Networking
 Technologies and Applications

Rolland Vida
BME TMIT

September 19, 2017

- Hawaii - no telephone network at the end of the 70's
- How to connect the computers on different islands to a network,
 containing the central computer in Honolulu?
- Solution: ALOHANET - low range radio
- Norman Abramson, University of Hawaii
- Each user terminal had a small radio device
- Operated on two frequencies
- One for the downstream, one for the upstream traffic
- Downstream data broadcasted by the central computer, no problem
- Contention on the upstream channel

- If data reached correctly the central computer, it retransmitted it on the downstream channel
- If the original sender did not receive it back, it was probably lost
" Retransmission required
- If low upstream traffic, the solution is quite efficient
- If higher traffic, the solution is unusable

Aloha

Advantages:

- Different size packets
- No need for synchronization
- Simple operation

If low upstream traffic, the solution is quite efficient

If higher traffic, the solution is unusable

Slotted Aloha

- Time is divided into slots
- Fixed length slots to transmit fixed size packets
- If a node wants to send, waits until a new slot begins
- Need to synchronize the nodes
- If nobody else sends in the same slot, then the sending is sucessful
- Otherwise collision, the packet is resent after waiting for a random

Slotted ALOHA protocol (shaded slots indicate collision) amount of time

Ethernet

- Bob Metcalfe (MIT, Harvard) spends his holiday together with Abramson on Hawaii

- Idea: let's do something similar, but for a wired network (1973)
- First standard (DEC, Intel, Xerox) in 1982, IEEE 802.3 standard in 1983
- Many stations connected to the same cable segment
- Everyone hears everyone, but without any central node
- The Ethernet frames will have to have a destination address
- Everyone hears it, but the frame will be processed only by the destination

Ethernet = CSMA/CD

- Before transmission, hosts on the same Ethernet cable first listen to the channel (CSMA - Carrier Sense Multiple Access)
- If busy, they wait for the transmission to end
- If free, start sending
- Not immediately, but after a slot time
- If there is a signal on the channel, it leaves time for it to be received
- Slot time $=$ maximum round-trip time on the cable
- For $10 \mathrm{Mb} / \mathrm{s}$ Ethernet it is $51,2 \mu \mathrm{~s}$, for $100 \mathrm{Mb} / \mathrm{s}$ is $5,12 \mu \mathrm{~s}$
- Two stations might think in parallel that the channel is free
- Both start sending, a collision occurs
- If collision, they detect it (CD - Collision Detection), and send a jam signal to ensure that others detect the collision as well

Ethernet = CSMA/CD

(a)

(b)

Noise burst gets

(d)

- Wait for a random time interval and retry afterwards
- Set a timer to a random value from the $\left[0,1, . ., 2^{m-1}\right] \times \mathrm{t}_{\mathrm{av}}$ interval, where t_{av} is the default waiting time $(51,2 \mu \mathrm{~s}), \mathrm{m}=\mathrm{min}(10, \mathrm{n})$ and n is the number of collisions.
- After each collision the maximum waiting time is doubled, until reaching an upper limit - truncated binary exponential backoff
- CSMA/CD not possible on Alohanet
- Two users on the remote islands could not hear each other

Encapsulation

Ethernet Frame

Total length: 64 to 1518 Bytes

- The DATA field is at most 1500 bytes (MTU - Maximum Transmission Unit)
- If frame too large, it occupies the channel for long time
- Higher possibility of an error, you will need to resend large frames
- Minimum length 46 bytes (minimal frame size $=64$ bytes $=512$ bits)
- If the frame too small, collision detection cannot be used
- Transmission is terminated very fast, before the first bit reaching the end of the cable
- $51,2 \mu \mathrm{~s}$ round trip time $/ 0,1 \mu \mathrm{~s}$ bit time $=512$ bit
- Even if there's a collision, the sender is not informed about it
- Packets that are too small are filled with padding data (bits with no utility)

Carrier Extension

- If the speed of the network increases...
- Either increase the minimum frame size...
- Or decrease the maximum cable length
- On a 2500 m cable, for a $1 \mathrm{~Gb} / \mathrm{s}$ speed, the minimum frame size is 6400 bytes
- If the minimum size is 640 bytes, the cable can be only 250 m long
- Very annoying restrictions on a Gigabit network
- Minimum frame size increased to 512 bytes
- Carrier Extension
- The sender puts the useless bits after the CRC field
- The receiver cuts it of, not included in the CRC
- Still a serious waste of capacity
- Frame Bursting
- During a single transmission, several consecutive frames transmitted
- Increases efficiency considerably

