Europe |
| 5 | Middle and south America |
| 6 | Australia Oceania |
| 7 | Russia, Kazakhstan |
| 8 | Far East (+Inmarsat, Internat. green number: 800 ) |
| 9 | Middle and Near East |

## Numbering (addressing)

$\square$ National Destination Code:

- Area code, e.g.: 33: Esztergom
- Network Code, e.g.: 30: t-mobile
- Service Code, e.g.: 80: green number
$\square$ Subscriber Number
$\square$ National Destination Number $=$ NDC + SN
$\square$ Connection between the network and numbering hierarchies


## Numbering (addressing)

$\square$ Open numbering scheme:

- Two forms: national/local number
- Local numbers shorter, but needs a national prefix (06 - in Hungary, 0 - in other European countries)
$\square$ Closed numbering scheme:
- Always national destination number
- Simple, unambigous
- One form, independently where to start the call from
- Tendency in Europe (Norway, France, Italy, UK....)


## National Destination Codes in Hungary

$\square$ Area codes


| A\B | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | Székesfehérvár | Biatorbágy | Szigetszentmiklós | Dunaújváros | Szentendre | Vác | Gödöllö | $\ldots \ldots$ |
| $\mathbf{3}$ | Salgótarján | Esztergom | Tatabánya | Balassagyarmat | Eger | Gyöngyös | - |  |
| $\mathbf{4}$ | Nyíregyháza | - | Mátészalka | Kisvárda | Miskolc | Szerencs | Ózd | Mezökövesd |
| $\mathbf{5}$ | Debrecen | Cegléd | Berettyóúffalu | for test <br> purposes | Szolnok | Jászberény | - | Karcag |
| $\mathbf{6}$ | Szeged | Szentes | - | - | Békéscsaba | - | Orosháza | Mohács |
| $\mathbf{7}$ | Pécs | Szigetvár | Szekszárd | Paks | Kecskemét | Kiskunhalas | Kiskörös | $\ldots \ldots$ |
| $\mathbf{8}$ | Kaposvár | Keszthely | Siófok | Marcali | - | Tapolca | Veszprém | Pápa |
| $\mathbf{9}$ | Zalaegerszeg | Nagykanizsa | Szombathely | Sárvár | Györ |  |  | $\ldots$ |

## Introduction

$\square$ Basics of telecommunication networks

- Analogue and digital transmission
- Topological overview of telecomm. networks
- Numbering
- ISDN

$\square$ ISDN = Integrated Services Digital Network
- Improvement of PSTN
- Public Switched Telephone Network,
- or POTS: Post Office Telephone Service -> Plain Old Telephone Service
$\square$ Since 1987, more than 20 years old!
$\square$ IS-: integrated service: more services on one network, e.g.:
- voice (POTS), videoconference, data transfer
$\square-$ DN: full digital: voice codec in terminal
$\square$ Switches, transmission paths: all are digital
- (UNI: user-network interface, NNI: netwrok-network interface)


## ISDN - motivation

$\square$ A bit of history: C64 is the computer of the year in 1982!
$\square$ In those days the high-tech in telephony was still something like this $;$


## ISDN - motivation

$\square$ Need for improved services

- Better voice quality than in PSTN
- Value added supplementary services, e.g.:
- number presentation
$\square$ conference call
$\square$ call forwarding
$\square$ call waiting
$\square$ etc.
- Videotelephony (!)
- Faster data transmission
$\square$ Solution: digitalisation
$\square$ Service provider side: digital trunks (PCM), digital switches
■ easier to sell if there are new services... $\rightarrow$ ISDN
$\square$ Not sure that the new services would have been enough:
- 2 „telepone lines" on one wire pair ( 2 B channels)
- that is the real benefit!


## ISDN implementation

$\square$ (Re)usage of the existing copper wire pairs in digital subscriber loops

- Though only several km, but expensive (copper, lay down,...)

■ Half (!!) of the total cost of a telephony network lays in the copper wires of the subscriber loops!
$\square$ Digital transmission instead of analogue
$\square$ Speed depends on the number of channels
$\square$ Two channel types:

- B channel: $64 \mathrm{~kb} / \mathrm{s}$, bidirectional (full duplex), voice OR digital data OR video
- D channel: 16 (in subsc. loops) or $64 \mathrm{~kb} / \mathrm{s}$ (between switches): signalling (e.g. call establishment, release, etc.) 1 D channel is enough for controlling SEVERAL (2 or 30) B channels


## ISDN implementation

$\square$ Allowed combinations:

- 2B+D16: BRA/BRI: Basic Rate Access/Interface,
- $144 \mathrm{~kb} / \mathrm{s}$ useful speed
- on one wire pair - bandwidth of the copper pair is more than enough
- tipically for individuals / small companies
- possible combinations:
$\square 2$ independent voice connections
- 1 voice +1 fax
- 1 voice $+64 \mathrm{~kb} / \mathrm{s}$ data transfer (e.g. Internet access)
- $128 \mathrm{~kb} / \mathrm{s}$ data transfer
$\square$ can be changed dynamically
- 30B+D64 (Eu, 23B+D US): PRA/PRI Primary Rate Access/Interface
- $1984 \mathrm{~kb} / \mathrm{s} \sim 2 \mathrm{Mb} / \mathrm{s}$
- typically on 1,2 or 3 wire pairs: depending on the quality of wire, length, encoding
- for large companies, 30 independent channels
- typically controlled by a P(A)BX (private switch)


## $\mathrm{S}_{0}$ bus (User side of a DSL)

$\square$ Speed: 2B + D16 + synchronisation (48 kb/s) = 192 kb/s
$\square 4$ wires
$\square$ If closed by a proper impedancy

- Max. 8 TE can be connected to it
$\square$ But terminals can also be connected directly to DSL
- 1 TE: point-point topology


## Telephone numbers

$\square$ Max. 10 tel. number may be assigned to 1 BRA subscription (in Hungary, but this is typical)
$\square$ Max. 8 terminals can be connected to a DSL
$\square$ We may use max. 2 B channels in parallel


- ...?!
$\square$ Simple!
- TEs are programmed which number they recognize („ring")
- Any (of max. 10) number is called, the Setup message is transmitted to ALL the TEs
- That TE will answer the call, which is programmed for that number
- Without PBX (switch)!
- (This is the Multiple Subscriber Number (MSN) ISDN service)

