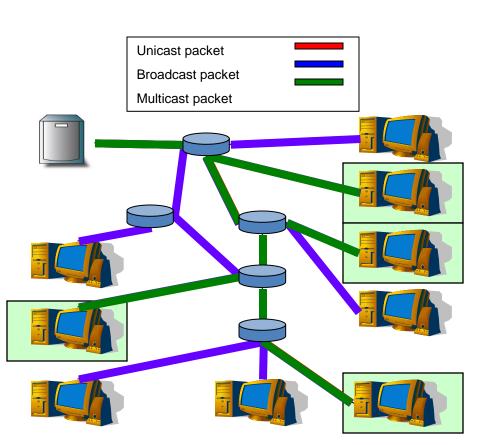
Networking Technologies and Applications

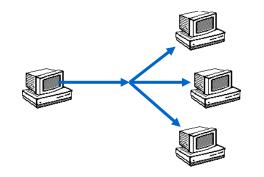
Rolland Vida BME TMIT


Group communication

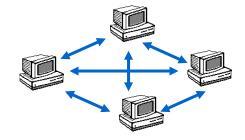
- Goal: instead of a single destination node, communicate with a group of nodes
 - "natural" extension of the point-topoint communication (unicast)
- Multicast

What is multicast?

- Unicast
 - Point to point
 - Destination address: the address of one specific receiver
- Broadcast
 - Point to everyone
 - Destination address: address of the (sub)network
- Multicast
 - (Multi)point to multipoint
 - Destination address: group address


- Packets have to be sent to all members of a group, not just a single destination
 - Group membership can be dynamic

- Basic principle: once a group is created...
 - Interested receivers join the group
 - The network maintains the group and handles data delivery



Multicast applications

- Many applications are not point-to-point
 - Point-multipoint
 - Remote learning
 - Cache update
 - Video on demand

- Multipoint-to-multipoint
 - Videoconferences, Audio conferences, Chat,
 - Distributed networking games
 - Cooperative applications

Requirements

• No one size fits all solution

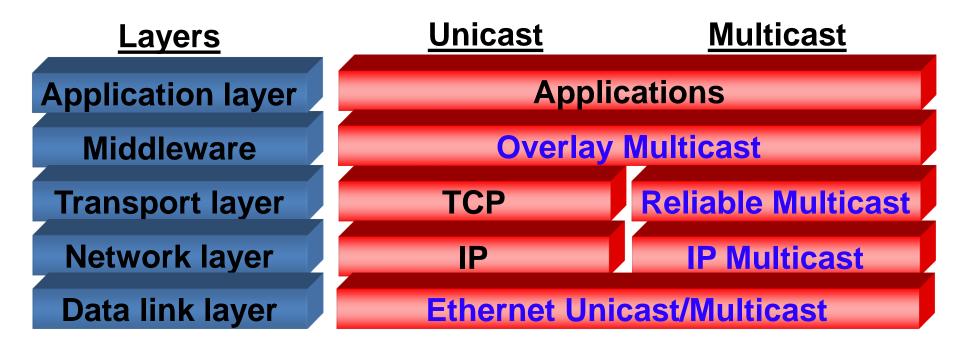
- Requirements are different
 - Depending on the application needs
 - Depending on group size
 - Depending on network services / support
 - Depending on member heterogeneity

Participation rules

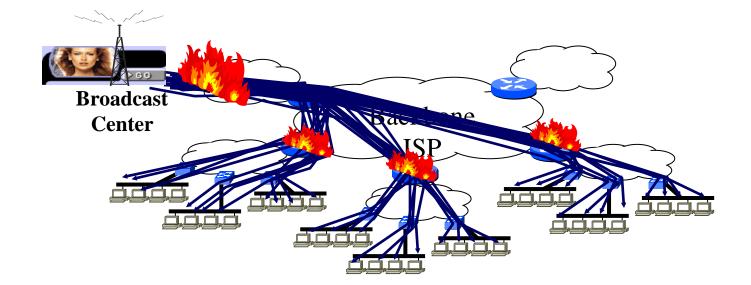
- Membership control
 - Open group: anybody can join
 - Closed group: limited membership

