Networking Technologies and Applications

István Moldován BME TMIT

October 16, 2019

Layering and hourglass model

Networking technologies and applications

IP (Internet Protocol)

- Allows any to nodes to communicate over the Internet
- The goal is to deliver a packet to the destination no guarantees (best effort)
 - No guarantees for the delivery
 - No guarantees for the ordering
- The packet crosses several routers, gateways
 - Routing protocols needed
 - Packets sent towards the same destination can follow different paths
 - Packet switching vs. Circuit switching

IPv4 header

Octet		0 1										2									3											
Bit	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15								15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30									31												
0		V	ersi	sion IHL DSCP ECN								Total Length																				
32	Identification											Flags Fragment Offset																				
64	Time To Live Protocol																Hea	der C	hec	ksun	n											
96		Source IP Add											Address																			
128		Destination IP Address																														
160																																
192															Ont	long	/if 11-1		5)													
224															Opi	lions	(if IH	L > :	5)													
256																																

- **Version** 4 (IPv4)
- IHL Internet Header Length (32 bit words)
- DSCP Differentiated Services Code Point
 October Support for QoS Best Effort (BE), Expedited Forwarding (EF), Assured Forwarding (AF)

IPv4 header

Octet	0									1								2								3								
Bit	0	1	13	2 3	8	4	5	6	7 8 9 10 11 12 13 14 15								16	17	18	3 19 20 21 22 23 24 25 26 27 28 29 30								30	31					
0	Version IHL DSCP ECN									Total Length										11														
32	Identification											Flags Fragment Offset																						
64	Time To Live Protocol											Header Checksum																						
96																Sou	irce	IP A	ddre	SS														
128															[Desti	natio	n IP	Add	ress														
160																																		
192																Ont		/:= 11		E														
224																Opt	ions	(II IF	1L >	5)														
256																																		

- **ECN** Explicit Congestion Notification
 - Packets are not dropped in case of congestion, just marked
 - The destination tells to the source to lower its sending rate
- Total Length in bytes
 - Maximum packet 65.535 byte

October 16, 2019

IP fragmentation

- The packet crosses several networks during its transmission
 - Lower MTU (Maximum Transmission Unit) -> fragmentation
 - The IP header contains the fragment number
 - Reassembly of the fragments is also done by IP
- Fragmentation can be avoided
 - "Path MTU discovery"- minimum MTU on the path
 - The source sends small packets than the Path MTU

The IPv4 header

Octet		0								1								2								3							
Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3'	
0	Version IHL DSCP ECN									N	Total Length																						
32	Identification											Flags Fragment Offset																					
64	Time To Live Protocol											Header Checksum																					
96	Source IP Address																																
128															Destir	natio	n IP	Add	ess														
160																																	
192															Ont	ana	/if 11		5)														
224															Opt	IUNS	(1) 15	<u> L > </u>	5)														
256																																	

- **Identification** identifier of a fragmented IP packet
- **Fragment Offset** the offset of the fragment, compared to the beginning of the large packet (0 for the first fragment)
- **Flags** 3 bits to control fragmentation
 - First bit set to 0 (reserved for future use)
 - **DF Don't Fragment bit** if larger than the path MTU, just drop it (e.g., for Path MTU Discovery)
 - MF More Fragments bit more fragments will come (1 if the last fragment, otherwise 0)
 October 16, 2019
 Networking technologies and applications

IPv4 header

- **Time To Live** limits the spreading of the packet
 - Each router decreases it with 1, before forwarding. If it reaches 0, the packet is dropped
- **Protocol** Which protocol generated the payload
 - ICMP (1), IGMP (2), TCP (6), EGP (8), IGP (9), UDP (17), IPv6 (41), RSVP (46), OSPF (89)

