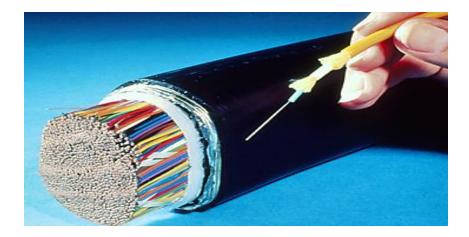
Networking Technologies and Applications

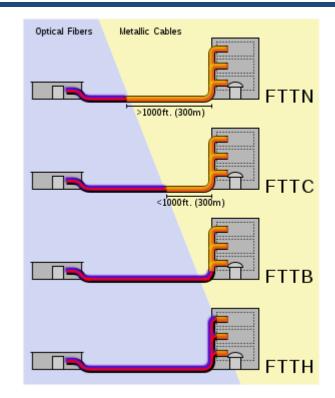

Rolland Vida BME TMIT

September 30, 2016

Fiber vs. Copper

- On an optical fiber more than 2.5 million parallel phone calls
- Compared to a similar capacity bundle of twisted pair connections, 1% in weight and size

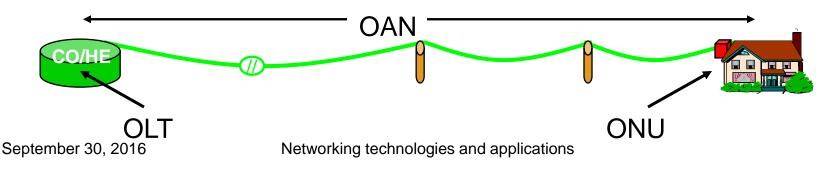
Fiber vs. Copper


- Optical fiber
 - Transports light pulses
 - Not influenced by electromagnetic interferences
 - Repeaters after ~30 kms
 - Low dilatation
 - Fragile, quite rigid material
 - Chemically stable

- Copper twisted pair
 - Transports electric waves
 - Sensible to electromagnetic interferences
 - Repeaters after 5 km
 - o Dilatation in case of high temperatures
 - Can be bended
 - Sensible to galvanic reactions
 - Can be reused
 - The copper could be sold

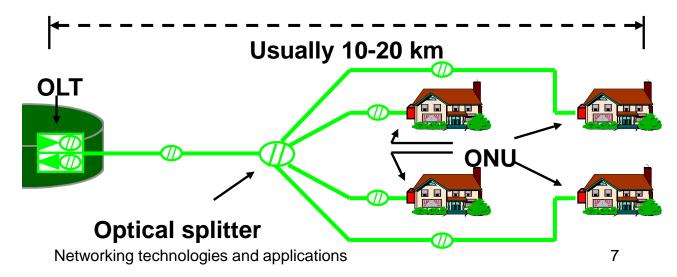
FTTx

- FTTx Fiber To The x
 - FTTB Fiber To The Building
 - FTTC Fiber To The Curb
 - FTTD Fiber To The Desk
 - FTTE Fiber To The Enclosure
 - FTTH Fiber To The Home
 - FTTN Fiber To The Neighborhood
 - FTTO Fiber To The Office
 - FTTP Fiber To The Premises
 - FTTU Fiber To The User

