Networking technologies and applications

May 4, 2015

Cellular networks

- Elements of a cellular system:
 - Mobile station/node
 - Base station
 - Switching center (MTSO, MSC)
 - Mobile Telephone Switching Office
- ells A second se

To telephone network

- The covered area divided into cells
 - Each cell has its own base station
 - Each cell has its own frequency domain
 - Neighboring cells on different frequencies
 - Avoiding interferences
 - Non-neighboring cells can use the same frequency
 - Cell-reuse

1G systems

- Analog communication, only voice transfer
 - AMPS Advanced Mobile Phone System
 - USA, 800 MHz, 1983, Bell Labs
 - FDMA each call on separate dedicated frequency
 - Obsolete, service stopped in February 2008
 - TACS Total Access Communication System
 - UK, 900 MHz, 1985, Vodafone
 - Obsolete, Vodafone service stopped in 2001

2G systems

- Digital voice and data transfer
- D-AMPS Digital AMPS
 - Used in the USA and Canada
 - Designed to be compatible with AMPS
 - TDMA on the AMPS channels
 - Operated on 800 MHz (IS-54) and 1900 MHz (IS-136) as well
 - Service stopped in 2008

2G systems

- GSM Global System for Mobile Communication
 - Originally a European solution, today a global system
 - SINTEF Torleiv Maseng
 - 1991 the first network

- Today more than 400 GSM service providers, 3 billion subscribers in 212 countries
 - Introduced in the USA as well
- On 850/900/1800/1900 MHz
 - 9,6 Kbps
- Similarly to D-AMPS, it uses both FDM and TDM
 - The spectrum is divided in channels, the channels divided in time slots

Elements of a GSM network

- BTS (Base Transceiver Station)
 - Maintains a radio connection to all the mobile stations inside its cell
- BSC (Base Station Controller)
 - Configures and controls the radio interface, handles the frequencies and the cell handoff (between two BTSs)
 - Can physically be placed inside the BTS
- MSC (Mobile Switching Center)
 - Connects the GSM network with the PSTN network
 - Handles the authentication, localization, cell handoff (between two BSCs), etc.
- HLR (Home Location Register)
 - Database about the users and their rights

2G systems

- CDMAOne Code Division Multiple Access
 - Described in the IS-95 standard, used in the USA as an alternative to D-AMPS
 - Sprint (CDMAOne) vs. AT&T Wireless (D-AMPS)
 - Each station transmits continuously over the entire frequency band
 - Parallel transmission separated using coding theory
 - The transmitter multiplies (XOR) the signal with a spreading code, and sends the result
 - The receiver multiplies the received signal once again, with the same code, reproducing the original signal
 - Each code is orthogonal
 - All the other signals transmitted in parallel are seen as noise

CDMA basics

Multiplexing solutions

C Code

f Frequency

t Time

Duplexing vs. multiplexing

Multiplexing

- Sharing between the different users
 - Several separated user channels over the same physical resource
- FDM Frequency Division Multiplexing
 - The spectrum divided in frequency bands
 - Each user communicates over his own frequency
- TDM Time Division Multiplexing
 - Multiple users share the same channel
 - Users receive time slots inside the channel
- CDM Code Division Multiplexing
 - Each user uses continuously the entire channel
 - Traffic separated based on coding theory

Duplexing

- Separation of the downlink and uplink traffic
- FDD Frequency Division Duplexing
 - "Paired" frequencies, separate uplink and downlink channels
- TDD Time Division Duplexing
 - Unpaired frequencies, flexible separation of uplink and downlink traffic based on current conditions
- Several combinations of multiplexing and duplexing solutions can be used

- Digital data transfer, higher speeds
 - Overlay infrastructure based on the 2G networks
- GPRS General Packet Radio System
 - Based on the GSM or the D-AMPS networks
 - More efficient channel utilization, lower prices
 - Traffic-based, not time-based charging
 - Packet-switched, not circuit-switched
 - 56 114 Kbps speeds
 - FDD + TDMA
 - The user receives a pair of uplink and downlink frequencies (channels)
 - Statistical multiplexing instead of traditional TDM
 - More efficient utilization, higher transfer speeds
 - Fixed length packets (that fit a GSM slot)
 - In the downlink direction, first-come first-served
 - In the uplink direction, similar to Reservation-Aloha
 - Improved Slotted-Aloha
 - The acquired timeslots are used by the same user, while it has data to send

