Telecommunication Networks and Services

Gusztáv Adamis BME TMIT

Content

- □ 1. Introduction
 - Voice digitalisation
- 2. Access to IP networks through telecommunication and cableTV networks
- 3. Switching
- 4. Mobile networks
- 5. Signalling

Analogue <-> digital telephon

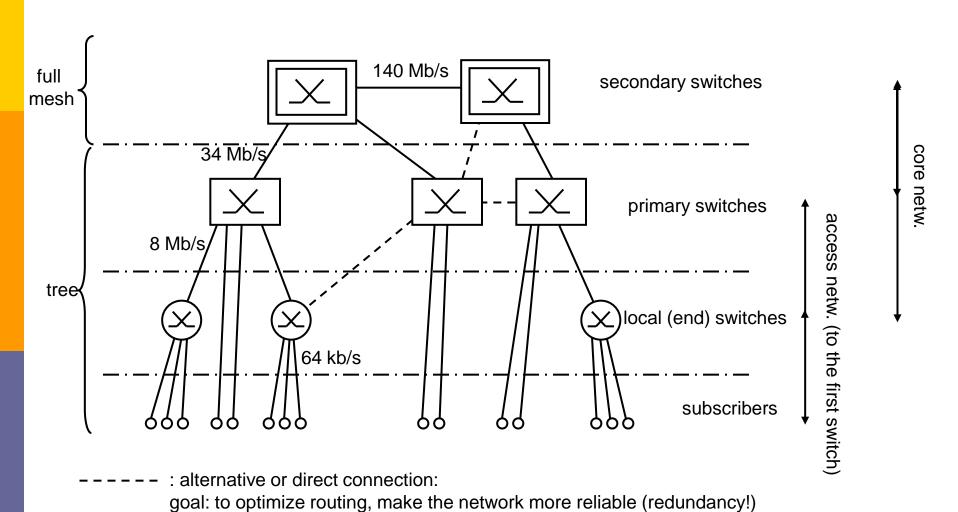
- Analogue: 4 kHz Digital: approx. 64 kHz
- Then why digital?!
- Because:
 - simpler and more reliable
 - nowadays it is cheaper (10-15 years ago was more expensive)
 - signal/noise ratio independent from the size of the network
 - production of digital equipments does not require individual adjusting
 - smaller equipments
 - lower voltage / smaller power consumption
 - more intelligent services can be implemented
 - more sophisticated signalling
 - integrated data and voice transmission
 - simpler maintenance
 - switching can be implemented without moving parts
 - in mobile systems: new codec types -> smaller bandwidth
- In developed countries the switches, core network pure digital

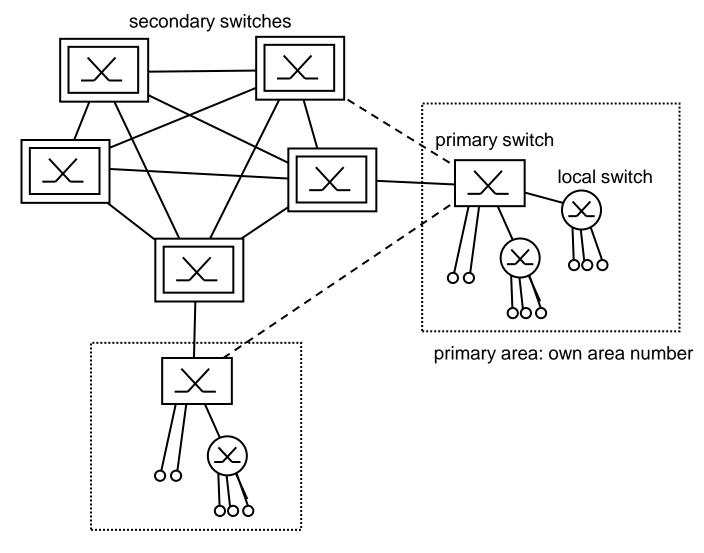
Analogue <-> digital telephony


- But: terminals in fixed networks are mainly analogue
 - quality is acceptable
 - lot of users do not want to pay for the new services
 - lot of new services can be accessed by analogue equipments, too:
 - intelligence in the switch not in the equipment!
 - digital extensions in analogue equipments: number presentation (display), SMS
 - See in ISDN chapter!

