

Content

2

□ 1. Introduction Voice digitalisation

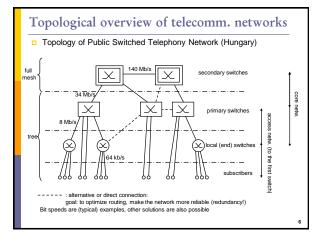
- 2. Access to IP networks through telecommunication and cableTV networks
- 3. Switching
- 4. Mobile networks
- 5. Signalling

Analogue <-> digital telephon Analogue: 4 kHz Digital: approx. 64 kHz Then why digital?! Because: simpler and more reliable nowadays it is cheaper (10-15 years ago was more expensive) signal/noise ratio independent from the size of the network production of digital equipments does not require individual adjusting smaller equipments

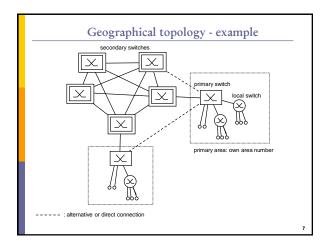
- lower voltage / smaller power consumption
- more intelligent services can be implemented
 more sophisticated signalling
- integrated data and voice transmission
- simpler maintenance
- switching can be implemented without moving parts
 in mobile systems: new codec types -> smaller bandwidth
- In developed countries the switches, core network pure digital

Analogue <-> digital telephony

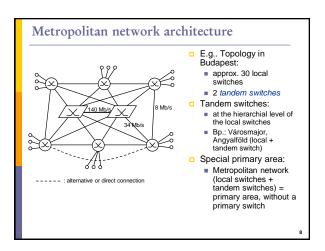
But: terminals in fixed networks are mainly analogue

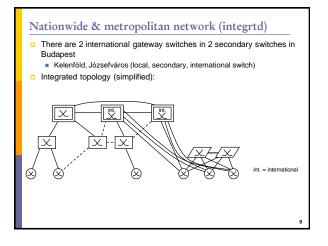

- quality is acceptable
- Iot of users do not want to pay for the new services
- lot of new services can be accessed by analogue equipments, too:
 - intelligence in the switch not in the equipment!
 - digital extensions in analogue equipments: number presentation (display), SMS
- See in ISDN chapter!

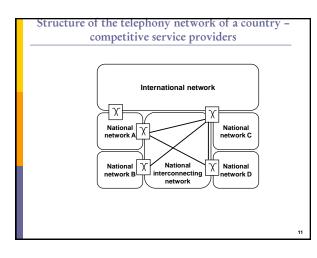
Introduction

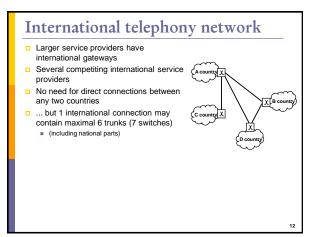

Basics of telecommunication networks

- Analogue and digital transmission
- Topological overview of telecomm. networks
- Numbering
- ISDN
- Next Generation Networks









Public switches in Hungary

- 2 international switches
 - Kelenföld, Józsefváros
- 2 tandem switches
 - Városmajor, Angyalföld
- 10 secondary (5+5 at both sides of the Danube) switches

- Kelenföld, Józsefváros
- Győr, Zalaegerszeg, Pécs, Székesfehérvár
- Szeged, Szolnok, Debrecen, Miskolc
- □ 54 primary switches
- about 400 local switches
- about 1300 remote modules

Introduction

- Basics of telecommunication networks
 - Analogue and digital transmission
 - Topological overview of telecomm. networks
 - Numbering
 - ISDN
- Next Generation Networks

Numbering (addressing)

- Called party's number: identified originally the location (address)
- Now tendency: identifies the subscriber itself (name)
 - mobile networks obviously
 - examples in fixed networks: number portability
- premium rate, freephone (green), shared cost (blue) numbers E.164 Recommendation (ITU-T, http://www.itu.int/rec/T-REC-E.164/en)
- An international number: max. 15 digits
 - country code (1-3 digits) + national destination code (area code, service or network identifier) + subscriber number

1 North America

l		Anica (Torcentaria)
	3,4	Europe
I	5	Middle and south America
	6	Australia Oceania

7 Russia, Kazakhstan 8 Far East (+Inmarsat, Internat, green number: 800) 9 Middle and Near East

14

Numbering (addressing)

- National Destination Code:
 - Area code, e.g.: 33: Esztergom
 - Network Code, e.g.: 30: t-mobile
 - Service Code, e.g.: 80: green number
- Subscriber Number
- National Destination Number = NDC + SN
- Connection between the network and numbering hierarchies

Numbering (addressing)

- Open numbering scheme:
 - Two forms: national/local number
 - Local numbers shorter, but national prefix (06 in Hungary, 0 in other European countries)
- Closed numbering scheme :
 - Always national destination number
 - Simple, unambigous
 - Same length, independently where to start the call from

16

17

Tendency in Europe (Norway, France, Italy, UK....)

