Networking technologies and applications

May 2, 2015

SWOT analysis

SWOT

- Strengths (technological)
- Weaknesses (technological)
- Opportunities (business)
- Threats (business)
- When starting a company, introducing a new product or service on the market
 - Technological and business considerations

Strengths

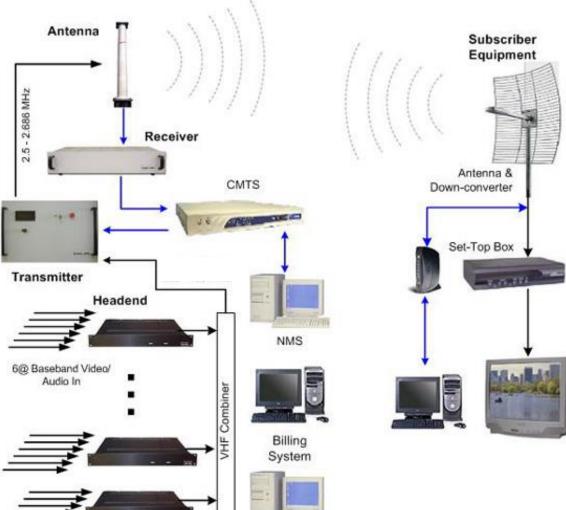
- Quite large speed over low distances (VDSL2)
- Bandwidth is not shared among the uses
 - Individual guarantees can be provided
- Secure
 - Each user has his own twisted pair
 - The other users do not see my traffic

Weaknesses

- Quite low speed over large distances
- Asymmetric speed (ADSL) is not always acceptable
 - Some applications ask for high uplink speeds (e.g., Skype)
- No support for mobility
 - Technically possible to extend your DSL connection with a wireless link
 - Legal limitations to such extensions

Opportunities

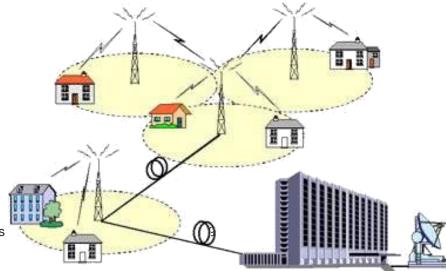
- Easy to deploy everywhere where there is a phone line
- Preferred when a minimum bandwidth is always required
 - In a cable modem or WLAN access, congestion can occur if many users in parallel
- In industrial areas there might be no CaTV network, but phone lines are there
 - Industrial subscribers might also pay more than normal home subscribers, they are an important target


Threats

- Where there is not yet a wired phone line (country side, developing countries) they might install FTTH from the beginning
- FTTx (fiber to the home) ensures much higher speeds
 - Industrial subscribers probably will deploy FTTx
- Wireless solutions (e.g., WLAN, WiMax, 3G) have a serious advantage as they allow mobility
- In the country side, with sparsely distributed subscribers, it is costly to deploy, some wireless solutions (e.g., Wimax) would fit better

WLL

- Large competition on the broadband market
 - Many subscribers to reach
 - Very expensive to build an infrastructure
- Much simpler to build a wireless solution
 - Big antenna on the top of the hill, receiver antennas on the roofs
- Wireless Local Loop (WLL)
 - Fixed wireless solutions
 - Users are not mobile
- MMDS Multi-channel Multipoint Distribution Service (wireless cable)
 - Microwave frequencies
 - 198 MHz wide frequency domain, between 2GHz and 3GHz
 - About 50 km range
 - Can pass through leaves and raindrops
 - Low bandwidth, many users share it (large range)



Networking technologies and application:

May 2, 2015

LMDS

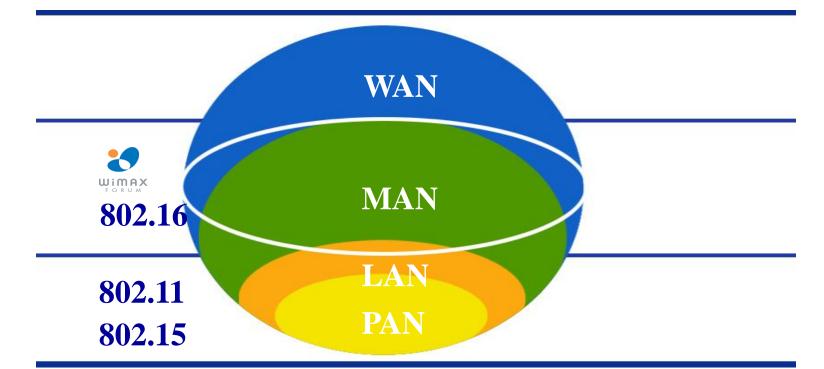
- Local Multipoint Distribution Service
- 1.3 GHz wide frequency domain
 - In the US between 28-31 GHz, in Europe around 40 GHz
 - The largest continuous frequency range ever reserved for a technology
- LMDS tower, many directional antennas
 - Each antenna covering a specific sector
 - 2-5 km service range
 - Several towers needed to cover a town