The GPRS network

- The BSC separates the packet-switched data traffic from the circuit-switched voice traffic
- Additional elements:
 - SGSN (Serving GPRS Suport Node)
 - Handles mobility, data encryption and compression
 - GGSN (Gateway GPRS Support Node)
 - Transforms the GPRS packets into IP packets
 - Edge router in the GPRS network
 - Directs the incoming IP packets to the appropriate SGSN
 - Firewall and NAT functions, authentication, accounting, distribution of IP addresses

- EDGE Enhanced Data Rates for GSM Evolution
- Introduced in the US in 2003
- Operates on GSM frequencies (900/1800/1900 MHz)
 - Full GSM compatibility inside the network
 - The BTSs have to be replaced
- Higher speed
 - Different modulation scheme and different speed, depending on channel quality
 - GSM/GPRS uses GMSK modulation
 - EDGE uses 8PSK in addition, for good quality channels
 - Theoretical max. speed 59,2 kbps / slot
 - Theoretically max. 8 slots 473,6 kbps
 - Incremental redundancy
 - Instead of resending lost packets, more redundancy is used, if necessary
- In December 2008, over 400 GSM/EDGE networks in 177 countries

3G systems

- Data traffic takes the leading role over voice, on mobile devices as well
 - Make phone calls, listen to music, watch movies and browse the web with high speed, over the same mobile phone
- ITU project already in 1992
 - IMT-2000 International Mobile Telecommunication
 - Planned to be deployed in year 2000, on 2000 Mhz, with a speed of 2 Mb/s
- UMTS Universal Mobile Telecommunication System
 - W-CDMA Wideband CDMA
 - UMTS Forum, EU support
 - Combination of FDD and TDD
 - FOMA NTT DoCoMo (2001)
 - The first W-CDMA system
 - At the beginning big user devices, short battery life
 - 40 million subscribers in 2007
- CDMA2000
 - Qualcomm solution, expands the IS-95 (CDMAOne) standard
 - Might have been compatible with UMTS, but finally separate development, for political reasons (GSM compatibility)

The UMTS network

- Each UMTS cell is served by a Node B
 - Radio connection between the mobile devices and the UMTS network
- RNC (Radio Network Controller)
 - Verifies the utilization and reliability of the radio resources
- HSS (Home Subscriber Server)
 - Handles several database functions: HLR, DNS, etc..
- The UMTS network is compatible with the GSM networks

Permits incremental deployment, next to an operating GSM

network

W-CDMA access scheme (FDD)

TD-CDMA access scheme (TDD)

Asymmetric

UMTS spectrum licensing in Europe

3G concession procedures

- Spectrum allocation among operators
- Concession procedures:
 - Auction
 - Who offers more for the spectrum
 - "Beauty contest"
 - Comparative bidding
 - The government asks for a detailed deployment and operating plan from the operators
 - How many new jobs will be created?
 - What kind of services will be available, when, where, for how much?
 - How will rural users be reached?
 - The offered money is of secondary importance
 - Mixed, hybrid solutions
- UMTS concession UK
 - 5 licenses announced
 - Parallel auction for them
 - Dedicated band for newcomer operators
 - Total auction income: ~ 38,5 Billion EUR !!! (22,5 Billion GBP)
 - For comparison, the GDP of Hungary ~ 135 Billion EUR

UMTS concession - UK

Licence Name	Frequencies	Winner	Final Amount Bid
Licence A (reserved for a new entrant to the industry)	2x15 MHz paired spectrum plus 5 MHz unpaired spectrum	Hutchison 3G	£4,384,700,000
Licence B	2x15 MHz paired spectrum	Vodafone	£5,964,000,000
Licence C	2x10 MHz paired spectrum plus 5 MHz unpaired spectrum	ВТ	£4,030,100,000
Licence D	2x10 MHz paired spectrum plus 5 MHz unpaired spectrum	One2One	£4,003,600,000
Licence E	2x10 MHz paired spectrum plus 5 MHz unpaired spectrum	Orange	£4,095,000,000

