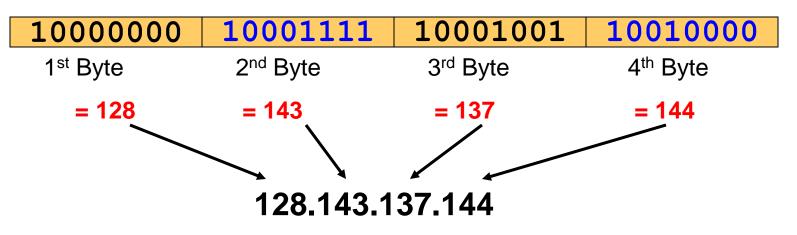

Networking Technologies and Applications

Rolland Vida BME TMIT

October 13, 2016

IP(v4) Addresses

What is an IP Address?


• An IP address is a unique global address for a network interface

- An IP(v4) address:
 - is a **32 bit long** identifier
 - encodes a network number (network prefix) and a host number

Dotted Decimal Notation

- IP addresses are written in a so-called *dotted decimal* notation
- Each byte is identified by a decimal number in the range [0..255]:

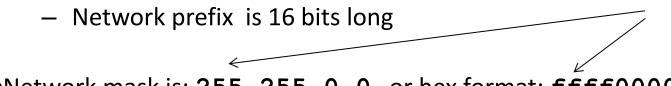
• Example:

Network prefix and Host number

• The network prefix identifies a network and the host number identifies a specific host (actually, interface on the network).

network prefix host number

- How do we know how long the network prefix is?
 - The network prefix <u>used</u> to be implicitly defined (class-based addressing, A,B,C,D...)
 - The network prefix now is flexible and is indicated by a prefix/netmask (classless).



Example: argon.cs.virginia.edu

•IP address is 128.143.137.144

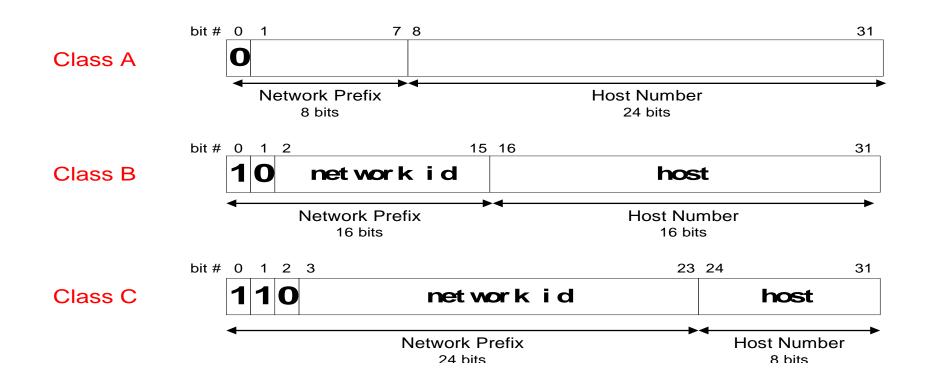
128.143

- Is that enough info to route datagram??? -> No, need netmask or prefix at every IP device (host and router)
- •Using Prefix notation IP address is: 128.143.137.144/16

•Network mask is: 255.255.0.0 or hex format: fff0000

----> Network id (IP address AND Netmask) is: 128.143.0.0

-----> Host number (IP address AND inverse of Netmask) is: 137.144


137.144

The old way: Classful IP Adresses

- When Internet addresses were standardized (early 1980s), the Internet address space was divided up into classes:
 - Class A: Network prefix is 8 bits long
 - Class B: Network prefix is 16 bits long
 - Class C: Network prefix is 24 bits long
- Each IP address contained a key which identifies the class:
 - Class A: IP address starts with "0"
 - Class B: IP address starts with "10"
 - Class C: IP address starts with "110"

	Number of networks	Maximum nr. of hosts on a network	Value of first byte
Class A	126	16,777,214	1 – 126
Class B	16,384	65,534	128 – 191
Class C	2,097,152	254	192 - 223

The old way: Internet Address Classes

The old way: Internet Address Classes

• We will learn about multicast addresses later in this course.

Addressing rules

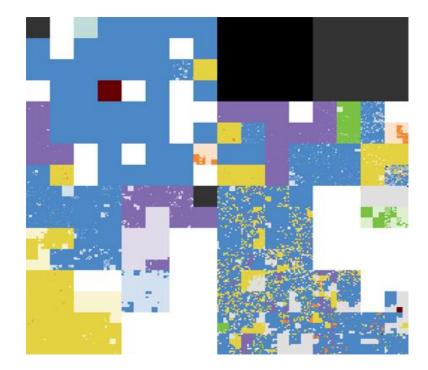
- The Network ID cannot be 127
 - Reserved for the loop-back interface
- The host ID cannot be 255
 - 255 a broadcast address
- The host ID cannot be 0
 - 0 means "this network"
- The host ID has to unique on the given network

Problems with Classful IP Addresses

• The original classful address scheme had a number of problems

Problem 1. Too few network addresses for large networks

- Class A and Class B addresses are gone
- Initially given to institutions
 - Upper left corner
 - HP, Apple, MIT, IBM, Ford, etc
- Later RIRs are created
 - Regional Internet Registrar

