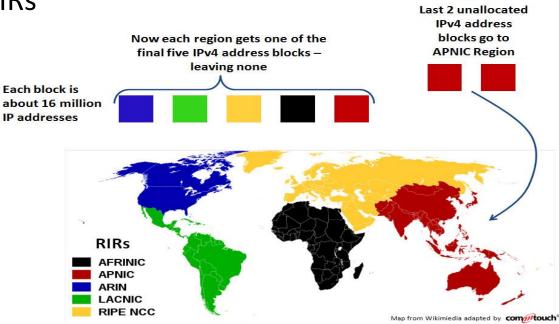
Networking Technologies and Applications

Rolland Vida BME TMIT

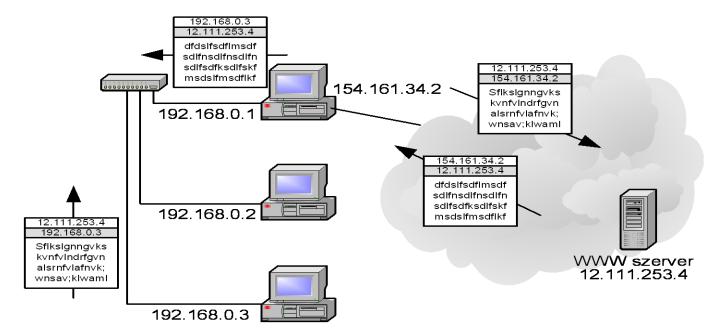
October 28, 2020



Exhaustion of IPv4 addresses

- No problem in the US
 - "Internet Heaven"
- Serious problem everywhere else
 - Many European or African countries received just a Class C address (254 addresses)
- Fast development of the Internet outside Northern America
 - Asia (2.5 billion people), Eastern Europe (250 million), Africa (800 million), South and Latin America (500 million)
- New communication devices need IP addresses
 - Mobile phones, PDAs, sensors, cars, etc.
- The exhaustion of IPv4 addresses was always projected for the next month/years (for more than 10 years)

Is the Internet "full"?


- On February 1st, 2011, the last /8 IPv4 address block allocated to the RIRs
- Last allocated blocks by RIRs
 - APNIC April 2011
 - RIPE Sept. 2012
 - LACNIC June 2014
 - ARIN Sept. 2015
 - AfriNIC 2018?

1st Feb 2011:

Private addresses

- Using private addresses, that are not globally unique
 - Private addresses are not "visible" from the Internet
 - Need for network address translation

- Just an intermediate solution
 - Cannot establish a connection from outside with a host behind a NAT
 - Should be initiated from behind the NAT
 - More and more applications require public IP addresses
 - VoIP, videoconferencing, network games
 - Many protocols do not work on a network with NAT

IPv6 chronology

• **TUBA** (1992)

- TCP and UDP over Bigger Addresses
- Based on the OSI CLNP (Connection-Less Network Protocol)
- abandoned
- **SIPP** (1993)
 - Simple IP Plus
 - 64 bit addresses
- IPng, based on an extended SIPP version (1994)
 - 128 bit addresses
 - From December 1995 officially called IPv6

IPv6 addressing scheme

- The IPv6 address pool is huge
 - $-2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$
 - 67 billion billion addresses for each cm² on the surface of the Earth
 - 10³⁰ address for each person on the Earth
 - The address distribution and routing requires a hierarchical structure

IPv6 addressing scheme

- IPv6 addressing quite similar to IPv4
 - 128 bit long addresses, instead of 32 bits
- Three address types:
 - Unicast addresses
 - Identify a unique interface
 - Multicast addresses
 - Identify a group of interfaces, each of these will receive the message
 - Replace the broadcast addresses as well
 - Anycast addresses
 - Identify a group of interfaces, message will be delivered to one of these interfaces

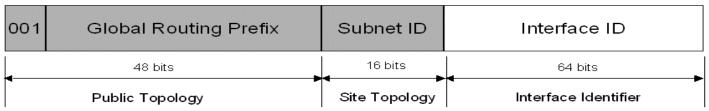
Writing IPv6 addresses

- 128 bits = 16 bytes = 32 x 4bits = 32 hexadecimal digits grouped in 8 segments FECD:BA98:0000:0000:00CD:BA98:0000:3200
- The opening 0 digits in each segment can be neglected Instead of FECD:BA98:0000:00CD:BA98:0000:3200 we write FECD:BA98:0:0:CD:BA98:0:3200
- Adjacent 0 segments can be neglected, if there is only one such case in an address FECD:BA98::CD:BA98:0:3200
- Network prefix is encoded as in case of IPv4 CIDR entire IPv6 address/prefix length in bits 12AB:0000:0000:CD30:FFFF:DEC8:0000:0000/60 12AB:0:0:CD30:0:0:0/60 12AB:0:0:CD30::/60

IPv6 addressing scheme

- One interface might have several addresses, with different scopes:
 - Link Local
 - Site Local
 - Global _____

