Networking Technologies and Applications

Rolland Vida BME TMIT

November 20, 2019

- Joining a multicast tree done in two steps
 - On the local area network (LAN)
 - A user announces its local multicast routers about the groups he would like to join
 - IGMP (IPv4), MLD (IPv6)
 - Over the large Internet (WAN)
 - The local router cooperates with the other multicast routers of the network to build the tree and forward the packets along that tree
 - DVMRP, MOSPF, CBT, PIM-DM, PIM-SM, PIM-SSM

IGMP

- Internet Group Management Protocol
- An IPv4 protocol, running between the final users and the local multicast routers on the local network
 - Handles multicast group membership
 - Asymmetric protocol
 - User side
 - Router side
- The router learns which groups the end-users on his local network listen to
 - Not interested in how many receivers, important thing is to have at least on receiver
 - Not interested in exactly who are the receivers

IGMPv1

- S. Deering, "Host Extensions for IP Multicasting", RFC 1112, 1989.
- A multicast router sends regular **Query** messages to the multicast address of all the users (224.0.0.1)
- A user answers with a Report message, in which specifies the groups he listens to
 - The Report is sent to the multicast addresses of those groups
- To decrease the number of Report messages:
 - Using timers
 - A user does not answer immediately to the Query
 - Host Suppression
 - If someone else answers faster, it deletes its own Report message
- Unsolicited Report
 - If a user wants to listen immediately to a new group

- An IGMPv1 router maintains a multicast membership table
 - Which multicast groups have members on its network
 - When was the last Report message received about those groups
- Soft-state protocol
 - If in a given time nobody refreshes its interest in a given groups, the group will be deleted from the multicast membership table
- It forwards to the local network all packets that are sent to a multicast destination address that is contained in its membership table

- W. Fenner, "Internet Group Management Protocol, Version 2", RFC 2236, November 1997. http://www.ietf.org/rfc/rfc2236.txt
- IPv6 version: MLD (Multicast Listener Discovery)
 - S. Deering, W. Fenner, B. Haberman, "Multicast Listener Discovery (MLD) for IPv6", RFC 2710, November 1999. http://www.ietf.org/rfc/rfc2710.txt
- Introduces a Fast Leave mechanism
 - Do not have to wait until a timer expires to cut off a group

IGMPv2 messages

- Membership Query
 - General Query
 - Group Specific Query
- Membership Report
- Leave Group Message
- If a host wants to leave a group, it sends a Leave message to the multicast address of all the multicast routers (224.0.0.2)
- Before cutting off the group, the router has to ask if anybody else is still interested in that group or not
 - Group Specific Query
 - If no answer in a given limited time, the router cuts off the group from its table
- IGMPv3 later...

Multicast Routing

- A source sends its packets to the group's multicast address
- The multicast routers in the network build and maintain a multicast tree
 - Packets are forwarded along that tree
- The local multicast router, based on its IGMP membership table, joins or leaves this tree
- A multicast routing protocol runs among the routers of the network
 - MOSPF, DVMRP, CBT, PIM

MOSPF

- Multicast Open Shortest Path First
 - J. Moy, "Multicast Extensions to OSPF", RFC 1584, March 1994 http://www.ietf.org/rfc/rfc1584.txt
- Link State protocol
- Extends the OSPF unicast routing protocol
 - Multicast group membership information is also distributed among the routers
 - Each MOSPF router learns which multicast groups have listeners on which local network
 - Based on this information they build a shortest path tree for each source and each group
- Large signaling overhead
- Difficult to handle topology changes
 - All the trees have to be recalculated

Distance Vector Multicast Routing Protocol

 D. Waitzman, C. Partridge, S. Deering, "Distance Vector Multicast Routing Protocol", RFC 1075, November 1988 http://www.ietf.org/rfc/rfc1075.txt

