
Setting up a CI development environment

Kovács Gábor

5 March 2018

1. Introduction

Today we set a CI development environment including the developer machine
and the central server side, and show that in work with a Hello, World! Java
application. The CI development environment of a Java application is the
most complex, that is the reason behind our language the choice.

The server side is emulated with a virtual machine on the developer com-
puter, which runs Ubuntu Linux as operating system and has the following
Linux packages preinstalled:

• Git server

• Jenkins

• Oracle Java 8, Apache Ant and Apache Maven for Java development

• Sonatype Nexus

2. Preparing the server side

On the server side, we install git, ant, maven and Java from Ubuntu packa-
ges. All commands below are issued as root user.

> apt−get update
> apt−get i n s t a l l g i t
> apt−get i n s t a l l ant
> apt−get i n s t a l l maven

1

> apt−get i n s t a l l python−so f tware−p r o p e r t i e s so f tware−
prope r t i e s−common

> apt−add−r e p o s i t o r y ppa : webupd8team/ java
> apt−get update
> apt−get i n s t a l l o rac l e−java8− i n s t a l l e r

The ant installation is in /usr/share/ant/, the maven installation is in
a /usr/share/maven/. The local maven repository is going to be ~/.m2/

repository in the home directory of the user running Jenkins. The Java
installation is in a version dependent directory under /usr/lib/jvm/.

Both Jenkins and Nexus are going to be run as standalone Java applica-
tions downloaded from their web pages, so no separate installation steps are
necessary.

3. Git

The Git service can be accessed by registering the developer’s public keys on
the server. For that we create a new user called git, and let all developers
know about its credentials so that they can register their keys, and access
the service without having to enter the password each time the source code
is pushed from the developer machine.

> sudo bash
> adduser g i t

With the command below issued on a developer machine, we can copy
the public key of a developer to the central Git server.

> ssh−copy−id − i ˜/ . ssh / i d r s a . pub git@10 . 2 1 1 . 6 6 . 6

We are going to store the Git repositories under /opt/git/, let our app-
lication be under the hello.git/ subdirectory, and initialise there a new
repository. Finally, we as this directories can be created only by the root
user, we set up the rights such that the git user is the owner of all contents,
and the git group has write access.

> sudo mkdir /opt/ g i t
> sudo chown −R g i t : g i t /opt/ g i t /
> cd /opt/ g i t
> mkdir t e s z t . g i t

2

> cd t e s z t . g i t /
> g i t i n i t −−bare
> chown −R g i t : g i t . . / h e l l o . g i t /
> chmod −R g+ws . . / h e l l o . g i t /

4. Jenkins

We can download the Jenkins CI service from http://jenkins-ci.org/,
and the standalone version can be run with a java -jar command. All
configuration settings are stored in the ~/.jenkins/ directory, in the home
directory of the user running Jenkins.

> java −j a r j e n k i n s . war

Managing Jenkins setting can be done on its web interface, that is acces-
sible at port 8080 of the server machine.

1. ábra. Jenkins management page

For our project, we need the plugins Ant, Git and Maven, which should

3

be available after the startup of the service without any additional installa-
tion necessary. However the configuration setting of these plugins must be
provided for Jenkins.

In the Manage Jenkins menu and the Global Tool Configuration submenu
we can set the location of our Git, Ant, Maven, Java installations we prepared
in Section 2.

In the JDK section, we set the parameters of our Java installation, and
set the JAVA HOME environment variable.

JDK installations
Name Oracle Java 8
JAVA HOME /usr/lib/jvm/java-8-oracle

Install automatically false
In the Git section, we set the git executable.
Git
Path to Git executab-
le

git

Install automatically false
In the Ant section, we set the parameters of our Ant installation, and the

ANT HOME environment variable.
Ant installations
Name Apache Ant
ANT HOME /usr/share/ant

Install automatically false
In the Maven section, we set the parameters of our Maven installation,

and the MAVEN HOME environment variable.
Maven installations
Name Apache Maven
MAVEN HOME /usr/share/maven

Install automatically false
We can leave all other parameter at the default value for now.
Now that we have configured Jenkins, we can create a new Maven project

with the name Hello by clicking on the New Item menu. (For C project, we
should choose Freestyle project.) The project configuration page is shown in
Figure 2.

First we set the project description.
Maven project name Hello
Description Hello, world!

Our next task is to configure how Jenkins can access the sources of our

4

2. ábra. The configuration page of our Hello project

project. We choose Git, and provide the path to the sources. As Jenkins
is not run as git user, we may want to provide passwordless access for this
user too just like we did that for the developers. First we generate new keys,
then we add the public key to the git keyring.