UMTS concession

- Germany
 - 6 licenses announced
 - Total auction income: ~ 51 Billion EUR !!!
 - Winners:
 - T-Mobile (DT)
 - Mannesmann Mobilfunk (Vodafone D2)
 - Group 3G (Sonera + Telefonica)
 - E-Plus Hutchison (KPN + NTT + Hutchison)
 - Mobilcom Multimedia (Mobilcom + FT)
 - Viag Intercom (BT + Viag + Telenor)
- Italy
 - 5 licenses, 6 candidate operators
 - Total auction income 14,6 Billion EUR (10 auction rounds)

UMTS licensing

- "Scandinavian model" Sweden, Finland
 - Beauty contest (analysis of financial, technical background)
 - No licensing fee (percentage paid based on amount of traffic)
 - Sweden Telia "blunder"
 - Telia lost the contest, although in 70% a state-owned company!!
- Spain, Portugal
 - An adapted Scandinavian model, minimal licensing fee, yearly payments
- Hungary
 - All three mobile operators received a UMTS license
 - T-Mobile, Pannon, Vodafone
 - 52.5 Billion HUF

Licensing fees

	<u>When</u>	Type	License	es Income
England	2000.04	А	5	38,500 Million EUR
Holland	2000.07	А	5	2,700 Million EUR
Germany	2000.08	А	6	51,000 Million EUR
Italy	2000.10	А	5	14,600 Million EUR
Austria	2000.11	А	6	830 Million EUR
Switzerland	2000.12	А	4	130 Million EUR
France	2001.05	В	2	1,200 Million EUR
Spain	2000.03	В	4	520 Million EUR
Portugal	2000.12	В	4	400 Million EUR
Belgium	2001.03	А	3	450 Million EUR
Denmark	2001.	А	4	490 Million EUR
				Α Α

A – Auction

B – Beauty Contest

Supported services

Supported services

- HSDPA High Speed Downlink Packet Access
 - 1.8 14.4 Mbps downlink, 384 Kbps uplink
 - Efficient, adaptive modulation
 - QPSK for the noisy channels
 - 16QAM for the better quality channels
 - Incremental redundancy Hybrid-Automatic Repeat-Request (HARQ)
 - Forward Error Correction + Error Detection bits (CRC)
 - Incorrectly received coded data blocks are stored at the receiver, not discarded
 - When the retransmitted block is received, the two are combined
 - Every retransmission contains different information than the previous one
 - Performs better than chase combining (retransmitting the same information), but at the cost of higher complexity

- HSDPA High Speed Downlink Packet Access
 - HARQ can be used in stop-and-wait mode or in selective repeat mode
 - In stop-and-wait the receiver sends ACK for each packet
 - Inefficient
 - Multiple stop-and-wait HARQ processes can be done in parallel
 - While one process is waiting for the ACK, other process can use the channel and send data
 - In selective repeat mode the sending continues (for a specified window size) even after a frame loss
 - An ACK is sent for each received frame, the sequence number of the earliest missed frame is added
 - When the sending window is emptied, the missed frame is resent

- HSDPA High Speed Downlink Packet Access
 - Fast packet scheduling
 - Mobile devices periodically report to the base station the downlink radio channel quality
 - 500 times per second
 - Based on this, the BS schedules whom should it send data to in the next 2 ms.
 - Sends more to those with good channel quality
 - A UMTS upgrade, in 109 countries, 250 networks
 - Usually 3.6 Mbps downlink speed
 - In Hungary started in May 2006
 - Pannon and Vodafone 3,6 Mbps
 - T-Mobile 7,2 Mbps

HSUPA – High Speed Uplink Packet Access

- 5.76 Mbps max. uplink speed
- QPSK a better modulation scheme would put too much load on the battery of the mobile device
- HARQ with incremental redundancy
- Efficient scheduling
 - User devices ask permission for sending
 - The base station decides who can transmit and how much
 - Based on the sending buffer and the channel quality
- Multi-Code sending
 - The same user equipment can use several codes in parallel
 - Maximum 4 codes
 - Higher speed for those who need it

EV-DO – Evolution Data Optimized

- An upgraded version of CDMA2000
- 1,25 MHz large channels
- Very similar to HSPA

