Networking Technologies and Applications

Rolland Vida BME TMIT

September 6, 2017

Dial-up access

What's the limit?

- The core network is digital
 - After the PCM coding, the signal is restricted to a 64 Kbps channel, this is the upper limit
 - In most of the systems 1 bit/byte for signaling
 - Max. 56Kbps
 - Quantization noise due to the A/D and D/A conversions
 - The actual limit is 33.6 Kbps

Dial-up is dying out...?

- DSL Digital Subscriber Line
- Dial-up speed 56 Kbps
 - Other technologies much higher speeds
 - Obliged to move, if you want to keep the subscribers
- Emerges the broadband connectivity
 - Mostly a marketing term
 - Not clear what broadband means
- xDSL different DSL versions

Why is DSL fast?

- Why is dial-up slow?
 - The PSTN network optimized for voice transmission
 - A band-pass filter in the local exchange
 - Only the 4 KHz large voice channel remains
 - Data is also restricted to this channel
- The line of the xDSL subscriber has no filter
 - You can use the entire capacity of the local loop
 - It depends on the length of the loop, the thickness and the quality of the cable
 - Optimal case: new cables, thin bundles, short loop
- If you want higher speed, you need many local exchanges
 - If someone lives far away, he or you should move closer
 - Lower the speed, higher the service range more potential subscribers
 - Lower the speed, fewer interested subscribers

ADSL - Asymmetric Digital Subscriber Line

- DMT Discrete Multitone Modulation
 - 1.1 MHz frequency domain
 - 256 channels, 4.3125kHz each
 - Channel 0 POTS (voice)
 - Channels 1-5 guard band (empty)
 - To avoid interferences between voice and data channels
 - 1 upstream and 1 downstream channel for signaling
 - The remaining channels split between upstream and downstream user data
- Frequency allocation in ADSL
 - 0-4 kHz voice
 - 4-25 kHz guard band
 - 25-160 kHz upstream band
 - 200 kHz 1.1 MHz downstream band

ADSL architecture

• At the operator

- POTS Splitter
 - Frequency splitter to separate voice and data traffic
 - Voice is directed to the local exchange
 - Everything above 26 KHz is directed to the DSLAM
- DSLAM DSL Access Multiplexer
 - Splits the bit stream into packets and sends them to the ISPs network
- At the subscriber
 - POTS Splitter
 - ADSL modem
 - Digital signal processing
 - High speed connection to the PC

ADSL architecture

ADSL G.dmt

- ITU-T G.992.1 standard (1999)
 - http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.992.1
- Much larger bandwidth for downstream traffic than for upstream
 - Designed for the needs of web browsing
 - Maximal downlink speed 8 Mbit/s
 - usually 512 Kbit/s 1 Mbit/s
 - Maximal uplink speed 1 Mbit/s
 - usually 64 Kbit/s 256 Kbit/s
- Service range of max. 3 km from the local exchange

ADSL G.dmt 2

- ITU-T G.992.3 standard (2002)
- Extends the traditional ADSL technology
 - Maximum downlink speed increased to 12 Mbit/s
 - Service range extended with ~ 500 meters
 - The improvements mainly due to the limitation of the interferences on long loops
- ADSL2 is energy efficient
 - As opposed to ADSL, it differentiates between periods with or without traffic
- ADSL2 can temporarily switch to "complete digital" mode
 - The voice and guard channels used for data traffic

ADSL G.dmt 2

- Seamless rate adaptation (SRA)
 - 20-25 twisted pairs in a bundler
 - "Crosstalk" from the neighboring pairs
 - Might lead to the ADSL connection being dropped
 - ADSL2 can adapt the speed
 - If too much noise on a channel, it can be blocked
 - The modem and the DSLAM agree on which channels to use