Networking technologies and applications

LMDS

- Asymmetric bandwidth, similarly to ADSL
 - Larger downstream speeds
 - o In each sector, 36 Gb/s downstream, 1 Gb/s upstream
 - shared between all the users
 - Maximum 9000 users in a sector
 - For a tower with 4 sector antennas, maximum 36.000 users in parallel
 - If at the peak time 33% of the subscribers are present, 1 tower can serve 100.000 subscribers
- Drawbacks
 - Needs direct line of sight between the antennas and the tower
 - Tree leaves and raindrops disturb the radio waves
 - Error correcting coding can reduce this
 - The tower has to be high enough
 - If free line of sight seems OK in December, this might not be true in July (because of the tree leaves)
- High prices and sparse deployment, because of the lack of standardization
 - In 1999 the IEEE starts working on the 802.16 standard family

IEEE 802.16


- Adopted in 2002
 - Wireless Metropolitan Area Network (Wireless MAN)

WiMAX

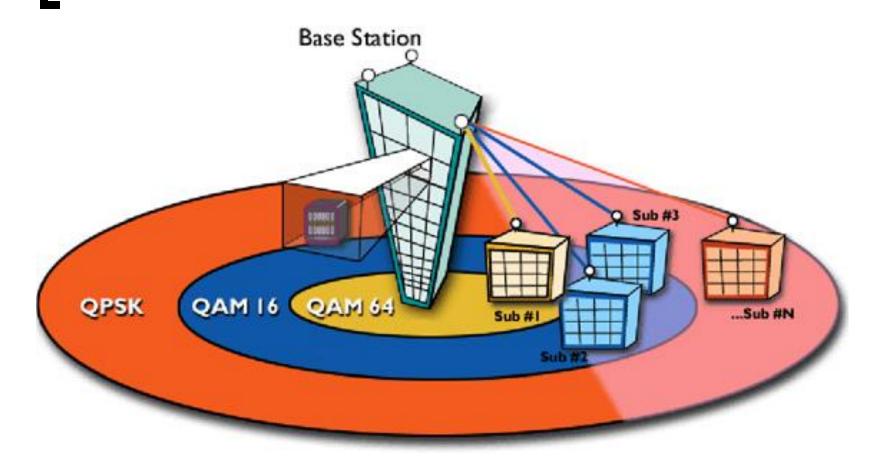
- Worldwide Interoperability for Microwave Access
- A certificate that is given to a specific device if it complies Wimax with the 802.16 standard and is interoperable with other devices implementing the standard

Wireless Networking Standards

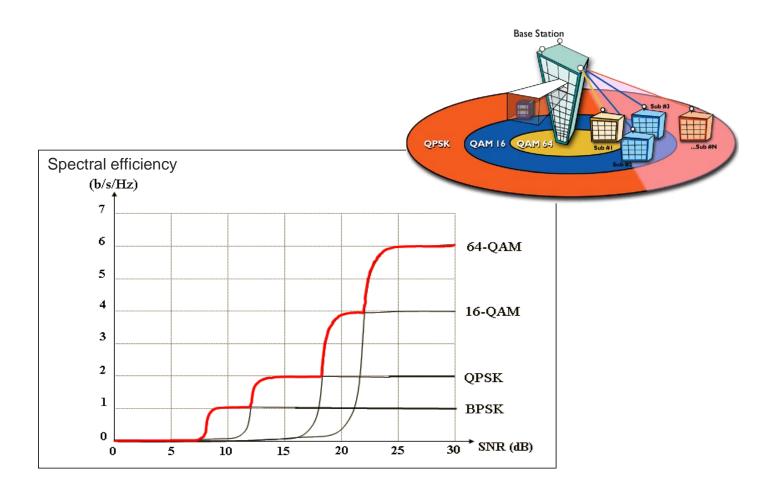
PAN: Private Area Network LAN: Local Area Network MAN: Metropolitan Area Network WAN: Wide Area Network

Networking technologies and applications

May 2, 2015


IEEE 802.16 versions

- 802.16c (2002) WiMax in the 10-66 GHz domain
 - Maximum 134 Mbps, over a 2-5 km range
 - Line of Sight (LOS) operation mode
- 802.16a (2003) WiMax in the 2-11 GHz domain
 - 70 Mbps speed, 50-70 km service range
 - Usually 10 Mbps, over 2 km range
 - Non Line of Sight (NLOS) operation mode
- 802.16d integrates the16a and 16c versions
- 802.16-2004 contains some small modifications compared to 16d
- 802.16e-2005 support for mobile applications (Mobile WiMax)
 - Supports handover and power saving mechanisms


