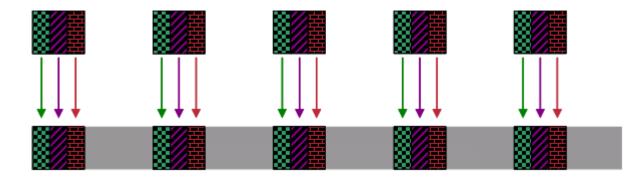
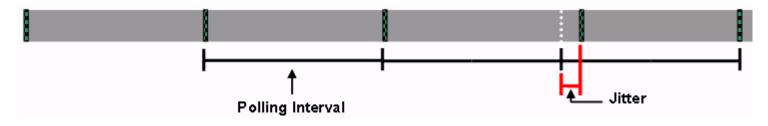
Networking Technologies and Applications

Rolland Vida BME TMIT

October 2, 2019


Providing Quality of Service

- Different applications have different QoS requirements
- CBR Constant Bit Rate (pl. VoIP)
 - Unsollicited Grant Services (UGS)
 - No need to sollicit uplink slots all the time
 - Tolerated jitter in grant allocation


Admission Control

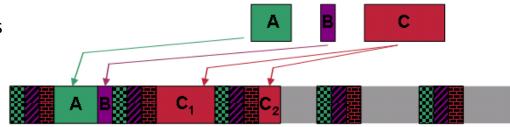
- UGS demands are accepted only in limited number
 - You have to leave room for other traffic types as well

Providing QoS

- rt-VBR (Real Time Variable Bit Rate)
 - E.g., live video stream
 - Real Time Polling Service (RTPS)
 - Bandwidth Request Slot dedicated to one specific application / modem
 - Can send his request for sure, no collision
 - Tolerated jitter in polling

Providing QoS

Unsollicited Grant Service with Activity Detection (UGS-AD)


- Operates in UGS mode only if it has data to be sent
- If temporarily no data, switches to RTPS mode
- If needed, can switch back to UGS mode
- E.g., VoIP with Voice Activity Detection (VAD)
- Non-Real Time Polling Service (nRTPS)
 - For nrt-VBR traffic
 - The polling intervals are not uniform

Providing QoS

- Best Effort Grants (BEG)
 - No strict requirements for delay or jitter
 - Fragmentation if needed, the slot requests can be split in time
 - More headers, but sometimes it is worth doing it

No contention in the downstream traffic

- Downstream traffic is sent only by the CMTS
 - No contention, no need for mini timeslots
 - No collisions, lower probability for bit errors, no need for retransmission
 - Large packets in the downstream traffic
 - Typical packet length: 204 bytes
 - Includes Reed-Solomon error correcting code
 - 184 bytes for user data

Secure communication

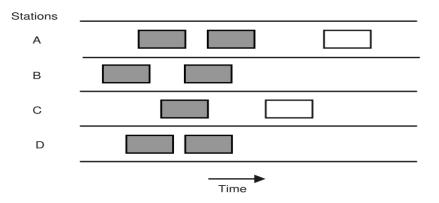
- Shared cable
 - Anyone can read the traffic that passes by
- Two way traffic encrypted, to avoid the eavesdropping of the neighbors
 - Agreement between the modem and the CMTS on a common encryption key
 - Between two strangers, on a shared, eavesdropped link
 - Diffie-Hellman algorithm
 - Alice and Bob agree on two large prime numbers **n** and **g**
 - Public values, e.g., Alice chooses them, and send them to Bob, without encryption
 - Alice chooses a large (512 bit long) number: x
 - Bob chooses a similar one: y
 - Alice starts the key exchange, and sends the triplet (n, g, g^x mod n) to Bob
 - Bob sends back the value g^y mod n
 - Both of them calculate the shared key:
 - $(g^{x} \mod n)^{y} = (g^{xy} \mod n) = (g^{yx} \mod n) = (g^{y} \mod n)^{x}$
 - Carol knows g and n, but cannot obtain x and y
 - It would take too much time, even with a supercomputer