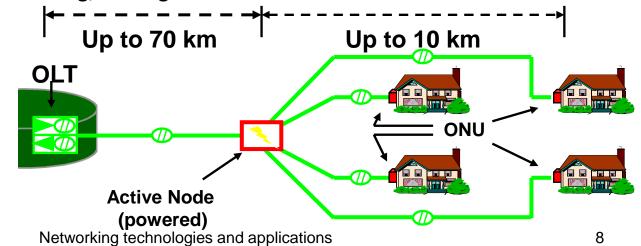


FTTC

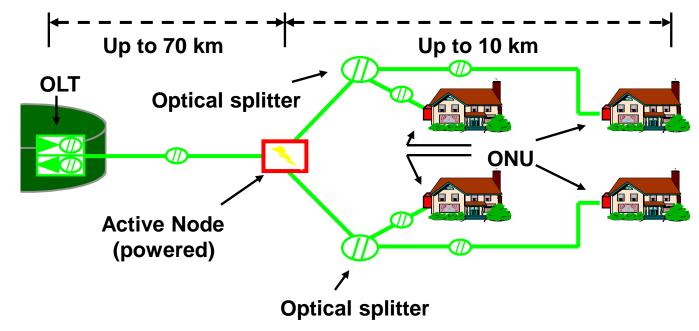
- Fiber To The Curb
- Fiber from the local switching center near to the homes
 - The connection terminated by an ONU at the subscriber
 - Optical Network Unit
 - Many twisted pairs or coaxial cables added in the "last mile"
 - Very short loops, can be extended with a DSL segment
 - e.g., VDSL very popular in South-East Asia
 - Suitable for MPEG-2 streams and videoconferencing


FTTH

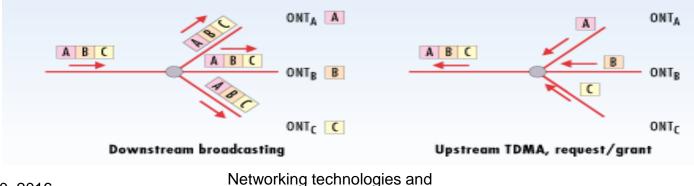
- Fiber To The Home
- System components
 - OAN: Optical Access Network
 - ONU/ONT: Optical Network Unit/Terminal
 - At the subscriber
 - OLT: Optical Line Termination
 - At the service provider


FTTH architectures

- PON Passive Optical Networks
 - Many subscribers (max. 32) share an optical fiber
 - Optical splitters to separate or aggregate the signals to/from different subscribers
 - No need for power supply for the splitters
 - Shared network Point to Multipoint (P2MP)


FTTH architectures

- Active Node
 - Each subscriber has his own optical fiber
 - Point to Point (P2P)
 - Active, powered nodes to separate the traffic
 - Ethernet switch
 - Layer2/Layer3 switching/routing


FTTH architectures

- Hybrid PON
 - A combination of the two architectures

PON - upstream and downstream traffic

- The upstream and downstream traffic handled differently
 - Broadcast downstream
 - The splitter forwards all the data to all the connected segments
 - The ONU handles only the packets that it is the destination of (based on the header)
 - Upstream traffic with TDMA
 - The OLT assigns time slots to the ONUs
 - Synchronized sending of packets
 - The ONU can ask for further slots, if needed

Ethernet or ATM?

- Two concurrent technologies
 - APON ATM-based PON
 - The first PON implementation
 - EPON Ethernet-based PON


ATM (Asynchronous Transfer Mode)

- Proposed for parallel handling of different traffic types (audio, video, data)
 - 1500 byte Ethernet frames are too large
 - 1.500 byte = 12.000 bit
 - On 10 Mbps Etherneten 0.1 μs bit time \rightarrow 1.2 ms / frame
 - If more sources (stations or applications) are waiting in a queue, too long waiting times
- Audio and video applications have strict delay and jitter requirements

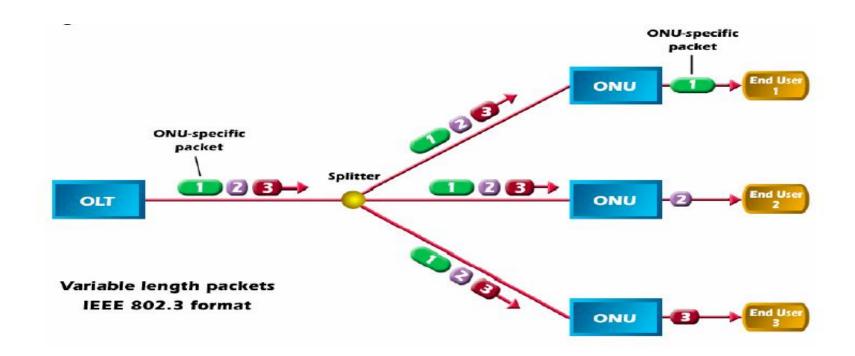
ATM (Asynchronous Transfer Mode)

