
Networking Technologies and Applications

Rolland VIDA, PhD April 8, 2015

Internet on the cable

Secure communication

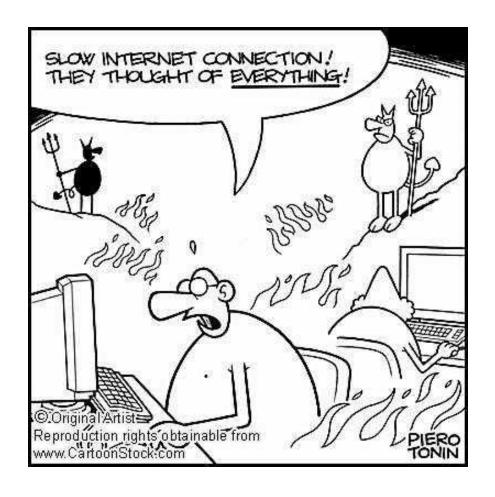
- Shared cable
 - Anyone can read the traffic that passes by
- Two way traffic encrypted, to avoid the eavesdropping of the neighbors
 - Agreement between the modem and the CMTS on a common encryption key
 - Between two strangers, on a shared, eavesdropped link
 - Diffie-Hellman algorithm
 - Alice and Bob agree on two large prime numbers n and g
 - O Public values, e.g., Alice chooses them, and send them to Bob, without encryption
 - Alice chooses a large (512 bit long) number: x
 - Bob chooses a similar one: y
 - Alice starts the key exchange, and sends the triplet (n, g, g^x mod n) to Bob
 - Bob sends back the value g^y mod n
 - Both of them calculate the shared key:
 - $(g^x \mod n)^y = (g^{xy} \mod n) = (g^{yx} \mod n) = (g^y \mod n)^x$
 - Carol knows g and n, but cannot obtain x and y
 - o It would take too much time, even with a supercomputer

MITM attack

- Diffie-Hellman does not protect against a MITM attack
 - Man-In-the-Middle
 - How do I know that Alice is really Alice?
 - Carol chooses a number z
 - It intercepts the triplet (n, g, g^x mod n) sent by Alice, and replaces it with her own triplet (n, g, g^z mod n)
 - It intercepts Bob's answer gy mod n and replaces it with her own gz mod n
 - Carol agrees with Alice in the shared key (g^{xz} mod n), and with Bob in a different key (g^{yz} mod n)
 - Alice and Bob think they talk to each other, but in reality they talk to Carol
- Some authentication scheme is required
 - Digital signature public/private keys
 - Alice knows Bob's public key
 - Certificate authority trusted third party
 - Bob attaches a digital signature to its packet, using his private key
 - Alice verifies if the packet was really sent by Bob or not, using his public key

Fiber networks

Why fiber?


- Today the killer application is not web browsing anymore, but multimedia
 - MPEG-1 ISO/IEC standard
 - Moving Pictures Experts Group
 - 50:1 100:1 compression rate
 - 1.5 Mbps, VHS quality image
 - MPEG-2
 - DVD quality image
 - High resolution, high color depth, high movement video (e.g., sport events) –
 4-8 Mbps
 - HDTV 14 Mbps
- The ADSL speeds are far from being enough
 - Only in case of very short loops

April 8, 2015

Why fiber?

- HFC (Hybrid Fiber Coax)
 - The traditional 300-550 MHz coaxial cables replaced with 850 MHz cables
 - Additional 300 MHz → 50 new 6 MHz wide channels
 - With QAM-256, 40 Mbps per channel → 2 Gbps new bandwidth
 - 500 houses on a segment → each subscriber gets 4 Mbps downstream, which might be enough for an MPEG-2 stream
 - Sounds nice, but...
 - All the cables should be changed to 850 MHz coax
 - New CMTS, new fiber nodes, two-way amplifiers
 - Nearly the entire network has to be changed
- Why not bringing the fiber as close to the subscriber as possible?

Slow speed is today a torture!

Speed is important!

