Networking Technologies and Applications

Rolland Vida BME TMIT

October 4, 2017

What is an IP Address?

• An IP address is a unique global address for a network interface

- An IP(v4) address:
 - is a **32 bit long** identifier
 - encodes a network number (network prefix) and a host number

Dotted Decimal Notation

- IP addresses are written in a so-called *dotted decimal* notation
- Each byte is identified by a decimal number in the range [0..255]:

• Example:

Network prefix and Host number

• The network prefix identifies a network and the host number identifies a specific host (actually, interface on the network).

network prefix host number

- How do we know how long the network prefix is?
 - The network prefix <u>used</u> to be implicitly defined (class-based addressing, A,B,C,D...)
 - The network prefix now is flexible and is indicated by a prefix/netmask (classless).

Example: argon.cs.virginia.edu

•IP address is 128.143.137.144

128.143

- Is that enough info to route datagram??? -> No, need netmask or prefix at every IP device (host and router)
- •Using Prefix notation IP address is: 128.143.137.144/16

•Network mask is: 255.255.0.0 or hex format: ffff0000

----> Network id (IP address AND Netmask) is: 128.143.0.0

----> Host number (IP address AND inverse of Netmask) is: 137.144

137.144

The old way: Classful IP Adresses

- When Internet addresses were standardized (early 1980s), the Internet address space was divided up into classes:
 - Class A: Network prefix is 8 bits long
 - Class B: Network prefix is 16 bits long
 - Class C: Network prefix is 24 bits long
- Each IP address contained a key which identifies the class:
 - Class A: IP address starts with "0"
 - Class B: IP address starts with "10"
 - Class C: IP address starts with "110"

	Number of networks	Maximum nr. of hosts on a network	Value of first byte
Class A	126	16,777,214	1 – 126
Class B	16,384	65,534	128 – 191
Class C	2,097,152	254	192 - 223

The old way: Internet Address Classes

The old way: Internet Address Classes

• We will learn about multicast addresses later in this course.

Addressing rules

- The Network ID cannot be 127
 - Reserved for the loop-back interface
- The host ID cannot be 255
 - 255 a broadcast address
- The host ID cannot be 0
 - 0 means "this network"
- The host ID has to unique on the given network

Problems with Classful IP Addresses

• The original classful address scheme had a number of problems

Problem 1. Too few network addresses for large networks

- Class A and Class B addresses are gone
- Initially given to institutions
 - Upper left corner
 - HP, Apple, MIT, IBM, Ford, etc
- Later RIRs are created
 - Regional Internet Registrar

THIS CHART SHOWS THE IP ADDRESS SPACE ON A PLANE USING A FRACTAL MAPPING WHICH PRESERVES GROWING -- ANY CONSECUTIVE STRING OF IP& WILL TRANSLATE TO A SINGLE COMPACT, CONTIGUOUS REGION ON THE MARE REACH OF THE 256 NUMBERED BLOCKS REPRESENTS ONE // SUBJECT (CONTINUING ALL IP: THAT START WITH THAT NUMBER). THE UPPER LEFT SECTION SHOWS THE BLOCKS SOLD DIRECTLY TO CORPORATIONS AND GOVERNMENTS IN THE 1970'S BEFORE THE RIRA TOOK OVER ALLOCATION.

IPv4 addresses (2006)

- Blue: ARIN North America
- Yellow: RIPE NCC Europe
- Magenta: APNIC Asia-Pacific
- Green: LACNIC Latin-America
- Orange: AfriNIC Africa
- Black: Multicast
- Grey: Special addresses
 - Loopback, private, class E, etc.
- White: free

Problems with Classful IP Addresses

• The original classful address scheme had a number of problems

Problem 2. Two-layer hierarchy is not appropriate for large networks with Class A and Class B addresses.

- Fix #1: Subnetting

Subnetting

- Problem: Organizations have multiple networks which are independently managed
 - Solution 1: Allocate an address for each network
 - Difficult to manage
 - From the outside of the organization, each network must be addressable, must have an identifiable address.
 - Solution 2: Add another level of hierarchy to the IP addressing structure

Basic Idea of Subnetting

- Split the host number portion of an IP address into a subnet number and a (smaller) host number.
- Result is a 3-layer hierarchy

- Subnets can be freely assigned within the organization
- Internally, subnets are treated as separate networks
- Subnet structure is not visible outside the organization

Subnet Masks

• Routers and hosts use an **extended network prefix (subnet mask)** to identify the start of the host numbers

^k There are different ways of subnetting. Commonly used netmasks for university networks with /16 prefix (Class B) are 255.255.255.0 and 255.255.0.0

Advantages of Subnetting

- With subnetting, IP addresses use a 3-layer hierarchy:
 - Network
 - Subnet
 - Host
- Improves efficiency of IP addresses by not consuming an entire address space for each physical network.
- Reduces router complexity. Since external routers do not know about subnetting, the complexity of routing tables at external routers is reduced.
- Note: Length of the subnet mask need not be identical at all subnetworks.