Introduction

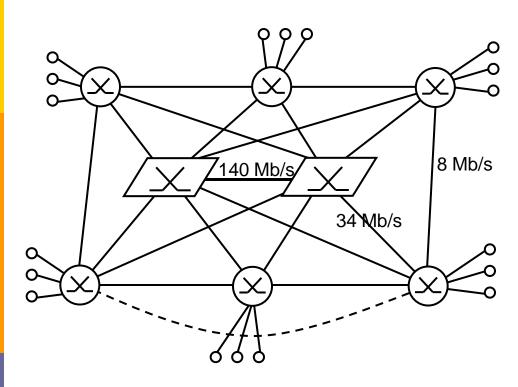
- Basics of telecommunication networks
 - Analogue and digital transmission
 - Topological overview of telecomm. networks


- Numbering
- ISDN
- Next Generation Networks


Topological overview of telecomm. networks

Topology of Public Switched Telephony Network (Hungary)

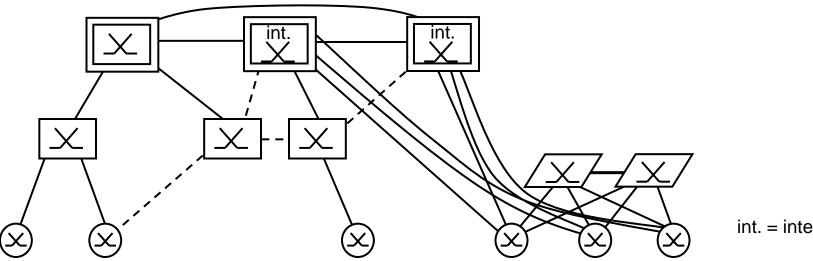
Bit speeds are (typical) examples, other solutions are also possible



Geographical topology - example

----: alternative or direct connection

Metropolitan network architecture

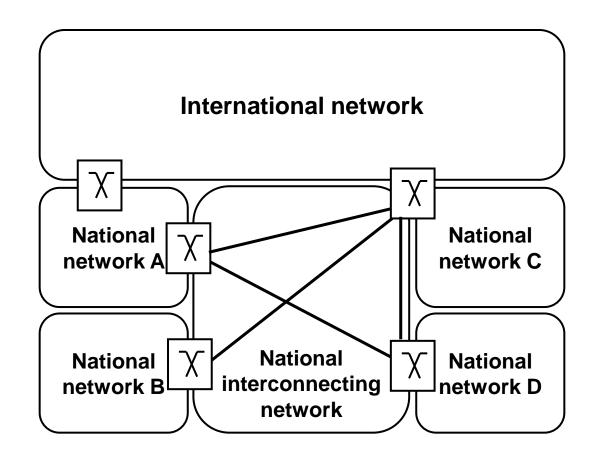


---: alternative or direct connection

- E.g.. Topology in Budapest:
 - approx. 30 local switches
 - 2 tandem switches
- Tandem switches:
 - at the hierarchial level of the local switches
 - Bp.: Városmajor, Angyalföld (local + tandem switch)
- Special primary area:
 - Metropolitan network (local switches + tandem switches) = primary area, without a primary switch

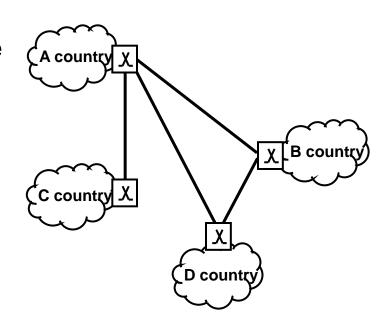
Nationwide & metropolitan network (integrtd)