- Distance vector protocol
 - Uses the RIP unicast routing protocol

DVMRP

• Flood and prune

- Flooding
 - Checks the incoming interfaces of the packets
 - If not over the shortest path towards the source, the packets are dropped
 - If yes, packets are flooded over all the interfaces
- Pruning
 - If no interested receiver on the local network
 - If packet not received over the shortest path
- An internal router learns its interfaces over which it recieved a Prune message
 - The upcoming packets are not forwarded over those interfaces anymore
 - Prune messages become obsole after a while (one minute by default)

DVMRP flooding

Networking technologies and applications

DVMRP prune

Networking technologies and applications

PIM

- Protocol Independent Multicast
 - PIM Dense Mode (PIM-DM)
 - PIM Sparse Mode (PIM-SM)
- PIM-SM
 - W. Fenner et al., "Protocol Independent Multicast Sparse Mode (PIM-SM): Protocol Specification (Revised)", RFC 4601, August 2006
 - The most used multicast routing protocol today

PIM-SM

- Builds a shared multicast tree
- Chooses a rendez-vous point (RP)
 - The RP is the root of the shared tree
 - "Explicit join" not everybody wants to listen to it
 - Each source sends its message to the RP
 - The RP forwards the messages along the shared tree
 - Optimization to switch after a while from the shared tree to a sourcespecific tree

PIM-SM operation

Drawbacks of the ASM model

- Several economic and technical issues delayed the large scale deployment of the ASM model
 - Complicated address allocation
 - Dynamic IP address allocation to the source
 - Complex address allocation solutions
 - GLOP (RFC 3180) static assignment of multicast addresses to ASes
 - » Autonomous System e.g., the network of an ISP
 - MALLOC Multicast Address Allocation Architecture (RFC 2908)
 - » MADCAP Multicast Address Dynamic Client Allocation Protocol
 - » AAP Multicast Address Allocation Protocol
 - » MASC Multicast Address Set Claim

Drawbacks of the ASM model

- Too open model for service providers
 - No control over the sources and receivers
 - Difficult charging
- Not sclabale for inter-domain routing
 - PIM-SM only inside a domain
 - An ISP does not like if its traffic is controlled by an RP located in the network of another ISP
 - Other protocols for inter-domain routing
 - MSDP Multicast Source Discovery Protocol
 - MBGP Multicast Border Gateway Protocol

The SSM model

- Need for a simpler model
- SSM Source Specific Multicast
 - Based on the Express model
 - H. Holbrook, D. Cheriton, "IP Multicast Channels: Express Support for Large-Scale Single-Source Application", in *Proceedings of ACM SIGCOMM'99*, Cambridge, MA, USA, Sept. 1999.
- The (*,G) multicast group is replaced by the (S,G) multicast channel
 - S the unicast address of the source
 - G the multicast address of the group
 - Only source S can send packets to the receivers of channel (S,G)
 - Traffic is forwarded along a source-specific tree

SSM model

Source filtering

- The SSM model needs source filtering
 - The host specifies not only which group it wants to listen to, but also which source that sends to that group
- IPv4 IGMPv3
 - B. Cain, et. Al, "Internet Group Management Protocol, Version 3", RFC 3376, October 2002. http://www.ietf.org/rfc/rfc3376.txt
- IPv6 MLDv2
 - R. Vida, L. Costa, "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, June 2004. http://www.ietf.org/rfc/rfc3810.txt

Message types

- IGMP/MLD Query
 - General Query
 - Who listens what?
 - Group Specific Query
 - Does anybody listen this specific group?
 - Group and Source Specific Query
 - Does anyone listen to this specific source that sends to this specific group?
- IGMP/MLD Report
 - Current State Record
 - What do I listen to e.g. Include (A) or Exclude (B)
 - A and B are source address sets
 - Filter Mode Change Record
 - Changing the filter mode (Include or Exclude)
 - Source List Change Record
 - Allow (A) or Block (B)