Estimated minimum download time for the Braveheart movie

August 17, 2001:

MGM, Paramount Pictures, Warner Brothers and Universal Studios announce a common plan to support on-line movie renting"

2002 december 9

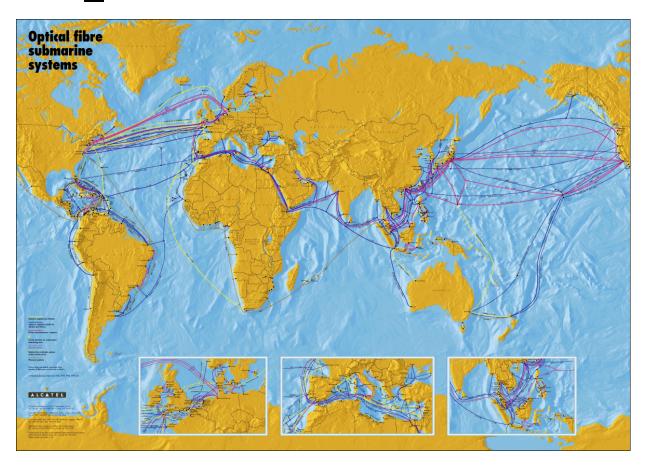
"Hollywood's Latest Flop", Fortune Magazine:

"The data files are huge. At 952 megabytes, Braveheart took just less than five hours to download using our DSL line at home. Video-on-demand? Hardly. In the same time we could have made 20 roundtrips to our neighborhood Blockbuster"

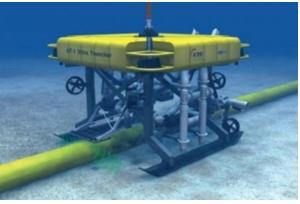

Technology	Minutes	Hours	Days
Modem 56 kb/s			2
FedEx.		12	
DSL 1 Mb/s		2.5	
Cable 2.5 Mb/s		1	
RIOCKBUSTER	45		
FTTH	0.4		

Data transfer over the fiber

- Three main components:
 - Source of light
 - LED (light emitting diode), laser
 - Fiber
 - Very thin glass fiber
 - Light detector
 - If it detects a light pulse logical 1 bit
 - If not logical 0 bit
- The digital data has to be transformed to light pulses, and vice versa
- The transfer speed is only limited by the speed of the conversion
 - Actual speeds today on a single fiber ~10-50 Gbps

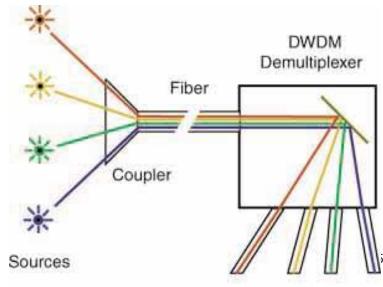

Fiber categories

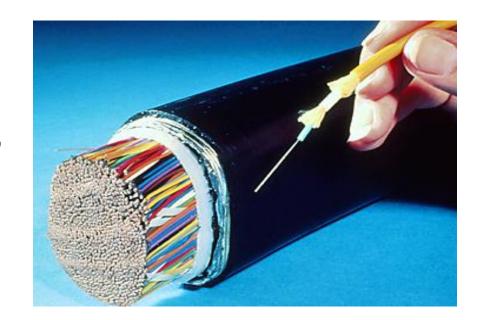
- Multi-mode fiber
 - Light pulses are spread inside the fiber
 - Many rays of light reflected under different angles
 - Cheap solution, but suitable only for small distances (500 m)
- Single-mode fiber



- The diameter of the fiber is very small, a single ray of light is transmitted inside the fiber, no reflections
- Much more expensive, needs much higher capacity lasers
- Suitable for much larger distances
 - 50 Gbps on 100 km without amplifiers
 - Very important for transatlantic cables, where amplifiers are hard to install
- The core network is built only with single-mode fibers

Submarine optical systems




WDM – Wavelength Division Multiplexing

- Many wavelengths (colors) on the same fiber
- At the beginning only 2 colors
 - Today up to 160
 - On a 10 Gbit/s fiber a theoretical speed of 1.6 Tbit/s

Fiber vs. Copper

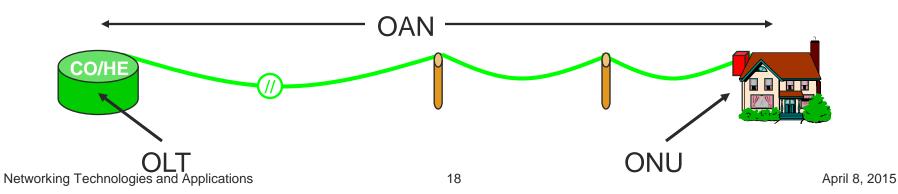
- On an optical fiber more than 2.5 million parallel phone calls
- Compared to a similar capacity
 bundle of twisted pair connections,
 1% in weight and size