First Ethernet versions

- 10Base5 - thick Ethernet
- Coaxial cable, $10 \mathrm{Mb} / \mathrm{s}, 500 \mathrm{~m}$ long segments

- 10Base2 - thin Ethernet
- Coaxial cable, 200 m segments

- 10Base-T
- Twisted pair, star topology around a hub, 100 m segments
- 10Base-F
- Optical fiber, 2 km long segments

Fast Ethernet

- 100Base-TX
- 2 twisted pairs
- One for the upstream, one for the downstream, $100 \mathrm{Mb} / \mathrm{s}$ duplex speed
- 100Base-T4
- 4 twisted pairs
- One for the upstream, one for the downstream data, the other two can be used as needed
- Maximum 100 m long segments
- 100Base-FX
- Multi-mode fiber in both directions
- $100 \mathrm{Mb} / \mathrm{s}$ duplex speed
- Maximum 2 km between the hub and the stations

Gigabit Ethernet

- IEEE $802.3 z$ (1998), 802.3ab (1999)
- Only point-to-point setups
- No shared segments, as in traditional $10 \mathrm{Mb} / \mathrm{s}$ Ethernet
- Two operation modes:
- Duplex - traffic in both directions in the same time
- A central switch links the stations on the periphery
- All the connections are buffered
- Any station can send data at any time
- No need to sense the channel, no contention
- No need for CSMA/CD, not really Ethernet anymore
- Half-duplex
- Stations are connected to a simple hub
- No buffering, collisions are possible

Gigabit Ethernet

- Different versions
- 1000Base-SX
- Multi-mode fiber
- Maximum 550 m long segments
- 1000Base-LX
- Single- or multi-mode fiber
- Maximum 5000 m long segments
- 1000Base-T
- 4 pairs of Cat. 5 UTP cables
- Maximum 100 m long segments
- IEEE 802.3ae - $10 \mathrm{~Gb} / \mathrm{s}$ Ethernet (2002)
- Only on optical cables
- IEEE 802.3ba - 40Gb/s and $100 \mathrm{~Gb} / \mathrm{s}$ Ethernet (2010)
- Lucent Technologies Bell Labs experimental results
- Standard adopted in June 2010

Hub

- Physical layer repeater device
- Repeats the packet on bit level

- An incoming packet is forwarded immediately on all the other interfaces
- Everyone receives all the packets
- If many simultaneous transmissions - collision
- The „collision domain" is not changed
- Usually a hierarchical, tree-like hub topology

Hub - advantages and drawbacks

- Each station can collide with any other station on the hub
- Lowers the efficiency of the network
- Lowers scalability
- Anyone can see anyone's traffic
- Different Ethernet versions cannot be joined in the same network
- If one 10 Mbps station in the network, the entire network switches back to 10 Mbps operation mode
- Not efficient to build a large network using only hubs
- One large collision domain

Switch (bridge)

- Link Layer device

- Checks the MAC header, and forwards selectively
- switch table: (MAC address, interface, timer)
- Built from the received packets
- If one address is unknown, the packet is forwarded to all the interfaces
- Separates the collision domains
- Buffers the packets
- Forwards them only to the appropriate segments

Switch

- Advantages:
- Higher scalability
- More efficient, more secure
- Buffering and switching tables makes the connection of different Ethernet versions possible inside the same network

Corporate network

Switch (bridge) vs. router

- Intelligent store-and-forward devices
- Router
- In the network layer (L3), based on IP addresses
- Stores routing tables, uses routing protocols
- Switch
- In the data link layer (L2), based on MAC addresses
- Stores switching tables, uses address learning algorithms

- Spanning Tree Protocol

- Part of the IEEE 802.1D standard
- Radia Perlman (MIT, DEC)
- Loop-free trees on a bridged LAN
- No TTL in Ethernet (Time To Live)
- In case of a loop, packets travel indefinitely in the network
- Need for redundancy
- In case of an error, there should be an alternative path

Example topology

