

Mobility and MANET Intelligent Transportation Systems

Rolland Vida

Overview

- MANET Mobile Ad Hoc Networks
- Meaning of "Ad Hoc"
 - Immediate, provisional, without preparation

Ad hoc networks

No available infrastructure

- No internet connections, gateways, access points
- No dedicated, deployed servers (AAA, DHCP, etc.), or services
- No addressing based on IP subnets
 - A problem for "classical" routing protocols
- No reliable (stable) network devices
 - Services provided by neighbors, fellow peer nodes
 - The status of my neighbor can change at any time depleted battery, increased distance, etc.
 - I do not know my neighbors, I do not know if I can trust them
- Self-organization
 - Peer-to-peer paradigm (on the networking layer)
- Multihop
 - Communication (routing) over several hops (devices)

Wireless Mobile Network

Intelligent Transportation Systems

MANET research topics

- Physical layer -> "mobility models"
 - Energy-efficient operation adjusting radio power, sleep scheduling
 - Mobility-aware radio technologies

Data-link layer

MAC (shared medium access, efficiency, decreasing the chance of collisions)

Networking layer

- Routing (dynamically changing topology, prefix-based routing not working)
- Upper layers
 - Packet retransmissions, TCP (packet loss, unreliable transmission medium)
 - Security (can be extended to any of the layers)
- Cross-layer optimization
 - The parallel optimization of several layers in the ISO/OSI model
 - Each layer might have its own influence over mobility

Intelligent Transportation Systems

Mobility types

- Nomadic mobility (nomadicity)
 - No communication while moving device turned off
 - When restarting, new IP address, rebuilding the interrupted connections
- Slow mobility
 - E.g., people walking around in a building
 - University campus students walking, biking
- Fast mobility
 - Cars, bikes, …
- Moving networks...

MANET vs. MONET

Edouard MANET

Mobile Ad Hoc Network

Claude MONET

Moving Networks

- Networking devices moving together
 - E.g., passengers in a train, metro, bus, airplane
- Alternative name
 - Networks in Motion NEMO

NEMO – Networks in Motion

- Many MNs moving together
 - If they move together, let's handle their mobility together
- MR (mobile router) default gateway
 - Provides the connection between NEMO-members and the outside world
 - Dedicated device, or one among the others assuming this role (periodic role changes)
 - Usually the biggest battery, the largest bandwidth, etc.
- The MNs have to register at the MR
 - They belong to the subnetwork of the MR
 - "Fixed" nodes in the network (relatively to the MR), their relative position does not change
 - Called also Fixed Local Nodes (FLN) because of that

Intelligent Transportation Systems

NEMO efficiency depends on the environment

• (Possible) drawbacks:

- Case of 100 MNs with 3G/4G mobile internet access in a city
- If the MNs do not join the NEMO
 - personal mobility management needed for all the 100 MNs
 - + Any one of them receives the bandwidth provided by the given technology
- If all the MNs join the same NEMO
 - The MR link capacity becomes a bottleneck
 - In the worst case, the MNs receive only 1/100 of the bandwidth provided in the previous case

• (Possible) advantage:

- If 100 MNs on an airplane want to connect to the internet
 - The dedicated MR is the only node being able to connect
- Mobility management is optimal
 - Only the mobility of the MR has to be handled

MANET routing

Point-to-point

"

Where to send the packet?

- Sometimes only the source knows
 - All the route is stored in the header
 - Packet is routed based on the header
 - Source routing, as the entire route is decided by the source
 - E.g., Dynamic Source Routing (DSR)
 - Header can grow large
 - Fragmentation, low efficiency
 - Especially if long routes and not much data

Sometimes nobody knows

- Flooding solutions
 - Everyone rebroadcasts the received packet
 - Hopefully it will reach the destination
- High burden on the wireless network, where resources are limited

About routing in general

- Many routing protocols were developed
 - Some specific to MANETs
 - Some others adapted from the wired networks
- There is no one-size-fits-all protocol, which performs well in all circumstances
- Desired features for a MANET routing protocol
 - Distributed operation
 - Loop-free
 - Operation on demand
 - Security
 - Support for "sleeping" cycles
 - Support for one-directional links

MANET routing

Position-based (geographic) routing protocols

Make use of geographical position information for routing

Topology-based routing protocols

- Make us of topology (graph) information
- Which are the neighboring nodes, and what are the costs of the links

Topology-based routing

Proactive routing

- The routing table is continuously maintained
 - No matter if there is traffic or not
- Relatively stable networks
- DSDV based on the Bellman-Ford algorithm

On demand, reactive routing

- Builds a route only if needed, if a packet has to be sent to the destination
- The routes are temporary, are dismantled if not used
- AODV
- Hybrid protocols
 - Combining the previous two

Constraints

- Delay
 - Proactive protocols provide lower delay, as routes are prepared in advance, and always up to date, ready to use
 - Reactive protocols provide large delay, as the route from A to B has to be found, when needed
- Overhead
 - Proactive protocols have a large overhead, too much signaling traffic to build and maintain the routes, even if no real data to send
 - Reactive protocols have lower overhead, useless routes are not maintained
- Each application will choose the best protocol
 - Low mobility -> Proactive protocols
 - High mobility -> Reactive protocols