- There are 2 international gateway switches in 2 secondary switches in Budapest
 - Kelenföld, Józsefváros (local, secondary, international switch)
- Integrated topology (simplified):



int. = international

Public switches in Hungary


- 2 international switches
 - Kelenföld, Józsefváros
- 2 tandem switches
 - Városmajor, Angyalföld
- 10 secondary (5+5 at both sides of the Danube) switches
 - Kelenföld, Józsefváros
 - Győr, Zalaegerszeg, Pécs, Székesfehérvár
 - Szeged, Szolnok, Debrecen, Miskolc
- 54 primary switches
- about 400 local switches
- about 1300 remote modules

Structure of the telephony network of a country – competitive service providers

International telephony network

- Larger service providers have international gateways
- Several competiting international service providers
- No need for direct connections between any two countries
- ... but 1 international connection may contain maximal 6 trunks (7 switches)
 - (including national parts)

Introduction

- Basics of telecommunication networks
 - Analogue and digital transmission
 - Topological overview of telecomm. networks
 - Numbering
 - ISDN
- Next Generation Networks

Numbering (addressing)

- Called party's number: identified originally the location (address)
- Now tendency: identifies the subscriber itself (name)
 - mobile networks obviously
 - examples in fixed networks:
 - number portability
 - premium rate, freephone (green), shared cost (blue) numbers
- E.164 Recommendation (ITU-T, http://www.itu.int/rec/T-REC-E.164/en)
- An international number: max. 15 digits
 - country code (1-3 digits) + national destination code (area code, service or network identifier) + subscriber number

1	North America
2	Africa (+Greenland)
3,4	Europe
5	Middle and south America
6	Australia Oceania
7	Russia, Kazakhstan
8	Far East (+Inmarsat, Internat. green number: 800)
9	Middle and Near East

Numbering (addressing)

- National Destination Code:
 - Area code, e.g.: 33: Esztergom
 - Network Code, e.g.: 30: t-mobile
 - Service Code, e.g.: 80: green number
- Subscriber Number
- National Destination Number = NDC + SN
- Connection between the network and numbering hierarchies

Numbering (addressing)

- Open numbering scheme:
 - Two forms: national/local number
 - Local numbers shorter, but national prefix (06 in Hungary, 0 – in other European countries)

- Closed numbering scheme :
 - Always national destination number
 - Simple, unambigous
 - Same length, independently where to start the call from
 - Tendency in Europe (Norway, France, Italy, UK....)

Short codes

Short numbers:

104, 105, 107, 112	emergency numbers
116c(d)	
118de	
12cd	
140d-144d, 145de-149de	
17c(d(e))	
18c(d)	
190-194, 197-199	operator services

Prefixes:

00	internat. prefix
06	nat. prefix
130	number presentation allowance prefix
131	number presentation disabling prefix
15cd	carrier selection prefix

National Destination Codes in Hungary

Area codes

A\B	2	3	4	5	6	7	8	9
2	Székesfehérvár	Biatorbágy	Szigetszentmiklós	Dunaújváros	Szentendre	Vác	Gödöllő	
3	Salgótarján	Esztergom	Tatabánya	Balassagyarmat	Eger	Gyöngyös	-	-
4	Nyíregyháza	-	Mátészalka	Kisvárda	Miskolc	Szerencs	Ózd	Mezőkövesd
5	Debrecen	Cegléd	Berettyóújfalu	for test purposes	Szolnok	Jászberény	-	Karcag
6	Szeged	Szentes	-	-	Békéscsaba	-	Orosháza	Mohács
7	Pécs	Szigetvár	Szekszárd	Paks	Kecskemét	Kiskunhalas	Kiskőrös	
8	Kaposvár	Keszthely	Siófok	Marcali	-	Tapolca	Veszprém	Pápa
9	Zalaegerszeg	Nagykanizsa	Szombathely	Sárvár	Győr			