- Source control
 - Anybody can send a packet to the group
 - Only a group member can be a source
 - Just a selected source can send data

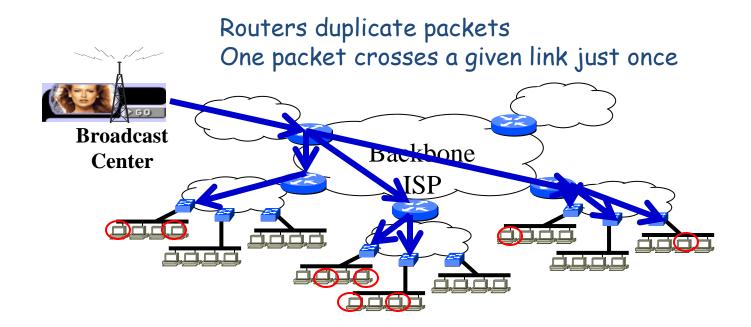
Reliability requirements


- Point-to-point communication
 - Reliable or best-effort (no guarantees)
 - The destination checks the packet: OK, or not
- Point-to-multipoint communication
 - Each receiver perceives the service differently
- Different reliability levels
 - 0-reliability: no receiver is guaranteed reliable transmission
 - 1-reliability: at least 1 receiver will reliably receive the packets
 - k-reliability: at least k receivers will reliably receive the packets
 - Total reliabiliy: all receivers will reliably receive the packets

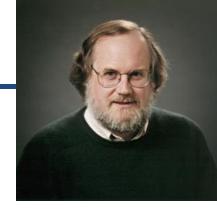
Multicast at different layers


- The multicast service can be implemented in different layers
 - Data link layer
 - E.g. Ethernet multicast
 - Network layer
 - E.g. IP multicast, Xcast
 - Application layer
 - E.g. Narada, TBCP
- Which solution is the best?
 - It depends, no general solution

Multicast at different layers



- The goal is the optimisation of networ layer resources
 - One packet crosses just once a given link
- Routers build and maintain a multicast tree
 - Traffic forwarding along the tree
 - Routers duplicate packets where needed
 - Branching points on the tree


Group level unicast is not scalable

Let's build trees instead

- Steve Deering PhD dissertation (1990)
 - Any Source Multicast (ASM)
- Open group communication model
 - Anybody can join the group, no access control
 - One user can be member of several groups in the same time
 - Anybody can send to the group, even non members
 - Group membership is dynamic
 - Nobody knows the size of the group, or its members

- S. Deering, "Host Extensions for IP Multicasting", RFC 1112, 1989.
- The source sends its packets to a group address
- Anybody who joined the group
 is reachable" through this addrese
 - is "reachable" through this address– Receives packets that are sent to
 - this destination address
- A multicast group is identified by a class D IP address
 - 224.0.0.0 239.255.255.255
 - 1110 + 28 bit group ID

r										
Bits:	1	8	9	16	17	24	25		32	
Class A	ONNNNNN		Host		Host		Host			
	Range (1-126)									
Bits:	1	8	9	16	17	24	25		32	
Class B	10NNNNNN			Network	Host		Host			
	Range (128-191)									
Bits:	1	8	9	16	17	24	25		32	
Class C	110N	NNNN		Network	N	letwork		Host		
	Range	Range (192-223)								
Bits:	1	8	9	16	17	24	25		32	
Class D	1110	мммм	Mu	lticast Group	Multi	icast Group	Mult	icast G	roup	
	Range	Range (224-239)								

- Joining a multicast tree done in two steps
 - On the local area network (LAN)
 - A user announces its local multicast routers about the groups he would like to join
 - IGMP (IPv4), MLD (IPv6)
 - Over the large Internet (WAN)
 - The local router cooperates with the other multicast routers of the network to build the tree and forward the packets along that tree
 - DVMRP, MOSPF, CBT, PIM-DM, PIM-SM, PIM-SSM

