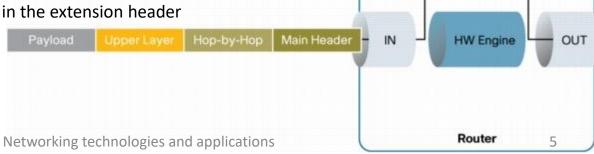

Networking Technologies and Applications

Rolland Vida BME TMIT

November 4, 2020

IPv6 chained extension headers



NOvember 4, 2020

- Header order
 - Important: extension headers should respect the suggested order
 - Easier for routers to process the packet
 - In most cases the routers process only the hop-by-hop options and the routing header
 - Exception: destination option
 - Right before the higher layer header
 - If we want the intermediate routers to process the destination option header, we should put it right before the routing header, and they should be processed together.
 - A packet might contain a destination option headers in both locations

- The suggested header order:
 - IPv6 Header
 - Hop-by-hop Options Header (type = 0)
 - Destination Options Header (1)
 - Routing Header (type = 43)
 - Fragment Header (type = 44)
 - Authentication Header (type = 51)
 - Encapsulating Security Payload (ESP) (type = 50)
 - Destination Options Header (2) (type = 60)
 - Upper Layer Header (e.g. TCP or UDP)

- Hop-by-hop Options Header
 - Contains IP options for the intermediate routers
 - Each intermediate router should analyze and process the Hop-by-hop Header
 - Router Alert option alerts tranzit routers
 - If the packet packet contains information that should be processed by an intermediate router
 - Otherwise the packet is not analyzed, just routed
 - IPv6 jumbogram option
 - For packets larger than 65.535 bytes
 - The payload length (on 16 bits) set to 0 in the fixed header
 - The true length specified in the extension header

Process the

Hop-by-Hop EH

CPU

Routing Header

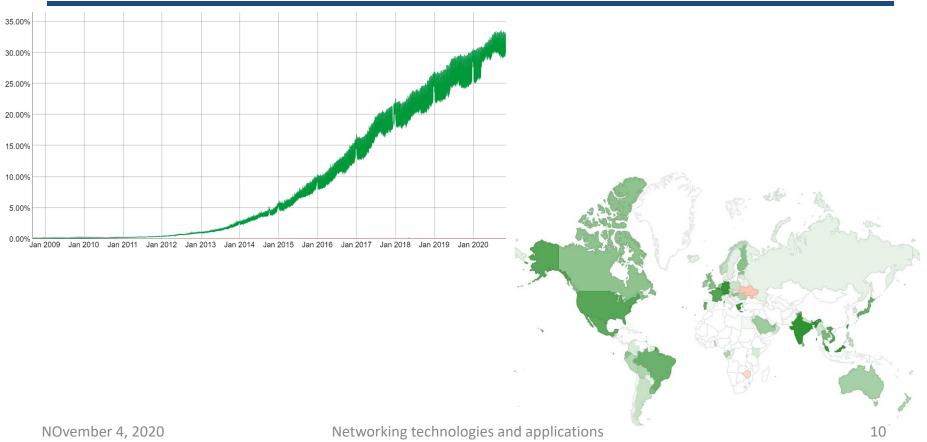
- In the normal case the source of the IP packet leaves the routing task to the network
- In case of source routing, the source will specify a path with router addresses
 - The entire list in the Routing Header (e.g., A, B, C, D)
 - The destnation address is always the address of the next router specified in this field, except the last router
 - Each router modifies the destination address, before forwarding the packet

- Fragment Header
 - In IPv4 fragmentation and reassembly automatically, if explicitely not forbidden
 - Don't Fragment flag
 - In IPv6 packets are not fragmented by default
 - If the packet is too large for the transmission medium, it is dropped and an ICMP (Internet Control Message Protocol) error message is sent
 - The source discovers the path MTU-t
 - Maximum Transmission Unit
 - Tries to send packets with a lower size than the MTU
 - If we need fragmentation, that can be done using the Fragmentation Extension Header
- Authentication Header
 - Guarantees that ...
 - The recieved packet is authentic
 - It was not altered on its path
 - Comes from the specified source
- Destination Option Header
 - Contains options to be processed by the destination node