Unicast addesses


- Valid over a limited scope
 - Scoped address
 - Novelty in IPv6
- Scope = local link
 - For communication among nodes on the same link
 - Unique only on that link, cannot be used for communication outside the link
 - Automatically configured on each interface
 - Each IPv6 node has an initial address with which it can start communicating
 - Neighbor dicovery, router discovery
 - Format:
 - FE80:0:0:0:<interface identifier>
 - Interface ID EUI (64) address
 - Extending the previous 48 bit MAC address

Unicast addresses

- Scope = site local
 - Used for communication inside the same site
 - Routers will not forward it outside the site (to the Internet)
 - Similar to IPv4 private addresses
 - Not automatically configured
 - Format:
 - FEC0:0:0:<subnet id>:<interface id>
 - Subnet id = 16 bit = 64K subnet
 - Allows the addressing of an entire organization (company, university)
 - E.g. allocate site-local addresses to the entire network
 - Renumbering when connecting to an IPv6 network
 - We change the first 48 bits (to a site ID)
 - Renumbering when connecting to a new service provider

Unicast addresses

- Global Unicast Address
 - Used for global communication
 - Hierarchical global prefix
 - Structured by RIRs and ISPs
 - Subnet ID
 - Hierarchically structured by the network administrator
 - Interface ID

Multicast addresses

- Instead of broadcast addresses
- Scoped addresses
 - Node, link, site, organisation, global
- Format
 - FF<flags><scope>::<multicast group>
- Flag:
 - 0 permanent
 - 1 dynamic
- Scope:
 - 1 node
 - 2 link
 - 5 site
 - 8 organisation
 - E–global
- E.g.
 - FF02::1 all nodes on the local network
 - FF02::2 all routers on the local network

Format of the mandatory fixed IPv6 header

IPv4 Header					IPv6 Header			
Version	IHL	Type of Service	Total Length		Version	Traffic Class	Flow Label	
Identification			Flags	Fragment Offset	Payload Length Next Hop Lin			Hop Limit
Time to Live Protocol		Header Checksum						
Source Address					Source Address			
Destination Address					Source Address			
Options				Padding				
oriend								
Legend Field's name kept from IPv4 to IPv6					Destination Address			
		ot in IPv6						
		osition cha	nged in IF	Pv6				
New field in IPv6								

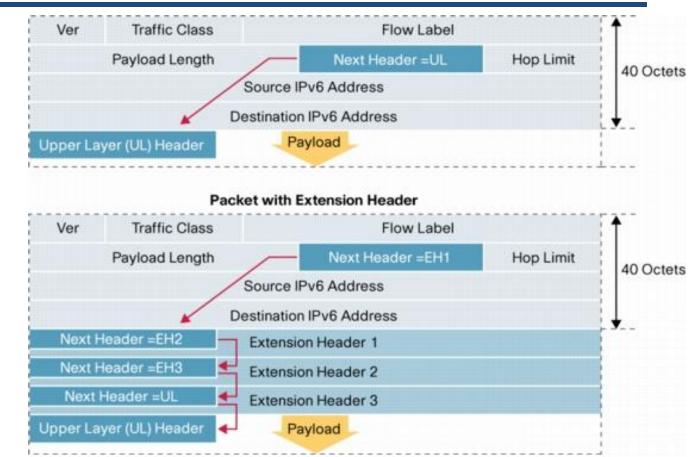
IPv6 mandatory fixed header

- Version (4 bits)
 - IP version
- Class priority class (8 bits)
 - Defines the priority of the packet
 - DSCP field in IPv4
 - Used for providing Quality of Service (discussed later)

IPv6 mandatory fixed header

• Flow Label

- Associated to traffic with special QoS requirements
 - 20 bit long
- Can be used in router caches to decrease the processing time
 - A packet first arrives to the router
 - The fow label is stored in the cache
 - When the next packet with the same flow label arrives...
 - No need to look up the destination address in the routing table
 - Packet immediately routed based on the flow label
- Payload Length (16 bits)
 - Length of the useful data, in bytes


IPv6 mandatory fixed header

- Next-Header (8 bits)
 - Identifies the header directly following the fixed header
 - It might be an extension header, or a higher layer protocol header (e.g., TCP)
- Hop Limit (8 bits)
 - Provides how far a packet can travel
 - Same as the Time To Live (TTL) field in IPv4
- Source Address (128 bits)
 - Address of the original source of the packet
- Destination Address (128 bits)
 - Not necessarily the address of the last receiver, if the packet also contains a Routing Header

IPv6 extension headeres

- IPv6 packet starts with a 40 byte long mandatory fixed header
- Extra information related to the intermediate network encoded in Extension Headers
- Most of the extension headers are not processed by the intermediate routers, only by the final destination
- Each extension header has a special value for the next header field
 - Many extension headers can be used in parallel
 - The value of the last next header field identifies the upper layer protocol
 - The header can be of any length

IPv6 chained extension headers