MITM attack

- Diffie-Hellman does not protect against a MITM attack
 - Man-In-the-Middle
 - How do I know that Alice is really Alice?
 - Carol chooses a number z
 - It intercepts the triplet (n, g, g^x mod n) sent by Alice, and replaces it with her own triplet (n, g, g^z mod n)
 - It intercepts Bob's answer g^y mod n and replaces it with her own g^z mod n
 - Carol agrees with Alice in the shared key (g^{xz} mod n), and with Bob in a different key (g^{yz} mod n)
 - Alice and Bob think they talk to each other, but in reality they talk to Carol
- Some authentication scheme is required
 - Digital signature public/private keys
 - Alice knows Bob's public key
 - Certificate authority trusted third party
 - Bob attaches a digital signature to its packet, using his private key
 - Alice verifies if the packet was really sent by Bob or not, using his public key

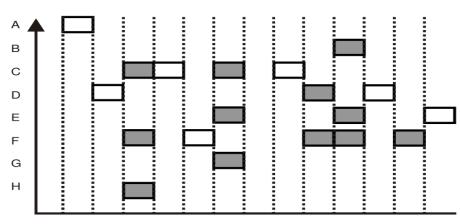
Aloha

- Hawaii no telephone network at the end of the 70's
 - How to connect the computers on different islands to a network, containing the central computer in Honolulu?
- Solution: ALOHANET low range radio
 - Norman Abramson, University of Hawaii
 - Each user terminal had a small radio device
 - Operated on two frequencies
 - One for the downstream, one for the upstream traffic
 - Downstream data broadcasted by the central computer, no problem
 - Contention on the upstream channel
 - If data reached correctly the central computer, it retransmitted it on the downstream channel
 - If the original sender did not receive it back, it was probably lost
 - » Retransmission required
 - If low upstream traffic, the solution is quite efficient
 - If higher traffic, the solution is unusable


Aloha

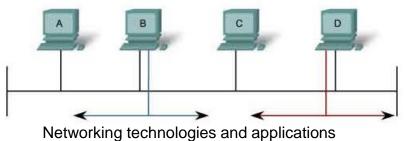
Advantages:

- Different size packets
- No need for synchronization
- Simple operation


If low upstream traffic, the solution is quite efficient

If higher traffic, the solution is unusable

Slotted Aloha


- Time is divided into **slots**
 - Fixed length slots to transmit fixed size packets
- If a node wants to send, waits until a new slot begins
 - Need to synchronize the nodes
- If nobody else sends in the same slot, then the sending is successful
 - Otherwise collision, the packet is resent after waiting for a random amount of time

Slotted ALOHA protocol (shaded slots indicate collision)

Ethernet

- Bob Metcalfe (MIT, Harvard) spends his holiday together with Abramson on Hawaii
 - Idea: let's do something similar, but for a wired network (1973)
 - First standard (DEC, Intel, Xerox) in 1982, IEEE 802.3 standard in 1983
- Many stations connected to the same cable segment
 - Everyone hears everyone, but without any central node
 - The Ethernet frames will have to have a destination address
 - Everyone hears it, but the frame will be processed only by the destination

Ethernet = CSMA/CD

- Before transmission, hosts on the same Ethernet cable first listen to the channel (CSMA – Carrier Sense Multiple Access)
 - If busy, they wait for the transmission to end
 - If free, start sending
 - Not immediately, but after a slot time
 - If there is a signal on the channel, it leaves time for it to be received
 - Slot time = maximum round-trip time on the cable
 - For 10 Mb/s Ethernet it is 51,2 μs , for 100 Mb/s is 5,12 μs
- Two stations might think in parallel that the channel is free
 - Both start sending, a collision occurs
 - If collision, they detect it (CD Collision Detection), and send a jam signal to ensure that others detect the collision as well