IGMP

- Internet Group Management Protocol
- An IPv4 protocol, running between the final users and the local multicast routers on the local network
 - Handles multicast group membership
 - Asymmetric protocol
 - User side
 - Router side
- The router learns which groups the end-users on his local network listen to
 - Not interested in how many receivers, important thing is to have at least on receiver
 - Not interested in exactly who are the receivers

IGMPv1

- S. Deering, "Host Extensions for IP Multicasting", RFC 1112, 1989.
- A multicast router sends regular **Query** messages to the multicast address of all the users (224.0.0.1)
- A user answers with a Report message, in which specifies the groups he listens to
 - The Report is sent to the multicast addresses of those groups
- To decrease the number of Report messages:
 - Using timers
 - A user does not answer immediately to the Query
 - Host Suppression
 - If someone else answers faster, it deletes its own Report message
- Unsolicited Report
 - If a user wants to listen immediately to a new group

- An IGMPv1 router maintains a multicast membership table
 - Which multicast groups have members on its network
 - When was the last Report message received about those groups
- Soft-state protocol
 - If in a given time nobody refreshes its interest in a given groups, the group will be deleted from the multicast membership table
- It forwards to the local network all packets that are sent to a multicast destination address that is contained in its membership table

- W. Fenner, "Internet Group Management Protocol, Version 2", RFC 2236, November 1997. http://www.ietf.org/rfc/rfc2236.txt
- IPv6 version: MLD (Multicast Listener Discovery)
 - S. Deering, W. Fenner, B. Haberman, "Multicast Listener Discovery (MLD) for IPv6", RFC 2710, November 1999. http://www.ietf.org/rfc/rfc2710.txt
- Introduces a Fast Leave mechanism
 - Do not have to wait until a timer expires to cut off a group

IGMPv2 messages

- Membership Query
 - General Query
 - Group Specific Query
- Membership Report
- Leave Group Message
- If a host wants to leave a group, it sends a Leave message to the multicast address of all the multicast routers (224.0.0.2)
- Before cutting off the group, the router has to ask if anybody else is still interested in that group or not
 - Group Specific Query
 - If no answer in a given limited time, the router cuts off the group from its table
- IGMPv3 later...

Multicast Routing

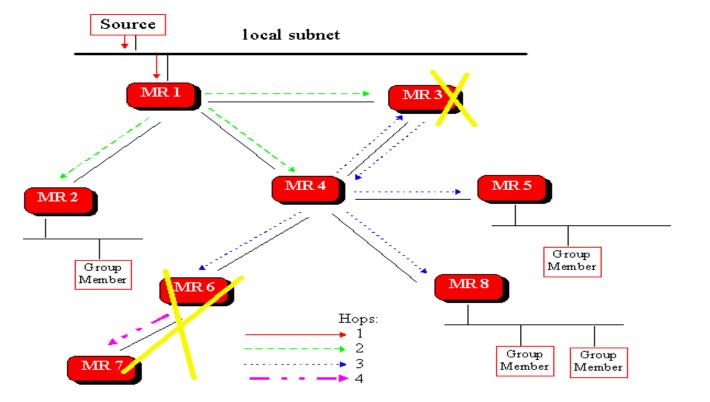
- A source sends its packets to the group's multicast address
- The multicast routers in the network build and maintain a multicast tree
 - Packets are forwarded along that tree
- The local multicast router, based on its IGMP membership table, joins or leaves this tree
- A multicast routing protocol runs among the routers of the network
 - MOSPF, DVMRP, CBT, PIM

