Networking Technologies and Applications

Rolland Vida BME TMIT

September 22, 2016

Contention based reservation for upstream traffic

- The upstream channel is divided (in time) into mini-slots -FDD/TDMA
 - Each upstream packet has to fit in one or more mini-slots
 - The length of the mini-slots is different in different networks
 - Typically 8 bytes of user data have to fit in one mini-slot
- The CMTS periodically announces the start of a new group of mini-slots
 - Because of the signal propagation on the cable, the modems do not hear it in the same time
 - Each modem can calculate the beginning of the first mini-slot (using the results of the previous ranging)
 - Each modem is assigned a special mini-slot (Bandwidth Request Slot) to ask for upstream bandwidth
 - Several modems on the same mini-slot

Contention based reservation for upstream traffic

- If a modem wants to send a packet, asks for sufficient mini-slots
 - If the CMTS accepts the request, it sends and acknowledgment with the assigned mini-slots
 - If the modem wants to send further packets, in the headers it can ask for new slots
 - If two modems ask in the same time for slots, collision occurs, no acknowledgment is received
 - The modem waits for a random time interval, and then tries again
 - A timer set to random value chosen from the [0, x] interval
 - If a new collision occurs, the upper limit of the interval is doubled
 - A timer set to random value chosen from the [0, 2x] interval

Contention-based uplink

Networking technologies and applications

Providing Quality of Service

- Different applications have different QoS requirements
- CBR Constant Bit Rate (pl. VoIP)
 - Unsollicited Grant Services (UGS)
 - No need to sollicit uplink slots all the time

Admission Control

- UGS demands are accepted only in limited number
 - You have to leave room for other traffic types as well

Providing QoS

- rt-VBR (Real Time Variable Bit Rate)
 - E.g., live video stream
 - Real Time Polling Service (RTPS)
 - Bandwidth Request Slot dedicated to one specific application / modem
 - Can send his request for sure, no collision

Providing QoS

Unsollicited Grant Service with Activity Detection (UGS-AD)

- Operates in UGS mode only if it has data to be sent
- If temporarily no data, switches to RTPS mode
- If needed, can switch back to UGS mode
- E.g., VoIP with Voice Activity Detection (VAD)
- Non-Real Time Polling Service (nRTPS)
 - For nrt-VBR traffic
 - The polling intervals are not uniform

Providing QoS

- Best Effort Grants (BEG)
 - No strict requirements for delay or jitter
 - Fragmentation if needed, the slot requests can be split in time
 - More headers, but sometimes it is worth doing it

Scheduling

- Priority queues by default 8 (from 0 to 7)
 - Higher priority queues are served firsti

Scheduling

No contention in the downstream traffic

- Downstream traffic is sent only by the CMTS
 - No contention, no need for mini timeslots
 - No collisions, lower probability for bit errors, no need for retransmission
 - Large packets in the downstream traffic
 - Typical packet length: 204 bytes
 - Includes Reed-Solomon error correcting code
 - 184 bytes for user data

Secure communication

- Shared cable
 - Anyone can read the traffic that passes by
- Two way traffic encrypted, to avoid the eavesdropping of the neighbors
 - Agreement between the modem and the CMTS on a common encryption key
 - Between two strangers, on a shared, eavesdropped link
 - Diffie-Hellman algorithm
 - Alice and Bob agree on two large prime numbers n and g
 - Public values, e.g., Alice chooses them, and send them to Bob, without encryption
 - Alice chooses a large (512 bit long) number: x
 - Bob chooses a similar one: y
 - Alice starts the key exchange, and sends the triplet (n, g, g^x mod n) to Bob
 - Bob sends back the value g^y mod n
 - Both of them calculate the shared key:
 - $(g^{x} \mod n)^{y} = (g^{xy} \mod n) = (g^{yx} \mod n) = (g^{y} \mod n)^{x}$
 - Carol knows g and n, but cannot obtain x and y
 - It would take too much time, even with a supercomputer

September 22, 2016

Networking technologies and applications

MITM attack

- Diffie-Hellman does not protect against a MITM attack
 - Man-In-the-Middle
 - How do I know that Alice is really Alice?
 - Carol chooses a number z
 - It intercepts the triplet (n, g, g^x mod n) sent by Alice, and replaces it with her own triplet (n, g, g^z mod n)
 - It intercepts Bob's answer g^y mod n and replaces it with her own g^z mod n
 - Carol agrees with Alice in the shared key (g^{xz} mod n), and with Bob in a different key (g^{yz} mod n)
 - Alice and Bob think they talk to each other, but in reality they talk to Carol
- Some authentication scheme is required
 - Digital signature public/private keys
 - Alice knows Bob's public key
 - Certificate authority trusted third party
 - Bob attaches a digital signature to its packet, using his private key
 - Alice verifies if the packet was really sent by Bob or not, using his public key