Fiber vs. Copper

- Optical fiber
 - Transports light pulses
 - Not influenced by electromagnetic interferences
 - Repeaters after ~30 kms
 - Low dilatation
 - Fragile, quite rigid material
 - Chemically stable

- Copper twisted pair
 - Transports electric waves
 - Sensible to electromagnetic interferences
 - Repeaters after 5 km
 - Dilatation in case of high temperatures
 - Can be bended
 - Sensible to galvanic reactions
 - Can be reused
 - The copper could be sold

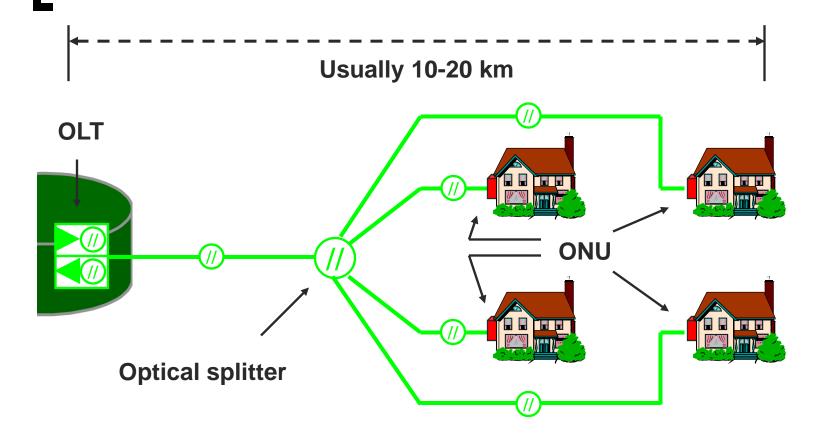
FTTx

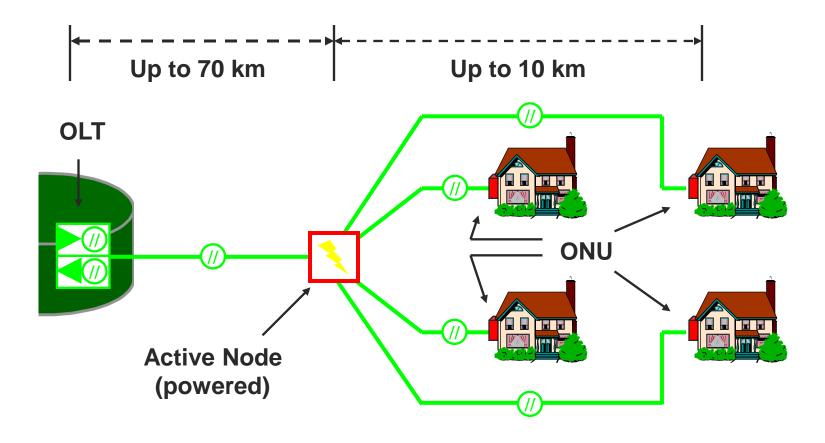

- FTTx Fiber To The x
 - FTTB Fiber To The Building
 - FTTC Fiber To The Curb
 - FTTD Fiber To The Desk
 - FTTE Fiber To The Enclosure
 - FTTH Fiber To The Home
 - FTTN Fiber To The Neighborhood
 - FTTO Fiber To The Office
 - FTTP Fiber To The Premises
 - FTTU Fiber To The User

FTTC

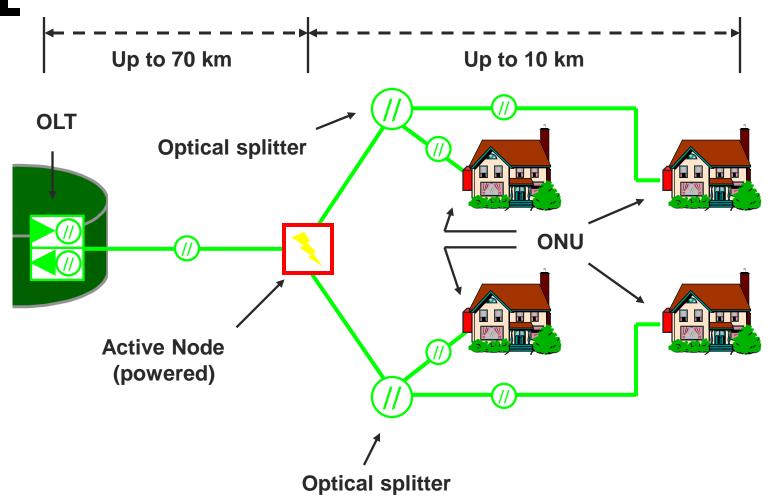
- Fiber To The Curb
- Fiber from the local switching center near to the homes
 - The connection terminated by an ONU at the subscriber
 - Optical Network Unit
 - Many twisted pairs or coaxial cables added in the "last mile"
 - Very short loops, can be extended with a DSL segment
 - e.g., VDSL very popular in South-East Asia
 - Suitable for MPEG-2 streams and videoconferencing