Transition to IPv6

- Routing services built on IP
 - RIPv6(ng), OSPFv6 (v3), BGPv6
- Network and transport layer protocols built on IP
 - TCPv6, UDPv6, RSVPv6
- Applications
 - Each application that was using directly the IPv4 addresses is not independent from the lower layers, so IPv6 support should be implemented in it
- Gradual transition
 - No "D-day"
- Expectations regarding transition
 - No transition dependencies
 - The transition of a given node can be done independently from the others
 - The most important aspect is backward compatibility
 - It should be as easy as possible for the end user
 - The different transition solutions should be appliable independently of each other
 - At least at the level of the different domains

NOvember 4, 2020


Networking technologies and applications

IETF paranthesis

- Internet Engineering Task Force (IETF)
 - Internet Drafts (valid for 6 months)
 - Request for Comments (RFCs)
 - No real comments requested
 - These are the actual standards
- Internet Research Task Force (IRTF)

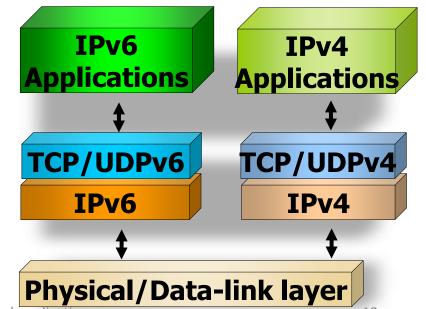
IPv6 deployment as seen by Google

Transition solutions

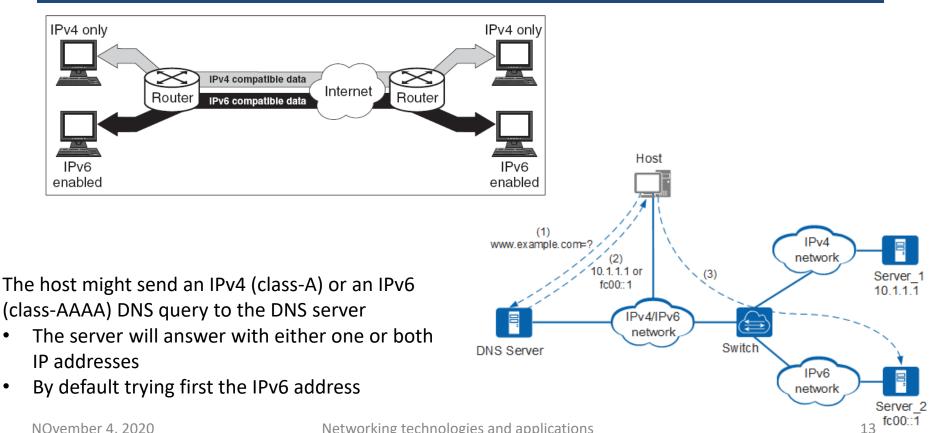
Dual Stack

Both IPv4 and IPv6 stack on the same device

• Tunnels


- Initially tunneling IPv6 packets in IPv4 domains
- Later, tunneling IPv4 packets in IPv6 domains

