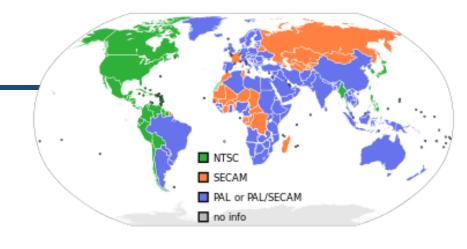

Networking Technologies and Applications

Rolland Vida BME TMIT

September 25, 2019

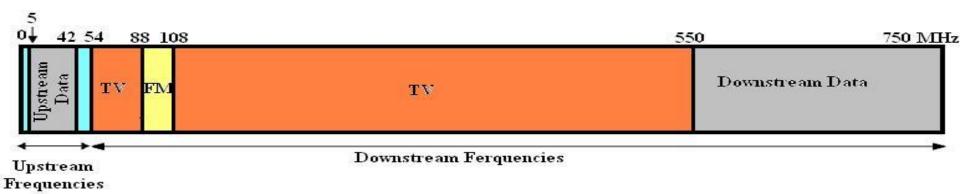
Internet on the cable


Spectrum allocation

- The cable network cannot be used exclusively for internet access (at least not yet...)
 - Many more TV viewers than broadband subscribers
 - The cities regulate what can be offered on the cable, a TV service is mandatory
 - The frequencies should be divided between TV channels and Internet access
- USA, Canada
 - FM radio: 88 108 MHz
 - Cable TV channels: 54 550 MHz
 - 6 MHz wide channels, with a guard band
 - NTSC National Television System Committee
 - Resolution: 720 x 480, 29.97 fps

Spectrum allocation

Europe


- TV channels above 65 MHz
- 6-8 MHz wide channels
 - PAL and SECAM systems with higher resolution
 - PAL Phase Alternating Line
 - SECAM Système Electronique Couleur Avec Mémoire
 - Resolution: 768 x 576, 25 fps
- The lower frequencies not used

Spectrum allocation

Modern cables provide good transmission quality above 550 MHz, up to 850 MHz or more

Solution: uplink traffic between 5 - 42 MHz (5 - 65 MHz in Europe) The upper part of the spectrum used for downlink traffic

Asymmetric system

- TV and radio downstream
 - From the headend towards the end user
 - In the upstream direction, amplifiers working in the 5-42 MHz frequency range
 - In the downstream direction, amplifiers that work above 54 MHz
 - Larger downstream than upstream
 - Technological reasons, not like in the case of ADSL
 - Not a good solution for P2P traffic
 - Designed for asymmetric web traffic

Modulation

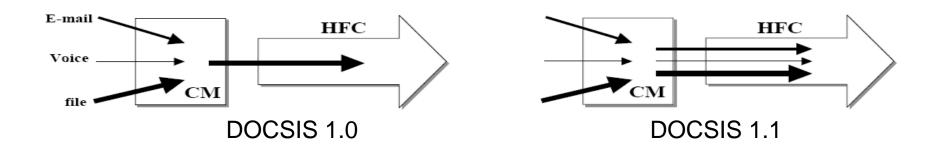
- Each 6-8 MHz is modulated with 64-QAM
 - Quadrature Amplitude Modulation
 - If a good quality cable, 256-QAM
- On a 6 MHz channel with 64-QAM → ~ 36 Mbps
 - Effective bandwidth without headers 27 Mbps
 - With 256-QAM, ~ 39 Mbps
 - In Europe larger bandwidths, because of the 8 MHz channels
- On the upstream channel 64-QAM is not acceptable
 - Too much noise, from microwave systems, CB-radios, etc.
 - Citizen Band walky-talky
 - QPSK modulation
 - Quadrature Phase Shift Keying, much slower
 - Much larger difference between the upstream and downstream speeds

Cable modem

- Transforms the analog signals coming on the cable to digital data, and vice versa
 - MOdulates és DEModulates

- Two interfaces one towards the PC, one towards the cable network
 - Ethernet/USB/WLAN connection between the cable modem and the PC

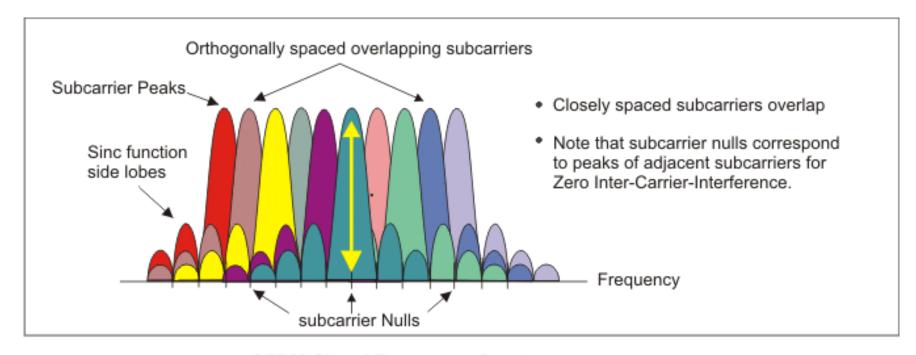
Cable modem


- In the early years each operator had its own modems, installed by a technician
 - An open standard was needed
 - Open the market, lower the prices
 - Contributes to the spread of the technology
 - If the users installs the modem, costs can be cut
- CableLabs
 - Association of the largest cable operators
 - DOCSIS standards
 - Data Over Cable Service Interface Specification
 - EuroDOCSIS European version
 - Many were not happy about it
 - Could not hire out anymore their expensive modems to the defenseless subscribers