FTTH

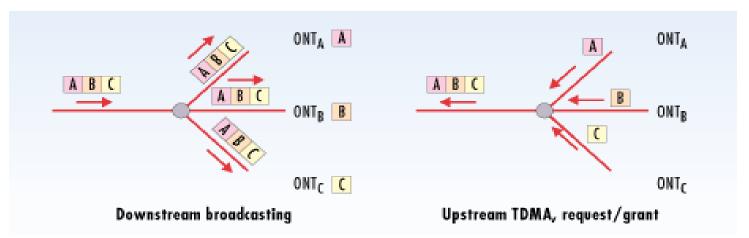

- Fiber To The Home
- System components
 - OAN: Optical Access Network
 - ONU/ONT: Optical Network Unit/Terminal
 - At the subscriber
 - OLT: Optical Line Termination
 - At the service provider


FTTH architectures

- PON Passive Optical Networks
 - Many subscribers (max. 32) share an optical fiber
 - Optical splitters to separate or aggregate the signals to/from different subscribers
 - No need for power supply for the splitters
 - Shared network Point to Multipoint (P2MP)
- Active Node
 - Each subscribers has his own optical fiber
 - Point to Point (P2P)
 - Active, powered nodes to separate the traffic
 - Ethernet switch
 - Layer2/Layer3 switching/routing
- Hybrid PON
 - A combination of the two architectures