- ATM solution
 - Fixed size ATM cells: 5 byte header + 48 byte data = 53 byte
 - Segmentation and Reassembly (SAR)
 - Variable length frames are fragmented at the sender, and reassembled at the receiver, based on the header
 - Asynchronous Time Division Multiplexing

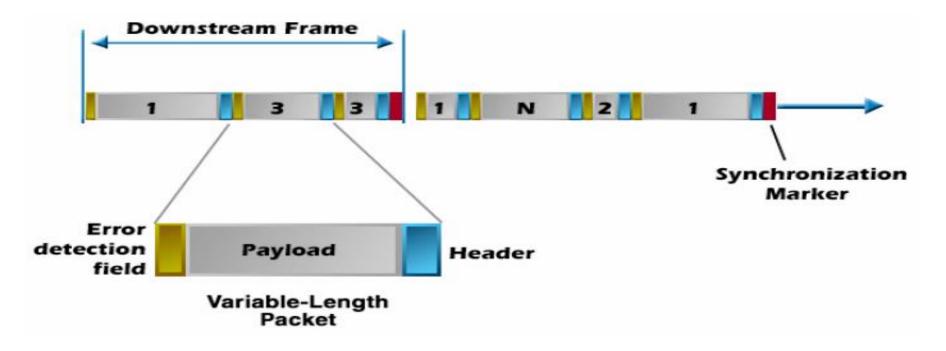
ATM (Asynchronous Transfer Mode)

Why ATM is not (really) used?

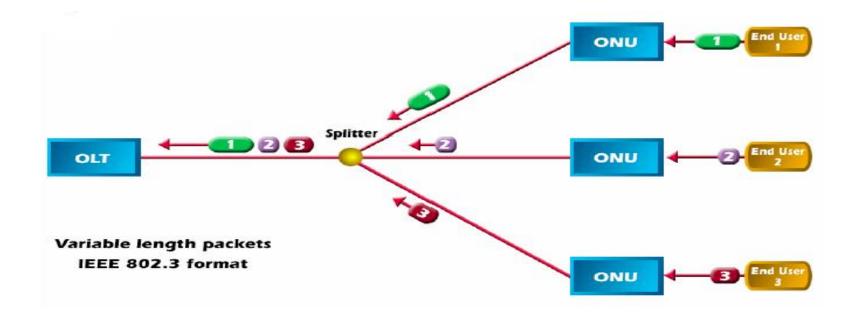
- Very popular at the beginning of the 90's
 - More and more multimedia traffic, with QoS requirements
- Drawbacks
 - Too much overhead with the headers
 - Ethernet 14 byte / 1500 byte (~ 1%)
 - ATM 5 byte / 53 byte (~ 10%)
 - Fragmentation and reassembly (SAR) too complicated
 - High speed ATM cards too expensive, compared to similar speed Ethernet cards
 - $-\,$ On 10 Gbps Ethernet, instead of 1.2 ms, only 1.2 μs is the sending time of a 1500 byte frame
 - With such speeds, no need to worry about QoS

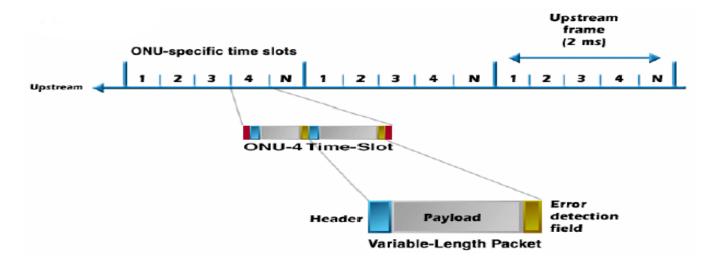

APON

- Segmentation and Reassembly (SAR)
 - Fix sized packets
 - 53 byte long ATM cells
 - Data passes through an ATM Adaptation Layer-en (AAL), where it is split in 48 byte long packets
 - Plus 5 byte long headers
 - Packets are reassembled at the destination
- Because of the SAR, ATM is very suitable for video and voice transfer
 - Delay-sensitive traffic can be well transmitted in small, fixed size cells
 - Time consuming procedure
 - 5-byte headers are too long (10% overhead)
- Fixed sized cells well suited for the PON TDMA upstream traffic
 - Easy to handle time slots, no collisions