ADSL 2+

- ITU-T G.992.5 (2003)
- Bandwidth is increased by enlarging the frequency domain
 - The frequencies used for voice and upstream traffic do not change
 - The upper frequency of the downlink channel is increased from 1.1 to 2.2 MHz.
 - The maximum downlink speed increases from 8Mbit/s to 16 Mbit/s
 - The service range is lowered to 1.5 km

13

- Symmetric High-speed DSL
 ITU-T G.991.2 (2001)
- 2.3 Mbit/s maximum speed in both directions
 - If a second twisted pair is added, it can be extended to 4.6 Mbit/s
 - service range of 3 km
 - As distance increases, the transmission quality is gradually decreasing

SHDSL applications for business

• Web hosting

- If a web server is operated over a DSL connection
- High upstream bandwidth needed
- Videoconferencing
 - Text, voice and video data to be transmitted
 - Symmetric traffic

• VPN (Virtual Private Network) services

- Private network over a public telecommunication infrastructure
- The privacy of the data transfer ensured through tunneling and encryption
- VPN connections over SHDSL, linking the remote offices of a company, if there is no FTTx solution, or it is too expensive
- Remote LAN Access
 - Teleworking or SOHO (Small Office Home Office)
 - High speeds needed to ensure the same user experience as in the real office

SHDSL applications at home

Internet Gaming

- The home user operates a game server, or plays against other home users
- A good upstream connections is essential

Residential Gateway Access

 A CPE (Customer Premises Equipment) that provides access to several services such as home video monitoring or intelligent home applications

Peer-to-peer applications

- File sharing, application layer multicast
- Symmetric connection is needed

- Very-high-data-rate digital subscriber line
 ITU-T G.993.1 (2004)
- Significantly higher speeds on lower distances
 - 52 Mbit/s downstream,16 Mbit/s upstream
 - Might be symmetric as well (26-26 Mbit/s)
 - 12 MHz bandwidth
 - Max. 1 km service range
 - Usually rather 300 m
- Mainly used to extend the optical access inside buildings
 - Optical cables are not recommended inside buildings, because of the many necessary inflections
 - The twisted copper pair (VDSL) is a good replacement

VDSL2

- ITU-T G.993.2 (2005)
 - 100 Mbit/s downstream and upstream
 - 30 MHz frequency domain
 - 3 km service range
 - High speed and large range are not compatible
- 8 specified profiles, different service levels
 - Different user expectations in different geographical areas
- ADSL-compatible (VDSL is not)
 - Easy to deploy, attractive technology for the service providers

ADSL compatibility

Triple Play

• Triple Play

- marketing term for 3 parallel IP services:
 - internet
 - television
 - Video on Demand (VoD) or Live Streaming
 - telephony
 - Voice over IP (VoIP)
- Rather a business model more than a technology standard
- Quad(ruple) Play
 - The same 3 services, over a wireless interface

VDSL2 QoS

- No Quality of Service support in VDSL
 - In VDSL2 yes
 - Necessary for triple-play services
- Applications have different requirements

Application	Sensible to delay	Sensible to packet loss
Data	/	Yes
Video	No	Yes
Voice	Yes	No
Gaming	Yes	Yes

- Voice
 - o Delay max. 150ms end-to-end
 - BER between 10^{-5} and 10^{-2} , depending on the used codec
- Video
 - Delay seconds! for VoD or streaming
 - Zapping delay
 - BER from 10⁻⁷ (video telephony) to 10⁻¹³ for HDTV
 - High Definition Television

VDSL2 QoS

- Different traffic types
 - Voice
 - Small packets (100-400 byte/packet)
 - Generated with constant speed
 - Video
 - Large packets
 - Generated with changing speeds (bursty traffic)
- "dual path" "dual latency" support in VDSL2
 - Specified bandwidth per traffic type
 - The bursty video does not affect the voice traffic