National Destination Codes in Hungary

Service and Network Codes:

A\B	0	1		
2	GSM (Telenor)	Nomadic service		
3	GSM (T-Mobile)	GSM (Other operators)		
4	Shared cost service ("blue" number)	-		
5	Reserved for new GSM operator	Internet access		
6	-	-		
7	GSM (Vodafone)	Corporate Networks		
8	Freephone ("green" number)	-		
9	Premium rate service	Premium rate service (restricted content and price)		

Introduction

- Basics of telecommunication networks
 - Analogue and digital transmission
 - Topological overview of telecomm. networks
 - Numbering
 - ISDN <
 - Next Generation Networks

ISDN

- ISDN = Integrated Services Digital Network
- Improvement of PSTN
 - Public Switched Telephone Network,
 - or POTS: Post Office Telephone Service -> Plain Old Telephone Service
- since 1987, more than 20 years old!
- IS-: integrated service: more services on one network, e.g.:
 - voice (POTS), videoconference, data transfer
- -DN: full digital: voice codec in terminal
- switches, transmission paths are digital
 - (UNI: user-network interface, NNI: netwrok-network interface)

ISDN - motivation

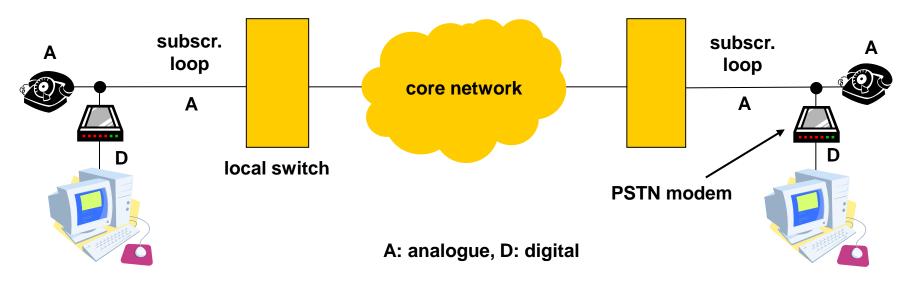
A bit of history: C64 is the computer of the year in 1982!

In those days the high-tech in telephony was still

something like this 🕾

ISDN - motivation

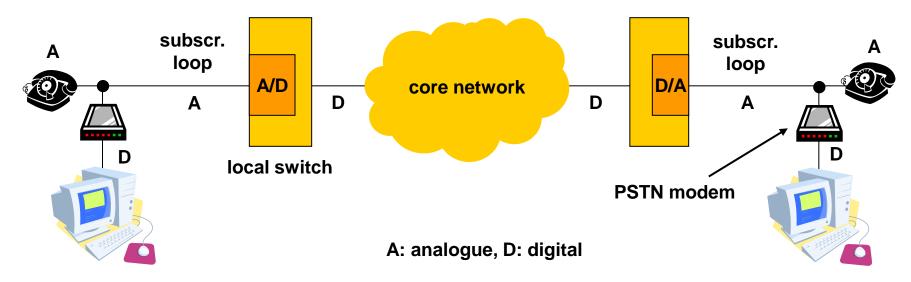
- Need for improved services
 - Better voice quality than in PSTN
 - Value added supplementary services, e.g.:
 - number presentation
 - conference call
 - call forwarding
 - call waiting
 - videotelephony (!)
 - faster data transmission
- Solution: digitalisation that is ISDN