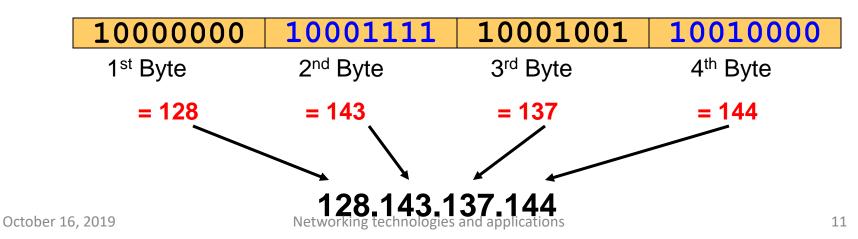
IPv4 header

- Header Checksum controls only if the header is correct
 - If an error in the payload, that should be handled by the encapsulated protocol
 - As the TTL is decreased, each router should recalculate the checksum, and refresh this field accordingly
- **Options** rarely used (as opposed to IPv6)

October 16, 2019

Networking technologies and applications

What is an IP Address?


An IP address is a unique global address for a network interface

- An IP(v4) address:
 - is a **32 bit long** identifier
 - encodes a network number (network prefix) and a host number

Dotted Decimal Notation

- IP addresses are written in a so-called *dotted decimal* notation
- Each byte is identified by a decimal number in the range [0..255]:

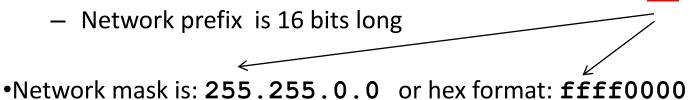
• Example:

Network prefix and Host number

• The network prefix identifies a network and the host number identifies a specific host (actually, interface on the network).

network prefix host number

- How do we know how long the network prefix is?
 - The network prefix <u>used</u> to be implicitly defined (class-based addressing, A,B,C,D...)
 - The network prefix now is flexible and is indicated by a prefix/netmask (classless).


Octobe

Example: argon.cs.virginia.edu

•IP address is 128.143.137.144

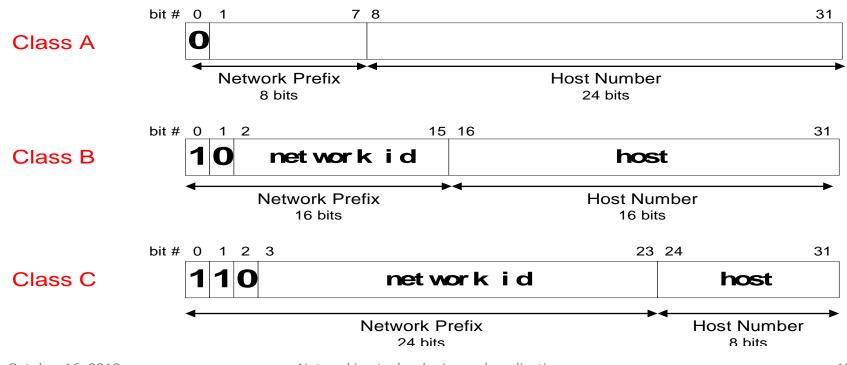
128.143

- Is that enough info to route datagram??? -> No, need netmask or prefix at every IP device (host and router)
- •Using Prefix notation IP address is: 128.143.137.144/16

-----> Network id (IP address AND Netmask) is: 128.143.0.0

----> Host number (IP address AND inverse of Netmask) is: 137.144

137.144


The old way: Classful IP Adresses

- When Internet addresses were standardized (early 1980s), the Internet address space was divided up into classes:
 - Class A: Network prefix is 8 bits long
 - Class B: Network prefix is 16 bits long
 - Class C: Network prefix is 24 bits long
- Each IP address contained a key which identifies the class:

 Class A: IP address starts with "0" 	
 Class B: IP address starts with "10" 	
 Class C: IP address starts with "110" 	

arts with "0" arts with "10"		Number of networks	Maximum nr. of hosts on a network	Value of first byte
arts with "110"	Class A	126	16,777,214	1 - 126
	Class B	16,384	65,534	128 – 191
Networking technolog	Class C	2,097,152	254	192 - 223 14

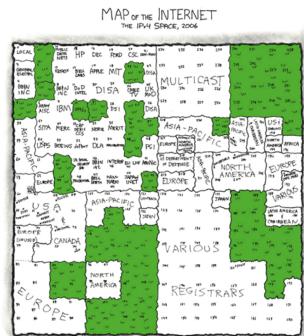
The old way: Internet Address Classes

Networking technologies and applications

The old way: Internet Address Classes

• We will learn about multicast addresses later in this course.