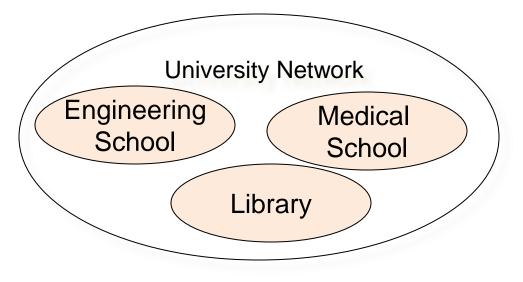


THIS CHART SHOWS THE IP ADDRESS SPACE ON A PLANE USING A FRACTAL MAPPING WHICH PRESERVES GROWING -- ANY CONSECTIVE STRING OF IP& WILL TRANSLATE TO A SINGLE COMPACT, CONTIGUOUS REGION ON THE MARE REACH OF THE 256 NUMBERED BLOCKS REPRESENTS ONE /8 SUBMET (CONTINUNG ALL IP: THAT START WITH THAT NUMBER). THE UPPER LEFT SECTION SHOWS THE BLOCKS SOLD DIRECTLY TO CORPORATIONS AND GOVERNMENTS IN THE 1970'S BEFORE THE RIRG TOOK OVER ALLOCATION.

IPv4 addresses (2006)

- Blue: ARIN North America
- Yellow: RIPE NCC Europe
- Magenta: APNIC Asia-Pacific
- Green: LACNIC Latin-America
- Orange: AfriNIC Africa
- Black: Multicast
- Grey: Special addresses
 - Loopback, private, class E, etc.
- White: free

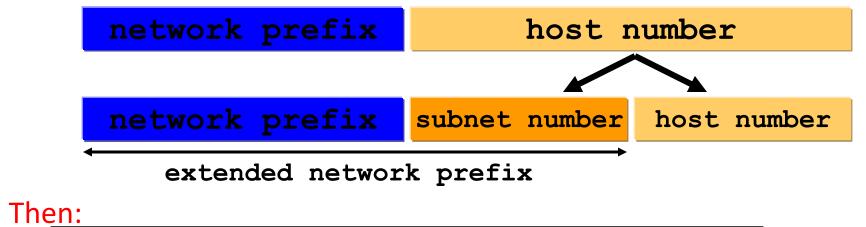
Problems with Classful IP Addresses


• The original classful address scheme had a number of problems

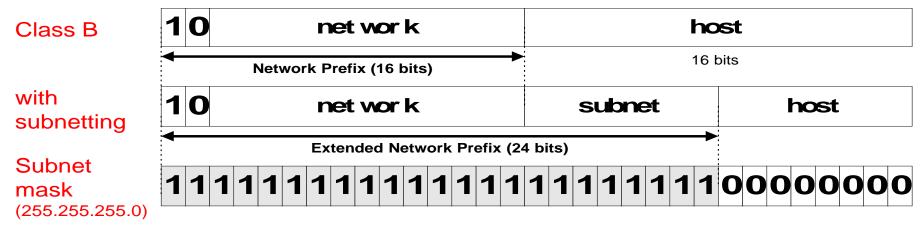
Problem 2. Two-layer hierarchy is not appropriate for large networks with Class A and Class B addresses.

- Fix #1: Subnetting

Subnetting


- **Problem**: Organizations have multiple networks which are independently managed
 - Solution 1: Allocate an address for each network
 - Difficult to manage
 - From the outside of the organization, each network must be addressable, must have an identifiable address.
 - Solution 2: Add another level of hierarchy to the IP addressing structure

Basic Idea of Subnetting


- Split the host number portion of an IP address into a subnet number and a (smaller) host number.
- Result is a 3-layer hierarchy

- Subnets can be freely assigned within the organization
- Internally, subnets are treated as separate networks
- Subnet structure is not visible outside the organization

Subnet Masks

 Routers and hosts use an extended network prefix (subnet mask) to identify the start of the host numbers

^k There are different ways of subnetting. Commonly used netmasks for university networks with /16 prefix (Class B) are 255.255.255.0 and 255.255.0.0

Advantages of Subnetting

- With subnetting, IP addresses use a 3-layer hierarchy:
 - Network
 - Subnet
 - Host
- Improves efficiency of IP addresses by not consuming an entire address space for each physical network.
- Reduces router complexity. Since external routers do not know about subnetting, the complexity of routing tables at external routers is reduced.
- Note: Length of the subnet mask need not be identical at all subnetworks.

Subnetting Example

- An organization with 4 departements has the following IP address space: 10.2.22.0/23. As the systems manager, you are required to create subnets to accommodate the IT needs of 4 departments. The subnets have to support to 200, 61, 55, and 41 hosts respectively. What are the 4 subnet network numbers?
- Solution:
 - 10.2.22.0/24 (256 addresses > 200)
 - 10.2.23.0/26 (64 addresses >61)
 - 10.2.23.64/26 (64 addresses > 55)
 - 10.2.23.128/26 (64 addresses > 41)