DOCSIS

- DOCSIS 1.0 (1997)
 - RF Return
 - Two-way communication
 - Telco Return
 - Dial-up connection for the upstream traffic
 - No need to modify the infrastructure, one-way communication on the cable
 - Modem prices fall from \$300 (1998) to < \$30
- DOCSIS 1.1 (1999)
 - VoIP, gaming, streaming
 - Compatible with DOCSIS 1.0
 - QoS

DOCSIS

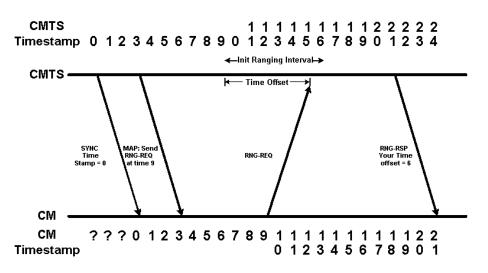


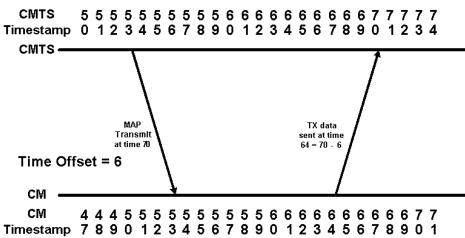
- In DOCSIS 1.0 all the services are in contention for upstream bandwidth, on a "best effort" basis
- In DOCSIS 1.1 QoS guarantees can be associated to applications

DOCSIS

- DOCSIS 2.0 (2002)
 - Capacity for symmetric services
 - Larger upstream capacity than for DOCSIS 1.0 (x6) or DOCSIS 1.1 (x3)
 - Instead of QPSK, it uses 32-QAM, 64-QAM or 128-QAM on the upstream part as well
 - TDMA and S-CDMA in the MAC layer, instead of simple TDMA
- DOCSIS 3.0 (2006)
 - 160 Mbps downstream, 120 Mbps upstream
 - Channel bonding
 - Many channels associated in parallel to the same user
- DOCSIS 3.1 (2013)
 - 10 Gbps downstream, 1 Gbps upstream, 4096 QAM modulation
 - Instead of 6-8 MHz wide channels it uses narrow channels of 20-50 KHz, and OFDM (Orthogonal Frequency Division Multiplexing)
 - Channel bonding spectrum width up to 200 MHz

OFDM


OFDM Signal Frequency Spectra


Connection

- When establishing the connection, the modem starts to scan the downlink channels
 - The CMTS periodically sends a special packet, with system parameters to enable new modems to connect
 - The modem register itself at the CMTS
 - The CMTS assigns the uplink and downlink channels of the newcomer
 - This can be changed later, e.g., for load balancing
 - Many modems on the same uplink channel
 - The first packets from the modem to the ISP
 - Ask for an IP address, through the DHCP protocol
 - Dynamic Host Configuration Protocol
 - Time synchronization with the CMTS

Contention based reservation for upstream traffic

- The modem measures its distance to the CMTS
 - Ranging similar to a ping
 - Necessary to handle time slots correctly

Contention based reservation for upstream traffic

- The upstream channel is divided (in time) into mini-slots -FDD/TDMA
 - Each upstream packet has to fit in one or more mini-slots
 - The length of the mini-slots is different in different networks
 - Typically 8 bytes of user data have to fit in one mini-slot
- The CMTS periodically announces the start of a new group of mini-slots
 - Because of the signal propagation on the cable, the modems do not hear it in the same time
 - Each modem can calculate the beginning of the first mini-slot (using the results of the previous ranging)
 - Each modem is assigned a special mini-slot (Bandwidth Request Slot) to ask for upstream bandwidth
 - Several modems on the same mini-slot

Contention based reservation for upstream traffic

- If a modem wants to send a packet, asks for sufficient mini-slots
 - If the CMTS accepts the request, it sends and acknowledgment with the assigned mini-slots
 - If the modem wants to send further packets, in the headers it can ask for new slots
 - If two modems ask in the same time for slots, collision occurs, no acknowledgment is received
 - The modem waits for a random time interval, and then tries again
 - A timer set to random value chosen from the [0, x] interval
 - If a new collision occurs, the upper limit of the interval is doubled
 - A timer set to random value chosen from the [0, 2x] interval