Addressing rules

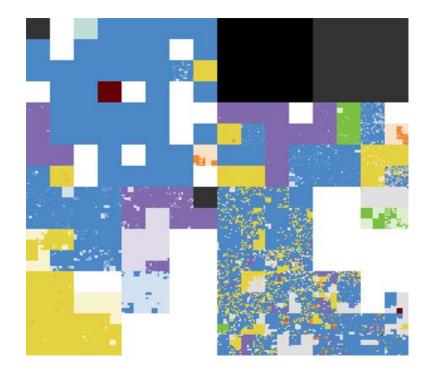

- The Network ID cannot be 127
 - Reserved for the loop-back interface
- The host ID cannot be 255
 - 255 a broadcast address
- The host ID cannot be 0
 - 0 means "this network"
- The host ID has to unique on the given network

Problems with Classful IP Addresses

• The original classful address scheme had a number of problems

Problem 1. Too few network addresses for large networks

- Class A and Class B addresses are gone
- Initially given to institutions
 - Upper left corner
 - HP, Apple, MIT, IBM, Ford, etc
- Later RIRs are created
 - Regional Internet Registrar

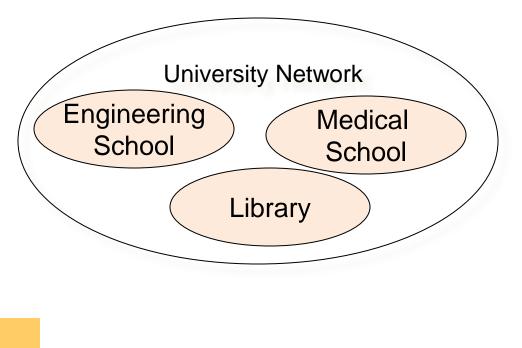


THIS CHART SHOWS THE IP ADDRESS SPACE ON A PLANE USING A FRACTAL MAPPING WHICH PRESERVES GROWING -- ANY CONSECUTIVE STRING OF IP& WILL TRANSLATE TO A SINGLE COMPACT, CONTINUOUS REGION ON THE MARE REACH OF THE 256 NUMBERED BLOCKS REPRESENTS ONE // SUBMET (CONTINUING ALL)P: THAT START WITH THAT NUMBER). THE UPPER LEFT SECTION SHOWS THE BLOCKS SOLD DIRECTLY TO CORPORATIONS AND GOVERNMENTS IN THE 1970'S BEFORE THE RIRA TOOK OVER ALLOCATION.

IPv4 addresses (2006)

- Blue: ARIN North America
- Yellow: RIPE NCC Europe
- Magenta: APNIC Asia-Pacific
- Green: LACNIC Latin-America
- Orange: AfriNIC Africa
- Black: Multicast
- Grey: Special addresses
 - Loopback, private, class E, etc.
- White: free