□ Short numbe	Short numbers:					
104, 10	05, 107, 112	emergency numbers				
1	16c(d)					
	118de					
	12cd					
140d-144	d, 145de-149de					
17	(d(e))					
	18c(d)					
190-19	94, 197-199	operator services				
Prefixes:						
	0	internat. prefix				

00	internat. prefix				
06	nat. prefix				
130	0 number presentation allowance prefix				
131	number presentation disabling prefix				
15cd	carrier selection prefix				

National Destination Codes in Hungary

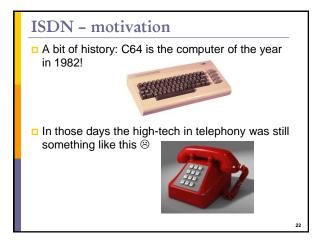
Service and Network Codes:

A\B	0	1
2	GSM (Telenor)	Nomadic service
3	GSM (T-Mobile)	GSM (Other operators)
4	Shared cost service ("blue" number)	-
5	Reserved for new GSM operator	Internet access
6		-
7	GSM (Vodafone)	Corporate Networks
8	Freephone ("green" number)	-
9	Premium rate service	Premium rate service (restricted content and price)

Introduction

Basics of telecommunication networks

- Analogue and digital transmission
- Topological overview of telecomm. networks
- Numbering
- Next Generation Networks


19

ISDN

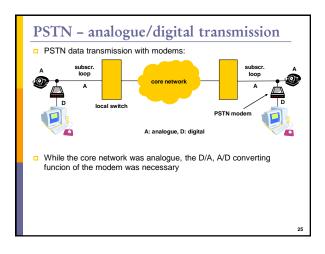
ISDN = Integrated Services Digital Network

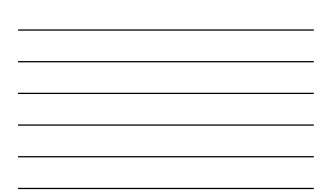
Improvement of PSTN

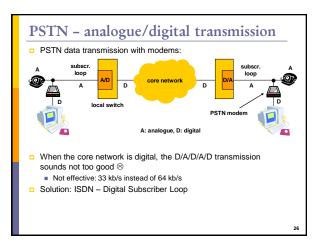
- Public Switched Telephone Network,
 - or POTS: Post Office Telephone Service -> Plain Old Telephone Service
- □ since 1987, more than 20 years old!
- □ IS-: integrated service: more services on one network, e.g.:
 - voice (POTS), videoconference, data transfer
- **-DN**: full digital: voice codec in terminal
- switches, transmission paths are digital
 - (UNI: user-network interface, NNI: netwrok-network interface)

ISDN - motivation

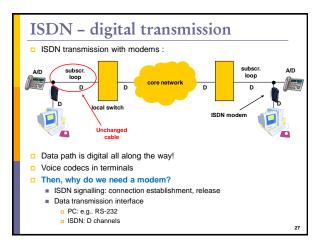
Need for improved services


- Better voice quality than in PSTN
- Value added supplementary services, e.g.:
 - number presentation
 - conference callcall forwarding
 - call totward
 call waiting
- videotelephony (!)
- faster data transmission
- Solution: digitalisation that is ISDN




23

ISDN - motivation


- Producer side: digital trunks (PCM), digital switches
 - \blacksquare easier to sell if there are new services... \rightarrow ISDN
- Not sure that the new services would have been enough:
 - 2 "telepone lines" on one wire pair
 - that is the real benefit!

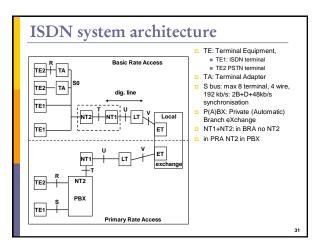
ISDN implementation

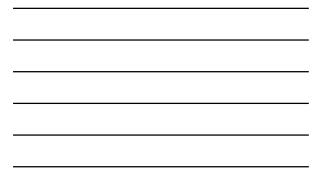
- (Re)usage of the existing copper wire pairs in digital subscr. loops
 - Though only several km, but expensive (copper, lay down,...)
 - Half (!!) of the total cost of a telephony network lays in the copper wires of the subscriber loops!
- Digital transmission instead of analogue
- Speed depends on the number of channels
- Two channel types:
 - B channel: 64 kb/s, bidirectional (full duplex), voice OR digital data OR video
 - D channel: 16 or 64 kb/s: signalling (e.g. call establishment, release, etc.) 1 D channel is enough for SEVERAL B channels

28

29

more details later


ISDN implementation


- Allowed combinations:
- □ 2B+D16: BRA/BRI: Basic Rate Access/Interface,
 - 144 kb/s useful speed
 - on one wire pair bandwidth of the copper pair is more than enough
 - tipically for individuals / small companies
 - possible combinations: 2 independent voice connections

 - 1 voice + 1 fax
 1 voice + 64 kb/s data transfer (e.g. Internet access)
 - 128 kb/s data transfer
 - can be changed dynamically
- □ 30B+D64 (Eu, 23B+D US): PRA/PRI Primary Rate Access/Interface 1984 kb/s ~2 Mb/s
 - typically on 1, 2 or 3 wire pairs: depending on the quality of wire, length, encoding
 - for large companies, 30 independent channels
 - typically controlled by a P(A)BX

