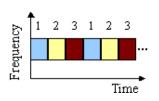
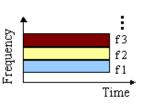
Networking Technologies and Applications

Rolland Vida BME TMIT

September 15, 2016


Networking basics


- The different access networks often are using a shared transmission medium
 - Many others can hear me, I can hear many others
 - Providing a dedicated channel to every subscriber might be either impossible, or too expensive
- The problem is to solve the access control to the transmission medium
 - Users do not know about each other who wants to send and when
 - Access to the medium has to be coordinated

Multiple Access

Solutions based on fixed allocations

- TDMA Time Division Multiple Access
 - Each user has its own timeslot to send
 - Can use the entire frequency band
- FDMA Frequency Division Multiple Access
 - The spectrum is split into channels
 - Fach user has its own channel
- CDMA Code Division Multiple Access
 - Each user communicates over the entire frequency domain, all the time
 - Traffic is separated based on code theory
 - The sender multiplies the signal with a spreading code, and sends over the result
 - The eceiver multiplies again the received signal with the same spreading code, to reproduce the original signal
 - Codes are orthogonal
 - » Multiplying two different codes returns a series of 0s

Multiple Access vs. Multiplexing vs. Duplexing

Multiple Access (TDMA, FDMA, CDMA)

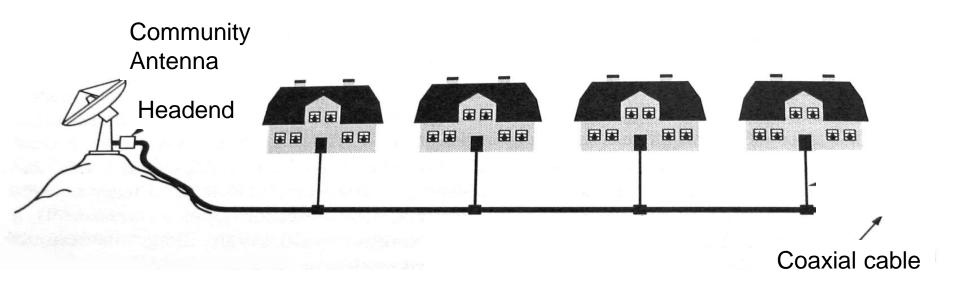
- Regulating channel access in case of many parallel sources
- Normally in the uplink direction

Multiplexing (TDM, FDM, CDM, ...)

- Combining multiple signals, from one or many sources, onto the same shared medium
- Uplink or downlink direction

Duplexing (TDD, FDD)

- Regulating the resources for downlink and uplink traffic
- FDD Frequency Division Duplexing
 - "Paired" frequencies, separate uplink and downlink channels
- TDD Time Division Duplexing
 - "Unpaired" frequencies, divided adaptively between uplink and downlink traffic


Multiple Access

- Fixed allocation is not efficient if traffic is sparse, and bursty
- Contention-based Channel Access
 - Polling
 - · Reserving and scheduling resources based on current demand
 - Random access
 - A node starts sending when it wants, no previous reservation
 - If several nodes start speaking in the same time, collision occurs, the packet should be retransmitted later
 - ALOHA, Slotted ALOHA, CSMA/CD

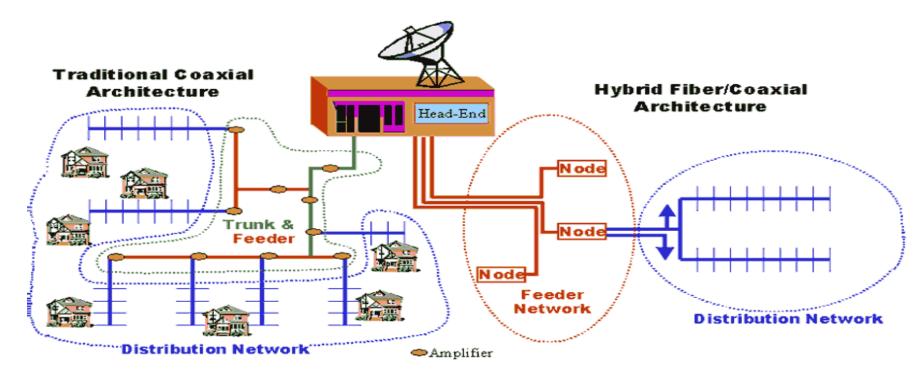
Why cable TV?

- The idea appeared at the end of the 40's
 - Better signal quality for people living in suburbs, or in the mountains
- Community Antenna Television CATV
 - A big antenna on the top of a hill
 - Headend
 - Coaxial cable
- Family business, anyone could deploy its own network
 - If more users, new cables and amplifiers needed
- One-way traffic, only from the head-end towards the subscriber

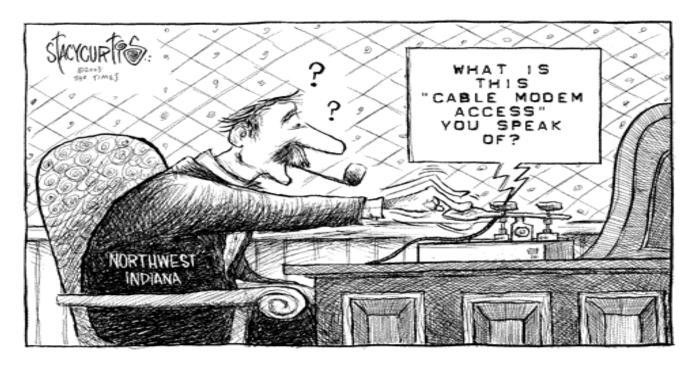
Early cable TV system

The development of cable TV

- Thousands of independent systems in the 70's
- HBO starts in 1974, as the first TV channel transmitted exclusively on cable
 - Many new thematic cable TV channels news, sports, cooking, etc.
- Big companies start to buy the small local networks, and extend them with new cables
 - Cables linking the different cities
 - Similar process to the evolution of the PSTN networks
- The inter-city links changed later for optical fiber


HFC system

- HFC Hybrid Fiber Coax
 - Optical fiber to span large distances
 - Coaxial cable to reach the homes



- Fiber optic node
 - Electro-optical converter
 - Converts optical signals to electrical ones, and vice-versa
- One optical cable can feed many coaxial cables
 - Much larger bandwidth

Modern Cable TV system

Internet on the cable