November 20, 2019

Networking technologies and applications

- Considered for several years the "revolutionary technology of the future"
- Advantages
 - Efficient data transfer
 - Usually over the shortest path (DVMRP, MOSPF, PIM-SSM)
 - Taking into accoun the physical topology
 - Efficient use of resources
 - One packet is sent just once over a specific link
 - Scalable for handling the communication of large groups
 - The group is identified by a virtual group address
 - One routing table entry for a very large group
 - Nobody tracks who is part of the group, and how large is the group

November 20, 2019

- Still not deployed at large scale
 - Technical and economic reasons
- Technical reasons
 - Complicated addressing
 - No sclabale inter-domain multicast routing
 - Does not scale to a large number of groups
 - The router has to keep one entry per multicast group
 - Multicast addresses are hard to aggregate
 - Lack of support for higher layer services
 - IP multicast is a *best-effort (multi)point-to-multipoint* data transfer service
 - End users are responsible for handling higher layer services
 - Difficult congestion control and reliablility handling

- Economic reasons
 - Slow and difficult deployment in the network
 - Even though all the routers "speak" today the most important multicast protocols, the ISPs sometimes do not activate them on their networks
 - Really efficient only if used in the entire network
 - Otherwise tunneling is needed
 - "Chicken-egg" problem
 - ISPs do not support it, not enough multicast applications, no need for it
 - A szoftware cégek nem fejlesztenek multicast alkalmazásokat, mert nincs hálózati támogatás, nem lehet majd őket eladni
 - No convenient economic model behind it
 - ISPs have difficulties in controlling the use of networking resources
 - The content provider has difficulties in controlling who uses the service
 - No convenient charging solution behind it

November 20, 2019

Explicit Multicast (Xcast)

- Network layer multicast solution
- Does not use multicast addresses
 - The source puts in the paket header the unicast IP address of all the group members
- Intermediate Xcast routers duplicate the packets if needed, based on their own internal unicast routing tables
 - The router checks which are the outgoing interfaces for each of the group members, based on its routing table
 - Duplicates the packets if needed, and prepares the corresponding headers

Explicit Multicast (Xcast)

Explicit Multicast (Xcast)

- Not scalable for large groups
 - If many group members, the header becomes too large
- Scales very well for many small groups (for which IP multicast is not good)
 - Routers do not need multicast routing tables
- R. Boivie, N. Feldman, C. Metz, "Small Group Multicast: A New Solution for Multicasting on the Internet", *Internet Computing*, vol. 4, no. 3, May/June 2000, pp. 75-79.

Alternative multicast solutions

C. Diot et al, "Deployment Issues for the IP Multicast Service and Architecture", *IEEE Network Magazine, Special Issue on Multicasting*, vol. 14, no. 1, January/February 2000, pp. 78-88.

Can we imagine a group communication service where we do not need network layer support from ISPs?

 ALM – Application Layer Multicast or...
ESM – End System Multicast or..
HBM – Host-based Multicast

IP multicast - ALM

• IP multicast • ALM

- Duplication in the routers
 - Network support
- The topology depends on...
 - The routing tables
 - The physical topology

- Duplication at the end hosts
 - No network support needed
- Virtual topology
 - The physical topology is a "black box"

ALM: motivation

- Data transfer
 - No IP multicast support needed
 - Uses only unicast communications
 - Small groups
 - IP multicast is not always the best solution
 - Actively using the data
 - Data can be modified/analyzed during transmission
 - Topology can be modified on the fly, based on the content
- Control
 - Aggregation of control data (reliable multicast)

ALM: drawbacks

- Efficiency
 - End-to-end "branches"
 - Delay might be very large
 - Inefficient use of resources

- Scalability
 - Continuous evaluation of the connections between peers
 - Complete graph: n*(n-1) virtual connections in a group with n members

ALM: drawbacks (2)

Stability

- Stability of the nodes
 - In the overlay network the participants ("routers") are end hosts
 - Not as reliable as a real router
 - High churn Hosts might join and leave the group quite often
- Stability of the measurements
 - The efficiency of the overlay depends also on the stability of the chosen metric
 - RTT, bandwidth, etc.
 - Trade-off between the efficient data transfer and the signalling overhead