MOSPF

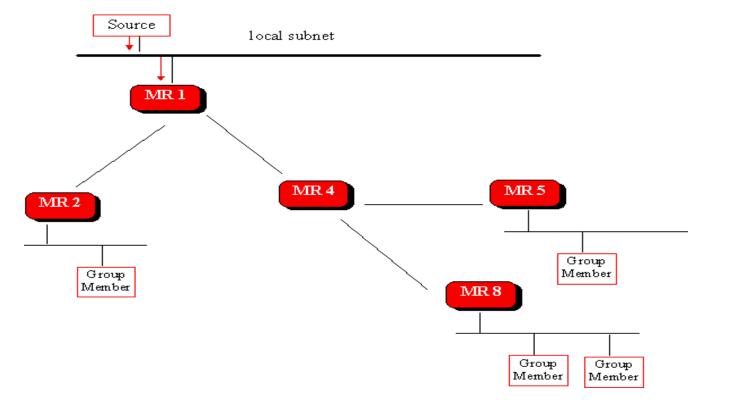
- Multicast Open Shortest Path First
 - J. Moy, "Multicast Extensions to OSPF", RFC 1584, March 1994 http://www.ietf.org/rfc/rfc1584.txt
- Link State protocol
- Extends the OSPF unicast routing protocol
 - Multicast group membership information is also distributed among the routers
 - Each MOSPF router learns which multicast groups have listeners on which local network
 - Based on this information they build a shortest path tree for each source and each group
- Large signaling overhead
- Difficult to handle topology changes
 - All the trees have to be recalculated

Distance Vector Multicast Routing Protocol

 D. Waitzman, C. Partridge, S. Deering, "Distance Vector Multicast Routing Protocol", RFC 1075, November 1988 http://www.ietf.org/rfc/rfc1075.txt


- Distance vector protocol
 - Uses the RIP unicast routing protocol

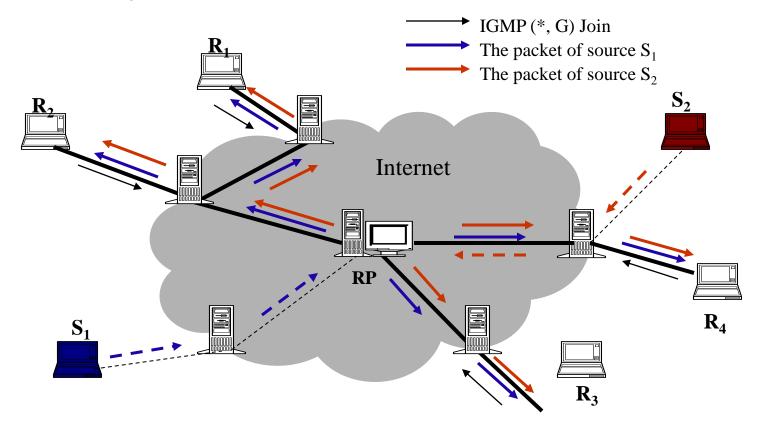
DVMRP


• Flood and prune

- Flooding
 - Checks the incoming interfaces of the packets
 - If not over the shortest path towards the source, the packets are dropped
 - If yes, packets are flooded over all the interfaces
- Pruning
 - If no interested receiver on the local network
 - If packet not received over the shortest path
- An internal router learns its interfaces over which it recieved a Prune message
 - The upcoming packets are not forwarded over those interfaces anymore
 - Prune messages become obsole after a while (one minute by default)

DVMRP flooding

DVMRP prune

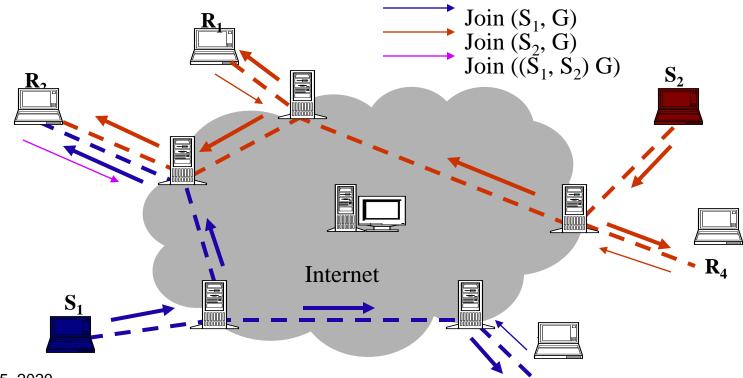

PIM

- Protocol Independent Multicast
 - PIM Dense Mode (PIM-DM)
 - PIM Sparse Mode (PIM-SM)
- PIM-SM
 - W. Fenner et al., "Protocol Independent Multicast Sparse Mode (PIM-SM): Protocol Specification (Revised)", RFC 4601, August 2006
 - The most used multicast routing protocol today