ISDN - motivation

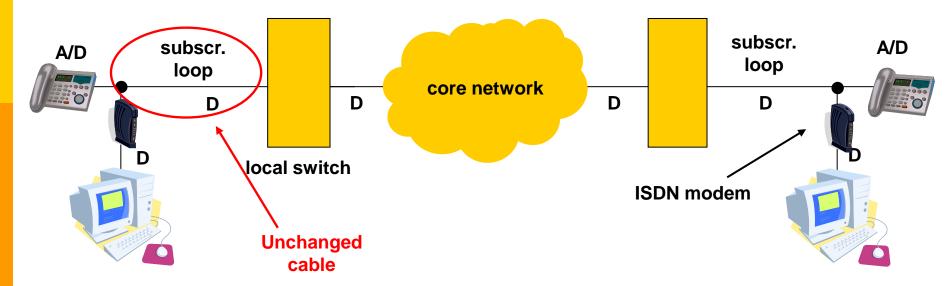
- Producer side: digital trunks (PCM), digital switches
 - easier to sell if there are new services... → ISDN
- Not sure that the new services would have been enough:
 - 2 "telepone lines" on one wire pair
 - that is the real benefit!

PSTN - analogue/digital transmission


PSTN data transmission with modems:

While the core network was analogue, the D/A, A/D converting function of the modem was necessary

PSTN - analogue/digital transmission

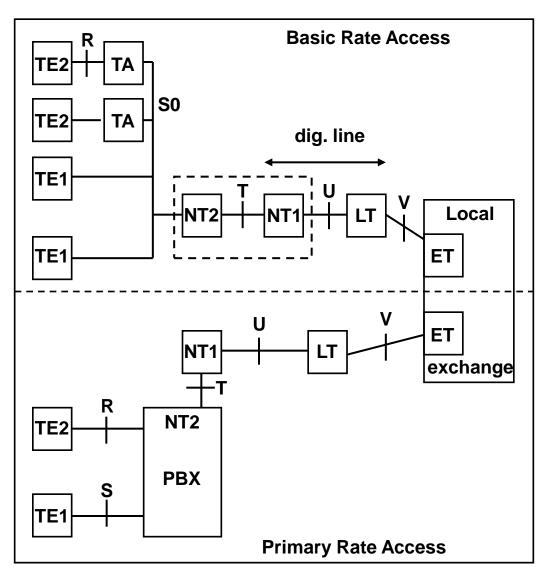

PSTN data transmission with modems:

- □ When the core network is digital, the D/A/D/A/D transmission sounds not too good ⊗
 - Not effective: 33 kb/s instead of 64 kb/s
- Solution: ISDN Digital Subscriber Loop

ISDN - digital transmission

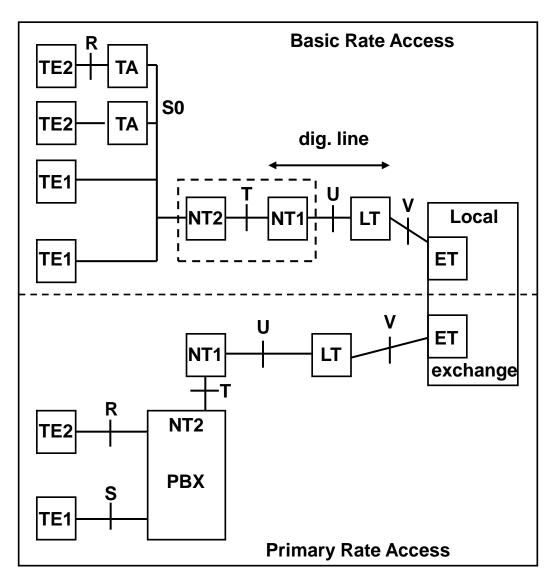
ISDN transmission with modems:

- Data path is digital all along the way!
- Voice codecs in terminals
- Then, why do we need a modem?
 - ISDN signalling: connection establishment, release
 - Data transmission interface
 - PC: e.g., RS-232
 - ISDN: D channels