• Protocol translation

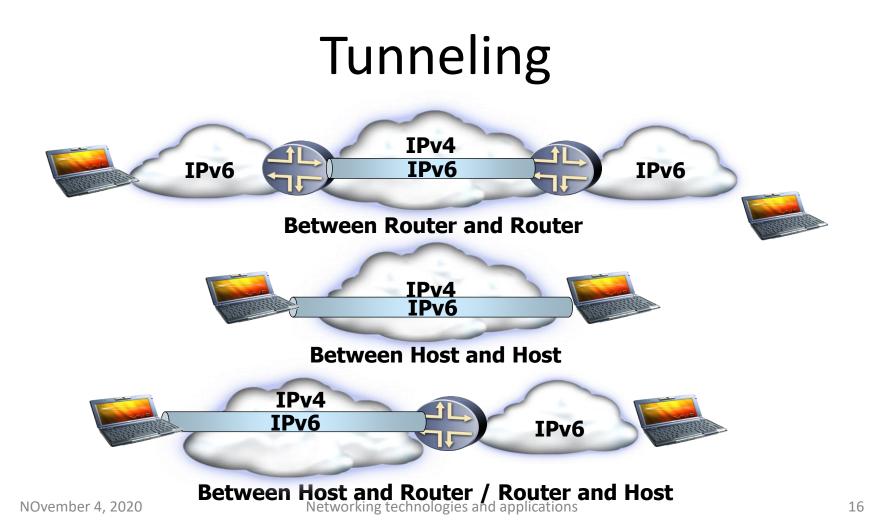

- Headers containing protocol information should be translated into different protocol headers, based on certain translation rules
- IPv6 <-> IPv4

Dual Stack

- The first step towards deploying IPv6 is deploying some nodes that support IPv6 as well, next to IPv4
 - They have a double stack strategy
 - Use IPv6 to communicate with other IPv6 systems
 - Can switch back to IPv4 mode to talk to IPv4 systems

Dual stack

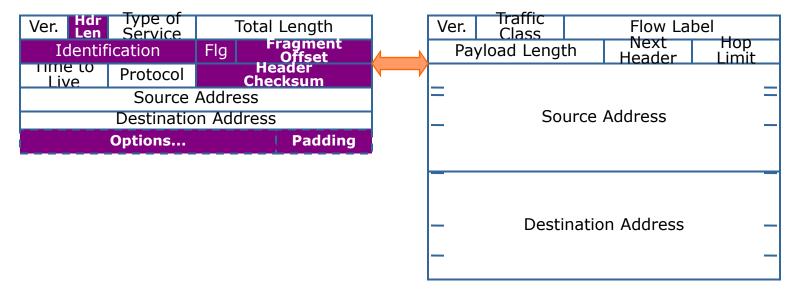
•


•

- Advantages
 - Easy to install, configure, maintain
 - The entire functionality of IPv6 can be exploited
 - Any two nodes can communicate exclusively with IPv4 or IPv6 packets
 - Transparent transition for the end users
- Drawbacks
 - Not scalable: each node should have an IPv6 and an IPv4 address, the limitation of the IPv4 address domain obstructs its spreading
 - The size of the routing tables is increased in the routers
 - Not flexible: no communication possibility between nodes speaking just IPv4 and just IPv6

Tunneling

- IPv6 packet encapsulated inside an IPv4 packet
- The tunnel endpoints manage the encapsulation
- The process transparent to the intermediate nodes
- Configured tunnels
 - The tunnel endpoints are explicitly configured
 - They are dual stack nodes
- Automatic tunnels
 - The tunnel endpoint are automatically discovered by the network
 - Tunnel Brokers (RFC3053)
 - 6to4 (RFC3056)
 - ISATAP (Intra-Site Automatic Tunnel Addressing Protocol)
 - 6over4 (RFC2529)
 - Teredo: support tunnels through IPv4 NAT



- Network layer translators
 - SITT (Stateless IP/ICMP Translator Algorithms) (RFC2765)
 - NAT-PT (Network Address Translator-Protocol Translator) (RFC2766)
 - BIS (Bump int the Stack) (RFC2767)
- Transport layer translator
 - TRT (Transport Relay Translator) (RFC3142)
- Application layer translators
 - BIA (Bump in the API) (RFC3338)
 - SOCKS64 (RFC3089)
 - ALG (Application Level Gateway)

Network layer translators

 The IPv4 messages are translated into IPv6 messages, and viceversa (especially the headers)