> ssh−keygen −t dsa −b 1024
> ssh−copy−id g i t @ l o c a l h o s t

Source Code Manag-
ement

Git

Repositories
Repository URL ssh://git@localhost/opt/

git/hello.git

The build itself can be triggered manually from the menu, or whenever
new code appears in the Git repository, or periodically, which is run as a
cron job. Usually it is a good idea to run a 10 minutes build on each commit
by developers, and daily, preferably at night a full build

5

Build Triggers
Build periodically selected
Schedule 40 3 * * *

The build itself is done by the Maven build engine based on the project’s
POM configuration file. Here we use only two actions, clean for clearing
the results of the previous build, and install to perform the build and copy
the results to the local Maven repository (~/.m2/repository). We may
consider using other tasks like test to run the tests or deploy to deploy the
application to the production server .

Build
Root POM pom.xml

Goals and options clean install

3. ábra. A build of the hello project

5. The Hello, world project

We assume that we have already made passwordless login possible to the
server machine as shown above.

6

Let us create an empty Maven project in our favourite IDE, we used
NetBeans. Alternatively, we can issue the command below on console to do
the same:

>mvn −−ve r s i on mvn archetype : generate −DgroupId=hu . bme .
tmit . a g i l e −D a r t i f a c t I d=h e l l o −DarchetypeArt i fac t Id=
maven−archetype−q u i c k s t a r t −DinteractiveMode=fa l se

Then we have a hello directory containing a pom.xml file and a src/main

/java/ subdirectory, where we can put our sources codes. The pom.xml has
the group identifier hu.bme.tmit.agile, the artifact identifier hello and
the version number 1.0-SNAPSHOT, there three attributes together identify
a Maven resource uniquely. The external dependencies must be set inside
the dependencies tag, in each dependency tag we have to give the group
identifier, the artifact identifier and the version number of the JAR file we
would like to be made available to be used for our project. When set Maven
automatically downloads these JARS from the repository they are available
in, and puts the copy under the ~/.m2/repository directory in the develop-
ment machine. To make the JAR file build from the project executable, we
provide some settings under build tag, which sets the Main-Class attribute
in the MANIFEST of the JAR file.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<p r o j e c t xmlns=” ht tp : //maven . apache . org /POM/ 4 . 0 . 0 ”

xmlns :x s i=” ht tp : //www. w3 . org /
2001/XMLSchema−i n s t ance ” xs i : s chemaLocat ion=” ht tp : //

maven . apache . org /POM/ 4 . 0 . 0 h
t t p : //maven . apache . org /xsd/maven−4 . 0 . 0 . xsd”>
<modelVersion>4 . 0 . 0</ modelVersion>
<groupId>hu . bme . tmit . a g i l e</ groupId>
<a r t i f a c t I d>h e l l o</ a r t i f a c t I d>
<version>1.0−SNAPSHOT</version>
<packaging> j a r</ packaging>
<p r o p e r t i e s>

<p r o j e c t . bu i ld . sourceEncoding>UTF−8</ p r o j e c t . bu i ld .
sourceEncoding>

<maven . compi le r . source>1 .7</maven . compi le r . source>
<maven . compi le r . t a r g e t>1 .7</maven . compi le r . t a r g e t>

</ p r o p e r t i e s>

7

<bu i ld>
<p lug in s>

<p lug in>
<groupId>org . apache . maven . p lug in s</ groupId>
<a r t i f a c t I d>maven−j a r−p lug in</ a r t i f a c t I d>

<c o n f i g u r a t i o n>
<arch ive>

<mani fe s t>
<mainClass>hu . bme . tmit . a g i l e . h e l l o .

He l l o</ mainClass>
</ mani f e s t>

</ arch ive>
</ c o n f i g u r a t i o n>

</ p lug in>
</ p lug in s>

</ bu i ld>
</ p r o j e c t>

Finally let us write our complex software.

package hu . bme . tmit . a g i l e . h e l l o ;

public class Hel lo {
public stat ic void main (St r ing [] a rgs) {

new Hel lo () . h e l l o () ;
}

public void h e l l o () {
System . out . p r i n t l n (” Hel lo , world ! ”) ;

}
}

Now we just have to get this code to the CI infrastructure. Therefore we
initialise a Git repository in the source directory of our project, and check
its status.

> g i t i n i t
I n i t i a l i z e d empty Git r e p o s i t o r y in / Users / kovacsg /

Documents/munka/ code / NetbeansPro jects / h e l l o / . g i t /
> cd . g i t /

8

> l s
HEAD c o n f i g hooks o b j e c t s
branches d e s c r i p t i o n i n f o r e f s
> g i t s t a tu s
On branch master

No commits yet

Untracked f i l e s :
(use ” g i t add < f i l e > . . . ” to in c lude in what w i l l be

committed)

pom. xml
s r c /

nothing added to commit but untracked f i l e s pre sent (
use ” g i t add” to t rack)

We have two files unknown for Git: pom.xml and the src/ directory. Let
us make them version controlled, and check what happens in the meantime
inside Git.