ISDN implementation

- (Re)usage of the existing copper wire pairs in digital subscr. loops
 - Though only several km, but expensive (copper, lay down,...)
 - Half (!!) of the total cost of a telephony network lays in the copper wires of the subscriber loops!
- Digital transmission instead of analogue
- Speed depends on the number of channels
- Two channel types:
 - B channel: 64 kb/s, bidirectional (full duplex), voice OR digital data OR video
 - D channel: 16 or 64 kb/s: signalling (e.g. call establishment, release, etc.) 1 D channel is enough for SEVERAL B channels
 - more details later

ISDN implementation


- Allowed combinations:
- 2B+D16: BRA/BRI: Basic Rate Access/Interface,
 - 144 kb/s useful speed
 - on one wire pair bandwidth of the copper pair is more than enough
 - tipically for individuals / small companies
 - possible combinations:
 - 2 independent voice connections
 - 1 voice + 1 fax
 - 1 voice + 64 kb/s data transfer (e.g. Internet access)
 - 128 kb/s data transfer
 - can be changed dynamically
- 30B+D64 (Eu, 23B+D US): PRA/PRI Primary Rate Access/Interface
 - 1984 kb/s ~2 Mb/s
 - typically on 1, 2 or 3 wire pairs: depending on the quality of wire, length, encoding
 - for large companies, 30 independent channels
 - typically controlled by a P(A)BX

ISDN system architecture

- R, S, T, U, V: reference points
- left from T: subscriber's network – next slide
- right from T: service provider's network
- Local exchange
- ET: Exchange Termination,
- LT: Line Termination
- NT1/2: Network Termination
- LT–U interf.–NT1: digital line
 - serv.prov/vendor specific
 - must be replaced by an other line type, that provides the same service but in a different way (e.g. different line encoding)

ISDN system architecture

- TE: Terminal Equipment,
 - TE1: ISDN terminal
 - TE2 PSTN terminal
- TA: Terminal Adapter
- S bus: max 8 terminal, 4 wire, 192 kb/s: 2B+D+48kb/s synchronisation
- P(A)BX: Private (Automatic)Branch eXchange
- NT1+NT2: in BRA no NT2
- in PRA NT2 in PBX

ISDN BRA NT

- □ BRA NT=NT1+NT2
- But in practice it often provides other features:
 - S₀ bus, but often provides direct connetions for ISDN terminals
 - may contain 1-2 TA to connect analogue equipments (telephone, fax)
 - may contain PC plug-in (RS-232, or USB), so it serves as a modem, too.

NT1+2a/b

S₀ bus

- Speed: 2B + D16 + synchronisation (48 kb/s) = 192 kb/s
- 4 wires
- One end: NT, other end closed by a proper impedancy
- Max. 8 TE can be connected to it
- But terminals can also be connected directly to NT
 - 1 TE: point-point topology
 - more TEs: star topology

Telephone numbers

- Max. 10 tel. number may be assigned to 1 BRA subscription (in Hungary, but this is typical)
- Max. 8 terminals
- We may use max. 2 B channels in parallel
- Simple!
 - TEs are programmed which number they recognize ("ring")
 - In case of an analogue equipment TA
 - Any (of max. 10) number is called, the message is transmitted to ALL
 TE
 - That will answer the call, which is programmed for that number
 - Without PBX!
 - (This is the Multiple Subscriber Number (MSN) ISDN service)