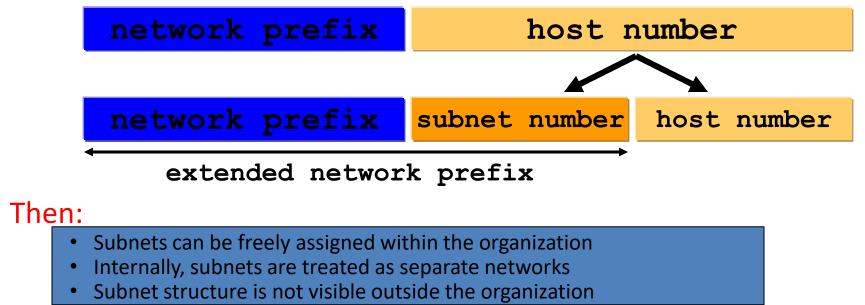
Problems with Classful IP Addresses

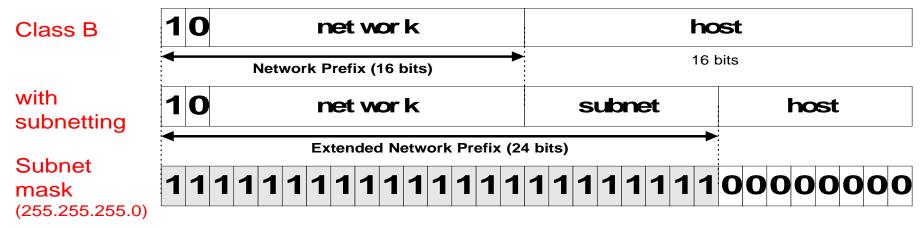

• The original classful address scheme had a number of problems

Problem 2. Two-layer hierarchy is not appropriate for large networks with Class A and Class B addresses.

- Fix #1: Subnetting

Subnetting


- Problem: Organizations have multiple networks which are independently managed
 - Solution 1: Allocate an address for each network
 - Difficult to manage
 - From the outside of the organization, each network must be addressable, must have an identifiable address.
 - Solution 2: Add another level of hierarchy to the IP addressing structure


Basic Idea of Subnetting

- Split the host number portion of an IP address into a subnet number and a (smaller) host number.
- Result is a 3-layer hierarchy

Subnet Masks

• Routers and hosts use an **extended network prefix (subnet mask)** to identify the start of the host numbers

^{*} There are different ways of subnetting. Commonly used netmasks for university networks with /16 prefix (Class B) are 255.255.255.0 and 255.255.0.0

Advantages of Subnetting

- With subnetting, IP addresses use a 3-layer hierarchy:
 - Network
 - Subnet
 - Host
- Improves efficiency of IP addresses by not consuming an entire address space for each physical network.
- Reduces router complexity. Since external routers do not know about subnetting, the complexity of routing tables at external routers is reduced.
- Note: Length of the subnet mask need not be identical at all subnetworks.

Subnetting Example

- An organization with 4 departements has the following IP address space: 10.2.22.0/23. As the systems manager, you are required to create subnets to accommodate the IT needs of 4 departments. The subnets have to support to 200, 61, 55, and 41 hosts respectively. What are the 4 subnet network numbers?
- Solution:
 - 10.2.22.0/24 (256 addresses > 200)
 - 10.2.23.0/26 (64 addresses >61)
 - 10.2.23.64/26 (64 addresses > 55)
 - 10.2.23.128/26 (64 addresses > 41)

October 16, 2019

Networking technologies and applications

Problems with Classful IP Addresses

Problem 3. Inflexible. Assume a company requires 2,000 addresses

- Class A and B addresses are overkill
- Class C address is insufficient (requires 8 Class C addresses)

Problem 4: Exploding Routing Tables: Routing on the backbone Internet needs to have an entry for each network address. In 1993, the size of the routing tables started to outgrow the capacity of routers.

Fix #2 (to both of these problems): Classless Interdomain Routing (CIDR)

CIDR - Classless Interdomain Routing

- Goals:
 - Restructure IP address assignments to increase efficiency
 - Hierarchical routing aggregation to minimize route table entries

Key Concept: The length of the network id (prefix) in IP addresses is arbitrary/flexible and is defined by the network hierarchy.