PON architecture

Active Node architecture



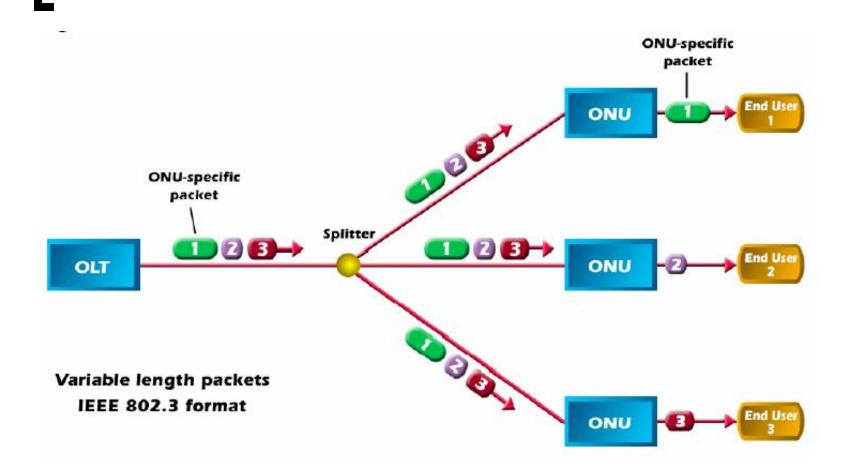
Hibrid architecture

PON - upstream and downstream traffic

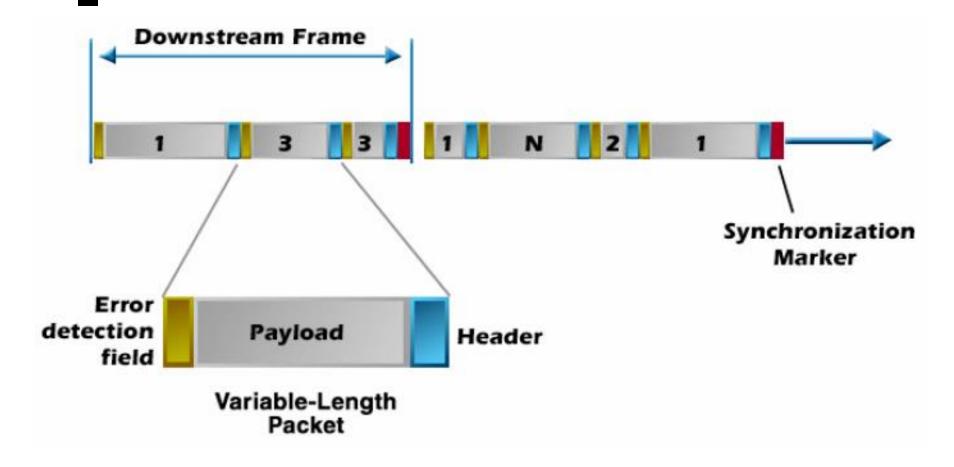
- The upstream and downstream traffic handled differently
 - Broadcast downstream
 - The splitter forwards all the data to all the connected segments
 - The ONU handles only the packets that it is the destination of (based on the header)
 - Upstream traffic with TDMA
 - The OLT assigns time slots to the ONUs
 - Synchronized sending of packets
 - The ONU can ask for further slots, if needed

Ethernet or ATM?

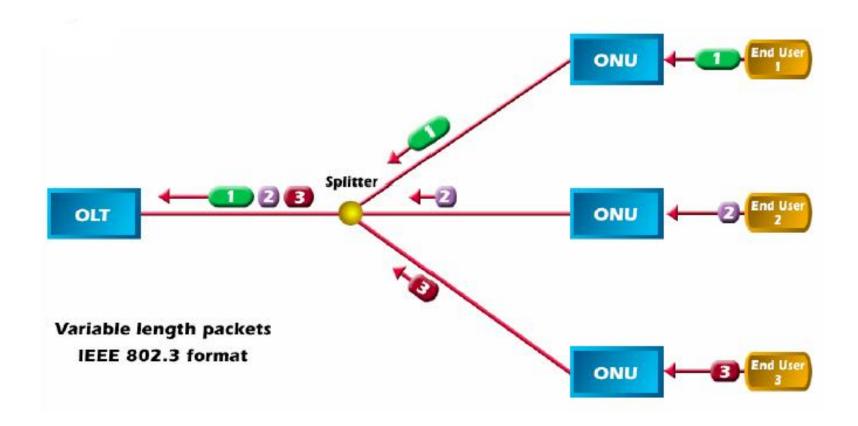
- One OLT connected to several PONs
 - ONUs reached through cheap optical splitters
 - No need for active electronic devices, and for their maintenance
- Two concurrent technologies
 - APON ATM-based PON
 - ITU-T G.983.x
 - The first PON implementation
 - EPON Ethernet-based PON


APON

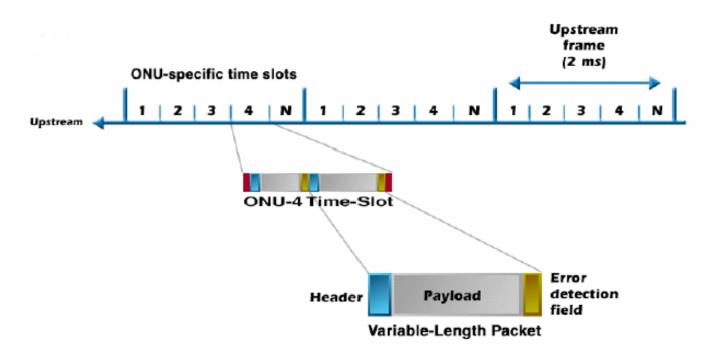
- Segmentation and Reassembly (SAR)
 - Fix sized packets
 - 53 byte long ATM cells
 - Data passes through an ATM Adaptation Layer-en (AAL), where it is split in 48 byte long packets
 - Plus 5 byte long headers
 - Packets are reassembled at the destination
- Because of the SAR, ATM is very suitable for video and voice transfer
 - Delay-sensitive traffic can be well transmitted in small, fixed size cells
 - Time consuming procedure
 - 5-byte headers are too long (10% overhead)
- Fixed sized cells well suited for the PON TDMA upstream traffic
 - Easy to handle time slots, no collisions


EPON

- Data sent in IEEE 802.3 (Ethernet) frames
 - Variable size frames, between 64 and 1518 bytes
- How to handle TDMA-based upstream communication?
 - We might use maximum length slots
 - Any frame can fit in
 - Not efficient, too much bandwidth wasted
 - We might have fixed length slots, filled with several frames
 - More efficient, but not ideal
 - Hard to fill a fixed length slot with variable size frames
 - Ethernet frames could be divided in fixed length chunks
 - Easier to upload
 - The price is a SAR function that has to be added to the EPON protocol stack