ISDN system architecture R, S, T, U, V: reference points Basic Rate Access left from T: subscriber's network – next slide right from T: service provider's network
 Local exchange TE2 - TA dig. line TE1 ET: Exchange Termination, LT: Line Termination NT1/2: Network Termination Local TE1 ET LT-U interf.-NT1: digital line serv.prov/vendor specific serv.provvendor specific
 must be replaced by an other line type, that provides the same service but in a ЕΤ different way (e.g. different line encoding) TE2 PBX TE1 Primary Rate Access 30

ISDN BRA NT

BRA NT=NT1+NT2

But in practice it often provides other features:

- $\hfill S_0$ bus, but often provides direct connetions for ISDN terminals
- may contain 1-2 TA to connect analogue equipments (telephone, fax)
- may contain PC plug-in (RS-232, or USB), so it serves as a modem, too.

S_0 bus

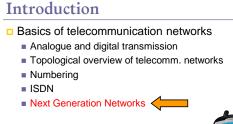
- Speed: 2B + D16 + synchronisation (48 kb/s) = 192 kb/s
- 4 wires
- One end: NT, other end closed by a proper impedancy
- Max. 8 TE can be connected to it
- But terminals can also be connected directly to NT
 - 1 TE: point-point topology
 - more TEs: star topology

Telephone numbers

- Max. 10 tel. number may be assigned to 1 BRA subscription (in Hungary, but this is typical)
- Max. 8 terminals
- We may use max. 2 B channels in parallel
- □ ...?!
- Simple!
 - TEs are programmed which number they recognize ("ring")
 - In case of an analogue equipment TA
 - Any (of max. 10) number is called, the message is transmitted to ALL TE
 - That will answer the call, which is programmed for that number
 - Without PBX!
 - (This is the Multiple Subscriber Number (MSN) ISDN service)

ISDN past, present, future

- Enormous technological progress
- □ in 1990s-2000 that was the "high speed" Internet access for homes/small companies
- But only 10% of the PSTN subscriber lines
 - in Western Europe 25%
- Reasons:
 - most popular supplementary services can be reached nowadays by analogue equipments
 - plus functionalities in switches
 - digital elements in analogue equipments (display, SMS, memory)
 - In 1990s: much more expensive equipments
 - For Internet-access ADSL/cable TV etc. better
 - Because of mobiles no need for two telephone lines


ISDN past, present, future

ISDN = dead end?

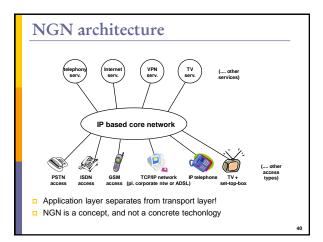
- No!
 - > 100 million B channels worldwide
 - network services can be used by analogue equipments
 - ISDN interswitch signalling system is still the universal
 - telecommunications signalling system (chapter 6) provided the basics for GSM networks
- But: it is the technology of the present and near past, but not of the future

36

34

37

38


Next Generation Networks


Next Generation Networks, NGN

- Basic idea: Build a common core network to different services:
 - voice transmission (telephone)
 - vodeotelephony and other multimedia data transfer
 - television
 - Internet
 - Virtual Private Network, VPN
 - instant messaging (chat)
 - distributed games
 - other, existing and not yet existig services

Next Generation Networks

- These services can be reached from:
 - different terminals
 - different access networks
- But the service is the same
- And for each service
 - same core network (transport network)
 - full IP based ("all-IP network")
- E.g. a telphone call may end on the called party's:
 - fixed telephone
 - mobile
 - PC
 - PDA through WLAN
 - depending on how the called party has set it
 - independently what the calling party has dialled

Transition to NGN

- This means, that the hierarchical telephone-switch based network becomes obsolate sooner or later
- The transition from the existing networks is not so easy
 build the NGN network and switch to it at a given moment
 - two networks in parallel during the development of the NGN
 or the different parts of the existing network is replaced continually

also not easy: old and new parts of the network should interwork...

- different solutions at different service providers
- leading service providers (BT, France Telecom, ...) predict to finish the transition in 2009-2012
 that has been started...

Motivation

DINGN:

- technology allows
 - IP + Ethernet
- convergence of the different technologies
 - e.g. telephone-computer-television
 - e.g. fix-mobile
- more flexible architecture, cheaper, more services can be offered
 - e.g. PSTN architecture is not competitive with different VoIP services (skype...)

42

Reliability

NGN, Infocommunication = beautiful new world?

□ Hope! But:

- PSTN:
 - Reliable, well-proved technology: switches, core network good maintenance
- $\square \Rightarrow$ simple, relatively expensive, but very reliable services NGN:
 - new architecture, equipments, protocols
 - wide technology change in a highly important infrastructure
 - (Computer) vendors/products are less reliable as is common in the PSTN/ISDN world

 - IP has a lot of known vulnerable points
 - common architecture is a hard core: if it goes out-of-service it stops every service
 - \square \Rightarrow cheap and plentiful services, but will it be reliable enough?