Subnetting Example

- An organization with 4 departements has the following IP address space: 10.2.22.0/23. As the systems manager, you are required to create subnets to accommodate the IT needs of 4 departments. The subnets have to support to 200, 61, 55, and 41 hosts respectively. What are the 4 subnet network numbers?
- Solution:
 - 10.2.22.0/24 (256 addresses > 200)
 - 10.2.23.0/26 (64 addresses >61)
 - 10.2.23.64/26 (64 addresses > 55)
 - 10.2.23.128/26 (64 addresses > 41)

Problems with Classful IP Addresses

Problem 3. Inflexible. Assume a company requires 2,000 addresses

- Class A and B addresses are overkill
- Class C address is insufficient (requires 8 Class C addresses)

Problem 4: Exploding Routing Tables: Routing on the backbone Internet needs to have an entry for each network address. In 1993, the size of the routing tables started to outgrow the capacity of routers.

Fix #2 (to both of these problems): Classless Interdomain Routing (CIDR)

CIDR - Classless Interdomain Routing

- Goals:
 - Restructure IP address assignments to increase efficiency
 - Hierarchical routing aggregation to minimize route table entries

Key Concept: The length of the network id (prefix) in IP addresses is arbitrary/flexible and is defined by the network hierarchy.

- Consequence:
 - Routers use the IP address <u>and</u> the length of the prefix for forwarding.
 - All advertised IP addresses must include a prefix

CIDR Example

- CIDR notation of a network address: 192.0.2.0/18
 - "18" says that the first 18 bits are the network part of the address
- The network part is called the network prefix
- Example:
 - Assume that a site requires an IP network domain that can support 1000 IP host addresses
 - With CIDR, the network is assigned a continuous block of 1024 = 2¹⁰ (>1000) addresses with a 32-10 = 22-bit long prefix

CIDR: Prefix Size vs. Host Space

CIDR Block Prefix	# of Host Addresses
/27	32 hosts
/26	64 hosts
/25	128 hosts
/24	256 hosts
/23	512 hosts
/22	1,024 hosts
/21	2,048 hosts
/20	4,096 hosts
/19	8,192 hosts
/18	16,384 hosts
/17	32,768 hosts
/16	65,536 hosts
/15	131,072 hosts
/14	262,144 hosts
/13	524,288 hosts

CIDR and Address assignments

- IANA Internet Assigned Numbers Authority
 - The RIRs get short prefix CIDR blocks
 - Regional Internet Registries
 - E.g., 62.0.0.0/8 assigned to RIPE NCC
 - Réseaux IP Européens Network Coordination Centre
- RIRs fragment and redistribute parts of the address space
 - Backbone ISPs obtain large blocks of IP address space and then reallocate portions of their address blocks to their customers.

01000100

Example:

- Assume that an ISP owns the address block 206.0.64.0/18, which represents 16,384 (2³²⁻¹⁸=2¹⁴) IP host addresses
- Suppose a client requires 800 host addresses
 - > $512=2^9 < 800 < 1024=2^{10} -> 32-10 = 22$,
 - Assigning a /22 block, i.e., $206.0.68.0/22 \rightarrow$ gives a block of 1,024 (2^{10}) IP addresses to client.

CIDR example

CIDR and Routing

- Aggregation of routing table entries:
 - 128.143.0.0/16 and 128.142.0.0/16 can be represented as 128.142.0.0/15 at a router.
 - 143 = 128.<u>1000111</u>1.0.0 142 = 128.<u>10001110</u>.0.0
- Longest prefix match: Routing table lookup finds the routing entry that matches the longest prefix
 - Why?

E.g., What is the outgoing interface for destination IP address: 128.143.137.0?

Prefix	Interface/outgoing link
128.143.128.0/17	interface #1
128.128.0.0/9	interface #2
128.0.0.0/4	interface #5

Routing table

Problems with Classful IP Addresses

Problem 5. The Internet is going to outgrow the 32-bit addresses

- Fix #3: IP Version 6