ISDN past, present, future

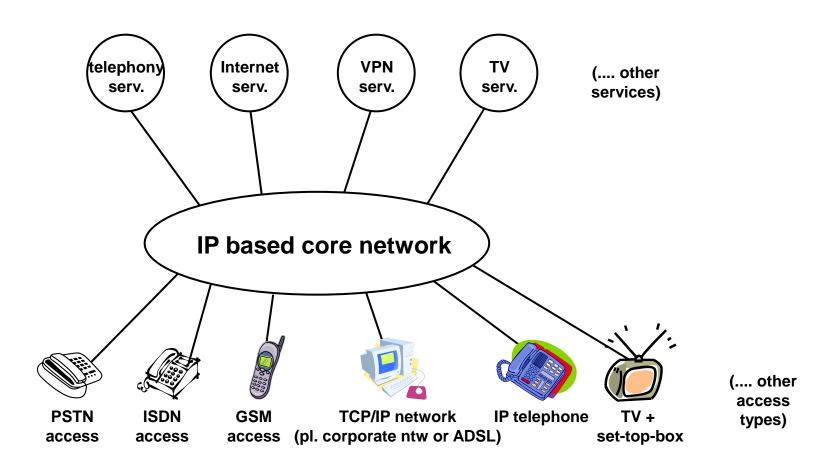
- Enormous technological progress
- in 1990s-2000 that was the "high speed" Internet access for homes/small companies
- But only 10% of the PSTN subscriber lines
 - in Western Europe 25%
- Reasons:
 - most popular supplementary services can be reached nowadays by analogue equipments
 - plus functionalities in switches
 - digital elements in analogue equipments (display, SMS, memory)
 - In 1990s: much more expensive equipments
 - For Internet-access ADSL/cable TV etc. better
 - Because of mobiles no need for two telephone lines

ISDN past, present, future

- □ ISDN = dead end?
 - No!
 - > 100 million B channels worldwide
 - network services can be used by analogue equipments
 - ISDN interswitch signalling system is still the universal telecommunications signalling system (chapter 6)
 - provided the basics for GSM networks
 - But: it is the technology of the present and near past, but not of the future

Introduction

- Basics of telecommunication networks
 - Analogue and digital transmission
 - Topological overview of telecomm. networks
 - Numbering
 - ISDN
 - Next Generation Networks <</p>


Next Generation Networks

- Next Generation Networks, NGN
- Basic idea: Build a common core network to different services:
 - voice transmission (telephone)
 - vodeotelephony and other multimedia data transfer
 - television
 - Internet
 - Virtual Private Network, VPN
 - instant messaging (chat)
 - distributed games
 - other, existing and not yet existig services

Next Generation Networks

- These services can be reached from:
 - different terminals
 - different access networks
- But the service is the same
- And for each service
 - same core network (transport network)
 - full IP based ("all-IP network")
- E.g. a telphone call may end on the called party's:
 - fixed telephone
 - mobile
 - PC
 - PDA through WLAN
 - depending on how the called party has set it
 - independently what the calling party has dialled

NGN architecture

- Application layer separates from transport layer!
- NGN is a concept, and not a concrete technology

Transition to NGN

- This means, that the hierarchical telephone-switch based network becomes obsolate sooner or later
- The transition from the existing networks is not so easy
 - build the NGN network and switch to it at a given moment
 - two networks in parallel during the development of the NGN
 - or the different parts of the existing network is replaced continually
 - also not easy: old and new parts of the network should interwork...
 - different solutions at different service providers
 - leading service providers (BT, France Telecom, ...) predict to finish the transition in 2009-2012
 - that has been started...

Motivation

NGN:

- technology allows
 - □ IP + Ethernet
- convergence of the different technologies
 - e.g. telephone-computer-television
 - e.g. fix-mobile
- more flexible architecture, cheaper, more services can be offered
 - e.g. PSTN architecture is not competitive with different VoIP services (skype...)

Reliability

- NGN, Infocommunication = beautiful new world?
- Hope! But:

PSTN:

- Reliable, well-proved technology: switches, core network
- good maintenance
- □ ⇒ simple, relatively expensive, but *very reliable services*

NGN:

- new architecture, equipments, protocols
- wide technology change in a highly important infrastructure
- (Computer) vendors/products are less reliable as is common in the PSTN/ISDN world
- IP has a lot of known vulnerable points
- common architecture is a hard core: if it goes out-of-service it stops every service
- $\square \Rightarrow$ cheap and plentiful services, but will it be reliable enough?