PIM-SM

- Builds a shared multicast tree
- Chooses a rendez-vous point (RP)
 - The RP is the root of the shared tree
 - "Explicit join"
 - Each source sends its message to the RP
 - The RP forwards the messages along the shared tree
 - Optimization to switch after a while from the shared tree to a sourcespecific tree

PIM-SM operation



The SSM model

• SSM - Source Specific Multicast

- Based on the Express model
- H. Holbrook, D. Cheriton, "IP Multicast Channels: Express Support for Large-Scale Single-Source Application", in *Proceedings of ACM SIGCOMM'99*, Cambridge, MA, USA, Sept. 1999.
- The (*,G) multicast group is replaced by the (S,G) multicast channel
 - S the unicast address of the source
 - G the multicast address of the group
 - Only source S can send packets to the receivers of channel (S,G)
 - Traffic is forwarded along a source-specific tree

SSM model

Source filtering

- The SSM model needs source filtering
 - The host specifies not only which group it wants to listen to, but also which source that sends to that group
- IPv4 IGMPv3
 - B. Cain, et. Al, "Internet Group Management Protocol, Version 3", RFC 3376, October 2002. http://www.ietf.org/rfc/rfc3376.txt
- IPv6 MLDv2
 - R. Vida, L. Costa, "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, June 2004. http://www.ietf.org/rfc/rfc3810.txt

Message types

- IGMP/MLD Query
 - General Query
 - Who listens what?
 - Group Specific Query
 - Does anybody listen this specific group?
 - Group and Source Specific Query
 - Does anyone listen to this specific source that sends to this specific group?
- IGMP/MLD Report
 - Current State Record
 - What do I listen to e.g. Include (A) or Exclude (B)
 - A and B are source address sets
 - Filter Mode Change Record
 - Changing the filter mode (Include or Exclude)
 - Source List Change Record
 - Allow (A) or Block (B)

- Considered for several years the "revolutionary technology of the future"
- Advantages
 - Efficient data transfer
 - Usually over the shortest path (DVMRP, MOSPF, PIM-SSM)
 - Taking into account the physical topology
 - Efficient use of resources
 - One packet is sent just once over a specific link
 - Scalable for handling the communication of large groups
 - The group is identified by a virtual group address
 - One routing table entry for a very large group
 - Nobody tracks who is part of the group, and how large is the group

- Still not deployed at large scale
 - Technical and economic reasons
- Technical reasons
 - Complicated addressing
 - No scalable inter-domain multicast routing
 - Does not scale to a large number of groups
 - The router has to keep one entry per multicast group
 - Multicast addresses are hard to aggregate
 - Lack of support for higher layer services
 - IP multicast is a *best-effort (multi)point-to-multipoint* data transfer service
 - End users are responsible for handling higher layer services
 - Difficult congestion control and reliablility handling

- Economic reasons
 - Slow and difficult deployment in the network
 - Even though all the routers "speak" today the most important multicast protocols, the ISPs sometimes do not activate them on their networks
 - Really efficient only if used in the entire network
 - Otherwise tunneling is needed
 - "Chicken-egg" problem
 - ISPs do not support it, not enough multicast applications, no need for it
 - Software companies do not develop multicast applications, as there is no network support for them
 - No proper business model behind it
 - Hard to control the usage of network resources for the ISP
 - Hard to control who uses the service, for the content provider
 - Hard to provide a proper charging scheme for it