- Data sent in IEEE 802.3 (Ethernet) frames
 - Variable size frames, between 64 and 1518 bytes
- How to handle TDMA-based upstream communication?
 - We might use maximum length slots
 - Any frame can fit in
 - Not efficient, too much bandwidth wasted
 - We might have fixed length slots, filled with several frames
 - More efficient, but not ideal
 - Hard to fill a fixed length slot with variable size frames
 - Ethernet frames could be divided in fixed length chunks
 - Easier to upload
 - The price is a SAR function that has to be added to the EPON protocol stack

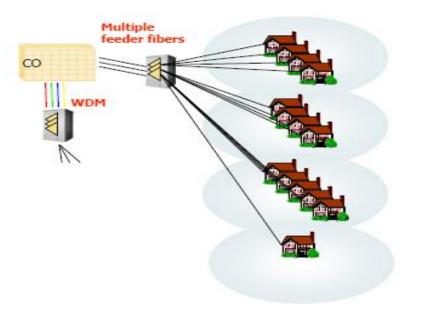

EPON downstream traffic


EPON downstream packets

EPON upstream traffic

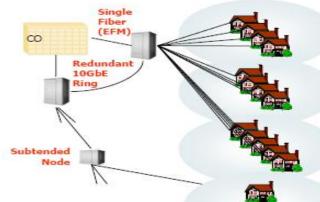
EPON upstream packets

- The upstream traffic divided to frames
- Each ONU has its own time slot, that it fills with his own variable length packets


Traditional PON

- Main idea:
 - Its is not worth having a separate fiber for each user from the OLT
 - Bring on fiber close to the subscribers, and share it with passive devices
- Drawbacks
 - Splitters are dummy devices, cannot be controlled remotely
 - If a problem occurs, splitters has to be checked one by one
 - Not flexible
 - A 5th subscriber cannot be added to a 4-line splitter
 - The networks should be designed with over-provisioning in mind, not violating the 32 rule
- Solution: plan the network with 16 or 24-line splitters
 - Place for extensions
 - The remaining 16 subscribers will pay more

September 30, 2016


Passive Star PON

- Splitters in the same box
 - Easier to discover the faulty splitter
- Still a tree topology
 - If the connection between the splitter and the Central Office is cut, no backup

Active Star

- Drawback: need for powered active nodes
- Using intelligent devices at the edge of the network has many advantages
 - The active node can act as an IGMP proxy for multicast traffic
 - Detailed in a later course
 - Fault-tolerant solution
 - Active nodes joined in a ring
 - Ethernet Protection Switching Rings (EPSR)
 - 50 ms switching time in case of an error
 - Minor image quality degradation for a video stream
 - A phone conversation is not interrupted
 - Easy to manage, easy to repair

BPON

- Broadband PON
 - ATM-based
 - Better than traditional APON
 - Higher transmission speed
 - DBA Dynamic Bandwidth Allocation
 - Security enhancements


Current APON/BPON systems in 3 operation modes

- 155 Mbps downstream, 155 Mbps upstream
- 622 Mbps downstream, 155 Mbps upstream
- 622 Mbps downstream, 622 Mbps upstream

- Gigabit PON
 - ITU-T G.984 standard
 - Several downstream/upstream versions
 - Most popular 2.48 Gbps dowsntream, 1.244 Gbps upstream

Comparison of transfer speeds

With PON, slower speeds

- Shared segment between the OLT and the first splitter
- Situation is better if splitters are not fully loaded
 - Shared between 16 or 24
 - **Up** subscribers, not 32

Down

 If Active Nodes, each subscriber has his own fiber
Networking technologies and applications
Individual users usually 100 Mbps in

September 30, 2016