> g i t add pom. xml
> g i t s t a tu s
On branch master

No commits yet

Changes to be committed :
(use ” g i t rm −−cached < f i l e > . . . ” to unstage)

new f i l e : pom. xml

Untracked f i l e s :
(use ” g i t add < f i l e > . . . ” to in c lude in what w i l l be

committed)

s r c /

9

> g i t add s r c /main/ java /hu/bme/ tmit / a g i l e / h e l l o / He l lo .
java

> g i t s t a tu s
On branch master

No commits yet

Changes to be committed :
(use ” g i t rm −−cached < f i l e > . . . ” to unstage)

new f i l e : pom. xml
new f i l e : s r c /main/ java /hu/bme/ tmit / a g i l e /

h e l l o / He l lo . java

> g i t commit −a −m ’ i n i t i a l ’

After git commit all of our files are version controlled. Next we have to
share our changes with the other developers. For that, we set the repository
we created on our server. We shall refer to that as origin, and we shall
call the current version of our source master, that is we create the master
branch.

> g i t remote add o r i g i n ssh :// git@10 . 2 1 1 . 5 5 . 6 / opt/ g i t /
h e l l o . g i t

> g i t push −u o r i g i n master
Counting o b j e c t s : 15 , done .
Delta compress ion us ing up to 8 threads .
Compressing o b j e c t s : 100% (7/7) , done .
Writing o b j e c t s : 100% (15/15) , 1 .48 KiB | 756 .00 KiB/s ,

done .
Total 15 (de l t a 2) , reused 0 (de l t a 0)
To ssh : / / 1 0 . 2 1 1 . 5 5 . 6 / opt/ g i t / h e l l o . g i t
∗ [new branch] master −> master

Branch master set up to t rack remote branch master from
o r i g i n .

Our sources have arrived to the CI server, so we can trigger a build from
the menu of the project by clicking the Build Now button. In the Build Histo-

10

ry we can see the result of the build – blue if successful and red if failed. The
built JAR file is under ~/.m2/repository/hu/bme/ tmit/agile/hello/1.0
-SNAPSHOT directory, and it can be executed with the java -jar command.
The hu/bme/tmit/agile tag is the group identifier, the hello the arti-
fact identifier, and the 1.0-SNAPSHOT is the version number as given in the
pom.xml.

> java −j a r he l l o −1.0−SNAPSHOT. j a r
Hel lo , world !

6. Sharing the results

The JAR file we just created is available in a directory of the server, we have
to make that accessible for all developers with a repository manager service.
The repository manager assigns an URL to a local directory, and makes its
contents available on the web, and it can also mirror the resources of other
repository managers.

We chose Sonatype Nexus to be our repository manager. The application
itself can be downloaded as a zip file, which we have to extract first, and
then we can run it:

> cd nexus
> bin /nexus conso l e

After its startup, we can open its management web page (http://10.
211.55.6:8081/nexus), where we log on as administrator with the default
password. We open the Repositories menu, and create a new hosted re-
pository. The identifier we give is going to appear in the URL, the name
is arbitrary. As Override Local Storage Location we should set the Maven
repository of our compiled project.

After saving the changes, the Maven resources are available on the web
http://10.211.55.6:8081/nexus/content/repositories/Agile2018e/.

This repository can be referred in a pom.xml project descriptor of a Maven
project created by another developer.

<p r o j e c t>
. . .
<r e p o s i t o r i e s>

<r e p o s i t o r y>

11

4. ábra. Configuring the Nexus repository

<id>a g i l e</ id>
<u r l>ht tp : / / 1 0 . 2 1 1 . 5 5 . 6 :8081 /nexus/ content /

r e p o s i t o r i e s / Agi l e2018e /</ u r l>
</ r e p o s i t o r y>

</ r e p o s i t o r i e s>
. . .

</ p r o j e c t>

The artifacts in this repository can be used as dependencies by all devel-
oper in their own modules. So we have achieved the continuous integration
of code written by separate developers, or work groups.

7. Non-Java project

For non-Java project, we have to use Freestyle project in Jenkins when creat-
ing a new item. Just like in the Java case we have to set up the version
control configurations. The difference is in the build. While for Java Maven

12

5. ábra. Our projects repository

performs all build related tasks based on the pom.xml, we may not have such
tool available for other languages, therefore a build script must be written
to do the compilation, possibly linking, test execution, installation, deploy-
ment etc. tasks. The script itself must be defined in Execute shell test area.
The execution of this script can be triggered just like in the Java case by
a user action, a commit or periodically. The script has to take care of the
installation as well, and copy the build artifact to a remote machine.

13