802.16 vs. 802.11

- Proposed to solve different problems
 - Both provide broadband wireless access
 - 802.16 provides services to "buildings", no mobility
 - 802.11 developed especially for mobile environments
- The wireless communication over a large area provides important security & privacy concerns
- In an 802.16 cell much more users
 - Much larger bandwidth is needed than the ISM band can provide
- 802.16 covers entire cities or neighborhoods, over large distances
 - The base station's signal strength shows large variations
 - Different modulation schemes, depending on the distance
 - Users close to the tower QAM-64 (6 bit/baud)
 - Users not very far from the tower QAM-16 (4 bit/baud)
 - Users far from the tower QPSK (2 bit/baud)

802.16 physical layer

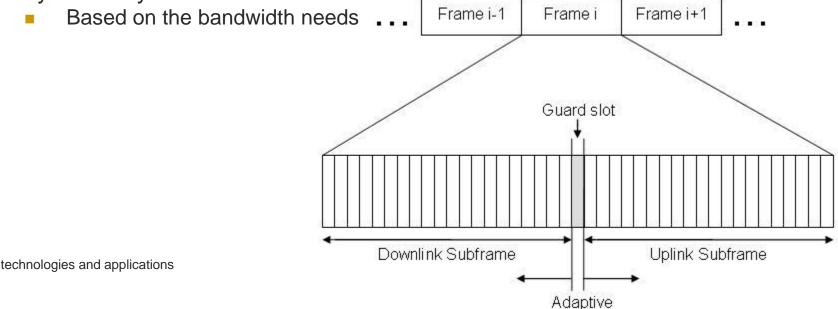
Modulation efficiency in function of the signal to noise ratio

Error correction coding in the physical layer

- In other solutions errors are detected and avoided only through the use of checksums
 - Wrongly transmitted frames are resent
- In a wireless networks, over a large service range, much more transmission errors are expected
 - Besides checksums in the upper layers, error correction in the physical layer
- The channel appears to be of a better quality than it really is

- In a GSM cell, similar frequency range for upstream and downstream traffic
 - Voice traffic is symmetric
- For broadband internet service, higher downstream required
 - In 802.16, flexible solution for duplexing
- **FDD** Frequency Division Duplexing
 - Separate frequency band for upstream and downstream traffic
 - Two similar bands
 - A guard band between them
 - TDD Time Division Duplexing
 - Good solution for asymmetric traffic, with varying bandwidth needs

Handling multiple users that share the channel


- Downstream direction TDM (Time Division Multiplex)
 - The base station serves the connections one after the other
- Upstream direction TDMA (Time Division Multiple Access)

19

Contention among the users

Time Division Duplexing

- The base station periodically sends its frames
 - Each frame contains time slots \bigcirc
 - First the slots reserved for downstream traffic
 - The base station assigns the traffic to the different slots
 - Then a guard slot
 - The stations change from listening mode to transmission mode
 - Then the time slots assigned for upstream traffic
 - The number of slots assigned for downstream/upstream can be changed Ο dynamically

- A MAC frame is assigned an integer number of slots
 - Frames divided in sub-frames
 - The first 2 slots provide a map for the upstream and downstream traffic
 - What kind of traffic is assigned to the slots, which are the empty slots?
 - The downstream map contains some system parameters as well
 - Information necessary for newly connecting stations
- The downstream channel is handled by the base station
- Contention for the upstream channel
 - The channel access is closely related to the Quality of Service (QoS)
 - Four Service Classes defined in the standard
 - Constant Bit Rate (CBR)
 - Real Time Variable Bit Rate (rt-VBR)
 - Non-Real Time Variable Bit rate (nrt-VBR)
 - Best Effort (BE)

CBR

- Uncompressed voice transmission, without silence suppression
- Unsolicited Grant Services (UGS)
- Well defined amount of traffic to be handled at well defined time intervals
 - Time slots reserved for each such connection
 - No individual polling is needed
- rt-VBR
 - E.g., compressed multimedia traffic (MPEG video)
 - Real-time Polling Services (rtPS)
 - The required bandwidth is continuously changing
 - The base station periodically asks the stations about their bandwidth needs

nrt-VBR

- Transferring large amounts of data without real time requirements
- Non-real-time Polling Services
- The BS does a polling often, but not at strictly defined time intervals
 - If a station does not answer during k successive polling steps, the BS will not ask him anymore separately
 - Puts it in a multicast group
 - The group is also asked during the polling
 - Anyone can answer from the group, contention for the slots
 - Stations with low traffic demand do not waste the valuable time slots

Best Effort

- For all the remaining traffic
- No polling, contention for the channel
 - In the upstream map, some slots reserved for contention
 - In these slots stations can ask for bandwidth
 - If their request is accepted, they will be informed about the assigned slots in the next frame
 - If the request is not satisfied, they might repeat the request
 - Collisions avoided like in Ethernet