Ad Hoc On-Demand Distance Vector Routing (AODV)

- Reactive protocol
 - Maintains a routing table in each node, no need to store the route in the packet header
 - The route is built and maintained only if it is "active"

AODV

- To discover the route, the source broadcasts a Route Request (RREQ) message
- Those who receive it, rebroadcast it
- When a node rebroadcasts a Route Request message, it stores a reverse path pointer towards the node from where the request came
 - AODV symmetric (bi-directional) links
 - A small timer ensures that these records time out after a while
- If the RREQ arrives to the destination D, a Route Reply (RREP) message is sent back
- It will propagate along the path built from the reverse path pointers

Route Request - AODV

Node that already received a RREQ for D initiated by S

17

Intelligent Transportation Systems

Route Request - AODV

Route Requests - AODV

Reverse Path pointer

Reverse Path - AODV

• C receives a RREQ from neighbors (G and H) But does not rebroadcast it again

Reverse Path - AODV

Reverse Path - AODV

 node D does not forward anymore the RREQ message, as he is the destination

Route Reply - AODV

« Path of the RREP message

Forward Path - AODV

As the RREP message travels from D to S, forward path pointers are stored in the intermediate nodes

Data sending - AODV

For sending the useful data, these forward path pointers are used

The path is not included in the header

Timers

- The reverse path records are deleted after a while from the routing tables
 - We should take into account the specificities of the wireless domain and the size of the network, leave time for the RREP message to propagate back before deleting the record

- The forward path pointer is deleted if it becomes inactive no traffic
 - active_route_timeout
 - If no traffic, the record is deleted, even if the path is still valid

Optimization: Expanding Ring Search

- Searching an expanding territory
- The RREQ messages are first sent out with a small Time-to-Live (TTL) value
 - After each hop the TTL value is decreased
 - If 0, the message is dropped
 - Used in many protocols that are based on flooding
- If no Route Reply until a timer expires, the value of the TTL is increased
 - After a few steps the search will cover the entire topology

- If the source **S** wants to send something to destination **D**, it initiates route discovery
- S floods the network with Route Request (RREQ) messages
- Each intermediate node adds his ID to the RREQ before forwarding it

Nodes that already received the RREQ from S, regarding D

Intelligent Transportation Systems

RREQ [X, ...] intermediate nodes already added to the path

Restricting the flooding (like in AODV): C receives the RREQ again from G and H, but does not forward it again

D stops the broadcast of RREQ, as it is the destination

34

Intelligent Transportation Systems

- After receiving the first RREQ, destination D sends back a Route Reply-al (**RREP**)
- On the path included in the RREQ, in reverse order

35

Y

DSR Route Reply

36

Spring 2023

Intelligent Transportation Systems

Data Delivery in DSR

The header increases with the path length

Intelligent Transportation Systems

Position-based routing

Eliminate some drawbacks of the topology-based routing algorithms

 The source makes use of some localization service, and finds out the geographical position of the destination.

- If we know the position of the destination, there is no need to build and maintain routes in advance
 - Instead of building the routes, we need a forwarding strategy
 - At each node, we select the next hop based on the position of the destination and the position of the neighbors

Localization service

Localization service

- Helps a node to determine its position
- In an ad hoc network a localization server is not always available

- The localization service can be provided by one or several nodes:
 - "some/all to some/all"
 - "Chicken-egg" problem: but how do we know the position of the localization server?

- If a source does not know the position of the destination, makes use of such a localization service
 - In case of a cellular (mobile) network, localization is centralized, and at cell level
 - It cannot be applied in ad hoc systems

Forwarding strategies

- The forwarding decision of an intermediate node:
 - Based on the position information of the destination, embedded in the packet
 - Based on the position of one-hop neighbors
- Positions of the neighbors: known from periodic Hello messages

- Forwarding strategies:
 - Greedy forwarding
 - E.g. MFR, NFP, compass routing
 - Restricted directional flooding
 - E.g., LAR, DREAM
 - Hierarchic solutions

Greedy forwarding

- Which strategy should be used to select the next hop?
- Most forward within r (MFR)
 - Choose the node that is closest to the destination D (Node C in the figure)
 - The number of hops is minimized
 - Good strategy if the radio power cannot be changed
- Nearest with forward progress (NFP) (node A)
 - If the radio power can be adapted
 - Decreases the probability of collisions
- Compass routing (node B)
 - The smallest angle compared to the SD line
- Random choice of a neighbor in the good direction
 - No precise position information needed about neighbors
 - Lower overhead

Greedy forwarding

Problems:

- S might be closer to the destination D than any other node
- Forwarding might arrive to a local maximum, where there is no way forward

Recovery mode:

- If the greedy forwarding stops, we switch to recovery mode
- If a neighbor can be found again, we switch back to the greedy mode