- Consequence:
 - Routers use the IP address <u>and</u> the length of the prefix for forwarding.
 - All advertised IP addresses must include a prefix

CIDR Example

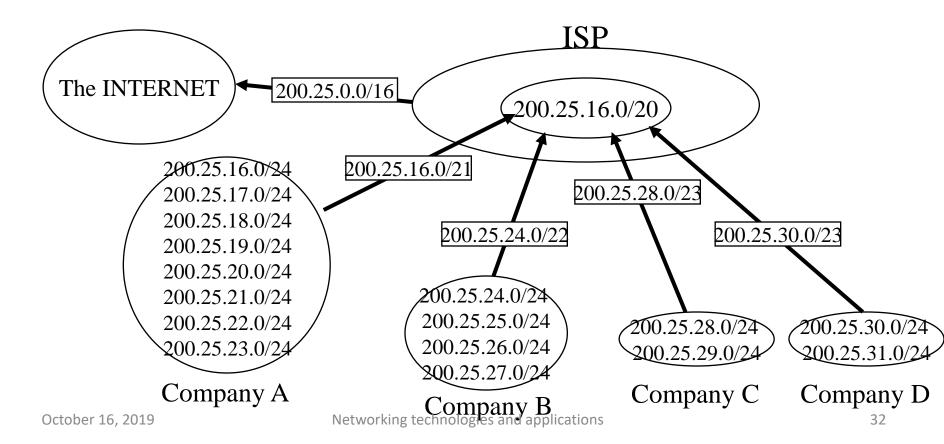
- CIDR notation of a network address: 192.0.2.0/18
 - "18" says that the first 18 bits are the network part of the address
- The network part is called the network prefix
- Example:
 - Assume that a site requires an IP network domain that can support 1000 IP host addresses
 - With CIDR, the network is assigned a continuous block of 1024 = 2¹⁰ (>1000) addresses with a 32-10 = 22-bit long prefix

CIDR: Prefix Size vs. Host Space

CIDR Block Prefix # of Host Addresses /27 32 hosts /26 64 hosts /25 128 hosts /24 256 hosts /23 512 hosts /22 1,024 hosts /21 2,048 hosts /20 4,096 hosts /19 8,192 hosts /18 16,384 hosts /17 32,768 hosts /16 65,536 hosts /15 131,072 hosts /14 262,144 hosts /13 524,288 hosts

CIDR and Address assignments

- IANA Internet Assigned Numbers Authority
 - The RIRs get short prefix CIDR blocks
 - Regional Internet Registries
 - E.g., 62.0.0.0/8 assigned to RIPE NCC
 - Réseaux IP Européens Network Coordination Centre
- RIRs fragment and redistribute parts of the address space
 - Backbone ISPs obtain large blocks of IP address space and then reallocate portions of their address blocks to their customers.


Example:

- Assume that an ISP owns the address block 206.0.64.0/18, which represents 16,384 (2³²⁻¹⁸=2¹⁴) IP host addresses
- Suppose a client requires 800 host addresses
 - > $512=2^9 < 800 < 1024=2^{10} -> 32-10 = 22$,

Octobe 🎾 6, A§\$igning a /22 block, i.e., 206:0x68:0g22c+>> gives a block of 1;024 (210) IP addresses to client. 31

01000100

CIDR example

CIDR and Routing

- Aggregation of routing table entries:
 - 128.143.0.0/16 and 128.142.0.0/16 can be represented as 128.142.0.0/15 at a router.
 - 143 = 128.<u>1000111</u>1.0.0 142 = 128.<u>10001110</u>.0.0
- Longest prefix match: Routing table lookup finds the routing entry that matches the longest prefix
 - Why?

E.g., What is the outgoing interface for destination IP address: 128.143.137.0?

Prefix	Interface/outgoing link
128.143.128.0/17	interface #1
128.128.0.0/9	interface #2
128.0.0.0/4	interface #5

Networking technologies and applications Routing table

Problems with Classful IP Addresses

Problem 5. The Internet is going to outgrow the 32-bit addresses

- Fix #3: IP Version 6