Look out

Network virtualization

Budapest University of Technology and Economics

Department of Telecommunications and Media Informatics

 Network virtualization is the process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.

SDN CONCEPT

4

2017/11/06

SDN

Software Defined Networking (SDN) centralizes and automates management of network devices.

Defining SDN

- Software Defined Networking (SDN):
 - Centralizes command and control in the network
 - Delegates the network flow control decision making to a device with network omniscience
 - Separates the Control plane from the Data plane

Architecture

SDN is not a product or protocol... it's an architecture!

Data Plane

- Moves data packets from place to place
- Like a data highway, the Data Plane represents only the infrastructure
- Decisions are not made in the Data Plane, but there are different roads to take

Control Plane

- Logistics and tactical decisions
 - Where does the packet go?
- Like Flow control on a highway, or route guidance (GPS)
 - Examples: STP, OSPF, EIGRP

Management Plane

- High level configuration commands
- The human or application interface
 - Examples: Consoles, SSH, Web GUIs

SDN enabler: OpenFlow

OpenFlow

- Control-data separation+
- Abstraction of networking devices
- Generalization of operations
- New concept: network OS
- One realization of SDN (concepts)
- BUT there are others
 - E.g. BGP based
 - Vendor specific.: Cisco ONE platform, Juniper JunOS SDK

How did we get to SDN?

• OpenFlow

- Success many backed up
- Academic use
 - Best universities (USA, EU)
- Industrial users
 - Vendors
 - NEC, HP, Cisco, Pronto, Brocade, Broadcom, Ericsson, IBM, ...
 - Cloud providers
 - Amazon, Google, Microsoft, ...
 - Service providers
 - Facebook, ...
 - carriers
 - DT, Telecom Italia, Telefonica, NTT, ...
- Today standardization bodies
 - Open Networking Foundation
 - OpenDaylight initiative

Internet traditionally

SDN: "open it up"

BME-TMIT

Network Operating System

SDN: "open it up"

What is OpenFlow?

• OpenFlow is an API, interface

- Packet processing can be programmed through it (forwarding)
- Can run on cheap hardware
- The configured network becomes programmable
 - Not just configurable
- Easier innovation
- (simpler operation, easier to introduce new services)

• Main reasons

- No special testbeds
- Experimental solutions on real networks, real traffic, line speed

Control Path (Software)

Data Path (Hardware)

OpenFlow flow table

+ (wildcard)

Switching (L2 switching)

Flow example

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	
*	* (00:1f:	*	*	*	*	*	*	*	port6

Routing (L3 routing)

Switch Port	MAC src		MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*		*	*	*	5.6.7.8	*	*	*	port6

VLAN Switching

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	
*	*	00:1f	*	vlan1	*	*	*	*	*	port6, port7, port9

BME-TMIT

- Stanford Reference implementation v1.0
- Ericsson, CPqD implementation v1.1, v1.2, v1.3, v1.4
 - Linux-based soft switch (User Space)
- Open vSwitch
 - Linux-based **soft switch (Kernel Space)**
 - Not only an OF switch, is used in virtual machines (VirtualBox, XEN, OpenStack)
 - Real hardware firmware (SW part) often builds on Open vSwitch
- OpenWRT based routers
- NetFPGA cards

Core

Router

Ciena CoreDirector

Prototype

(prototype)

Cisco Catalyst 6k (prototype)

WIMAX (NFC)

Wireless

20,
A
1
K

Product

and others

Juniper MX-series

BME-TMIT

2017/11/06

OF controllers

- Many platforms
- Programming
 - Different environments
 - Different languages
- Different goals
- Different processing power

Network Functions Virtualization

NFV

Network Functions Virtualization (NFV) is the next step in virtualization, taking physical networking equipment and running it in a VM.

NFV

Introduction to NFV(Contd.)

How is NFV Different from SDN

- While SDN is typically thought of as managing and automating tasks for physical devices, NFV is all about provisioning new networking devices.
 - > SDN may then be used to manage the new virtual as well as the existing physical devices.

SDN: traditionally manages physical equipment

NFV deploys virtual network equipment

Illustration of SDN vs NFV

BME-TMIT

VNF examples

IMS VNF

Firewall VNF

Router VNF

 Network Function as a Service: service provisioning model

- Dynamic, scalable secure and isolated network access for multiple tenants
- Analogy from Cloud computing
 - Software-, Platform-, Infrastructure as a Service

- Virtual functions according to the services
 - "slices" of the same physical network
 - Standardization ongoing in 3GPP, IETF etc.

Thank You for your attention!

Questions?

Budapest University of Technology and Economics

Department of Telecommunications and Media Informatics