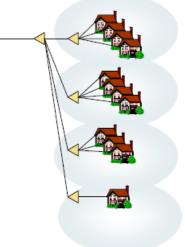

EPON downstream traffic

EPON downstream packets

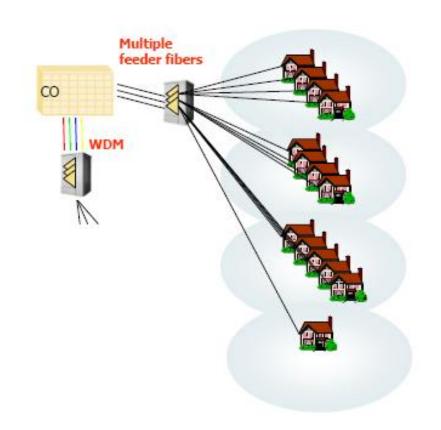


EPON upstream traffic

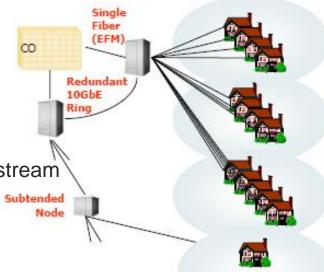
29


EPON upstream packets

- The upstream traffic divided to frames
- Each ONU has its own time slot, that it fills with his own variable length packets


Traditional PON

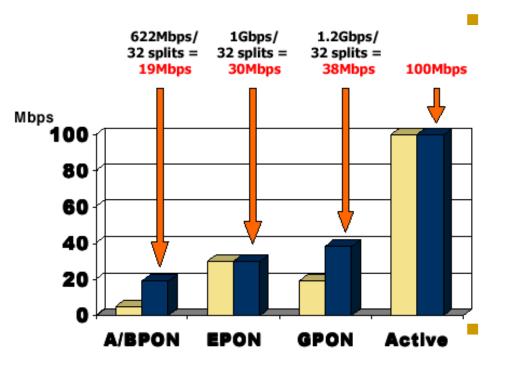
- Main idea:
 - Its is not worth having a separate fiber for each user from the OLT
 - Bring on fiber close to the subscribers, and share it with passive devices
- Drawbacks
 - Splitters are dummy devices, cannot be controlled remotely
 - If a problem occurs, splitters has to be checked one by one
 - Not flexible
 - A 5th subscriber cannot be added to a 4-line splitter
 - The networks should be designed with over-provisioning in mind, not violating the 32 rule
- Solution: plan the network with 16 or 24-line splitters
 - Place for extensions
 - The remaining 16 subscribers will pay more


Passive Star PON

- Splitters in the same box
 - Easier to discover the faulty splitter
- Still a tree topology
 - If the connection between the splitter and the Central Office is cut, no backup

Active Star

- Drawback: need for powered active nodes
- Using intelligent devices at the edge of the network has many advantages
 - The active node can act as an IGMP proxy for multicast traffic
 - Detailed in a later course
 - Fault-tolerant solution
 - Active nodes joined in a ring
 - Ethernet Protection Switching Rings (EPSR)
 - 50 ms switching time in case of an error
 - Minor image quality degradation for a video stream
 - A phone conversation is not interrupted
 - Easy to manage, easy to repair


BPON

- Broadband PON
 - ATM-based
 - Better than traditional APON
 - Higher transmission speed
 - DBA Dynamic Bandwidth Allocation
 - Security enhancements
 - Current APON/BPON systems in 3 operation modes
 - 155 Mbps downstream, 155 Mbps upstream
 - 622 Mbps downstream, 155 Mbps upstream
 - 622 Mbps downstream, 622 Mbps upstream

GPON

- Gigabit PON
 - ITU-T G.984 standard
 - Several downstream/upstream versions
 - Most popular 2.48 Gbps dowsntream, 1.244 Gbps upstream

Comparison of transfer speeds

With PON, slower speeds

- Shared segment between the OLT and the first splitter
- Situation is better if splitters are not fully loaded
 - Shared between 16 or 24 subscribers, not 32

If Active Nodes, each subscriber has his own fiber

- Individual users usually 100 Mbps in the two directions
- Business subscribers up to 1 Gbps