- Proposed in 2014, to be deployed in 2016
- Speeds between 150 Mb/s and 1 Gb/s, for very short loops (100-200 m)
- Time Division Duplexing (TDD) instead of Frequency Division Duplexing (FDD) as in ADSL2 and VDSL2
 - FDD separate frequencies for uplink and downlink
 - TDD alternating time slots for uplink and downlink
 - Better usage of spectrum, possibility for energy saving
 - Discontinuous TDD, transmitter and receiver disabled for longer intervals than needed for the direction change.
 - Trade-of between throughput and power consumption

- HDSL (High bit-rate DSL)
- IDSL (ISDN DSL)
- MSDSL (Multirate Symmetric DSL)
- RADSL (*Rate-Adaptive DSL*)
- No large-scale deployment

Networking basics

- The different access networks often are using a *shared transmission medium*
 - Many others can hear me, I can hear many others
 - Providing a dedicated channel to every subscriber might be either impossible, or too expensive
- The problem is to solve the *access control* to the transmission medium
 - Users do not know about each other who wants to send and when
 - Access to the medium has to be coordinated

Multiple Access

- Solutions based on fixed allocations ۲
 - TDMA Time Division Multiple Access
 - Each user has its own timeslot to send •
 - Can use the entire frequency band
 - FDMA Frequency Division Multiple Access
 - The spectrum is split into channels
 - Fach user has its own channel

CDMA – Code Division Multiple Access

- Each user communicates over the entire frequency domain, all the time
- Traffic is separated based on code theory
 - The sender multiplies the signal with a spreading code, and sends over the result
 - The eceiver multiplies again the received signal with the same spreading code, to reproduce the original signal
 - Codes are orthogonal
 - » Multiplying two different codes returns a series of 0s

Multiple Access vs. Multiplexing vs. Duplexing

- Multiple Access (TDMA, FDMA, CDMA)
 - Regulating channel access in case of many parallel sources
 - Normally in the uplink direction
- Multiplexing (TDM, FDM, CDM, ...)
 - Combining multiple signals, from one or many sources, onto the same shared medium
 - Uplink or downlink direction
- Duplexing (TDD, FDD)
 - Regulating the resources for downlink and uplink traffic
 - FDD Frequency Division Duplexing
 - "Paired" frequencies, separate uplink and downlink channels
 - TDD Time Division Duplexing
 - "Unpaired" frequencies, divided adaptively between uplink and downlink traffic

Multiple Access

- Fixed allocation is not efficient if traffic is sparse, and bursty
- Contention-based Channel Access
 - Polling
 - Reserving and scheduling resources based on current demand
 - Random access
 - A node starts sending when it wants, no previous reservation
 - If several nodes start speaking in the same time, collision occurs, the packet should be retransmitted later
 - ALOHA, Slotted ALOHA, CSMA/CD

- The idea appeared at the end of the 40's
 - Better signal quality for people living in suburbs, or in the mountains
- Community Antenna Television CATV
 - A big antenna on the top of a hill
 - Headend
 - Coaxial cable
- Family business, anyone could deploy its own network
 - If more users, new cables and amplifiers needed
- One-way traffic, only from the head-end towards the subscriber

Early cable TV system

The development of cable TV

Thousands of independent systems in the 70's

- HBO starts in 1974, as the first TV channel transmitted exclusively on cable
 - Many new thematic cable TV channels news, sports, cooking, etc.
- Big companies start to buy the small local networks, and extend them with new cables
 - Cables linking the different cities
 - Similar process to the evolution of the PSTN networks
- The inter-city links changed later for optical fiber

HFC system

- HFC Hybrid Fiber Coax
 - Optical fiber to span large distances
 - Coaxial cable to reach the homes
 - Fiber optic node
 - Electro-optical converter
 - Converts optical signals to electrical ones, and vice-versa
 - One optical cable can feed many coaxial cables
 - Much larger bandwidth

Modern Cable TV system

September 15, 2016

Internet on the cable

Internet on the cable

- The service providers started to enlarge their services
 - Internet access
 - Telephony
- The network has to be transformed
 - One-way amplifiers changed to two-way amplifiers
 - Upgraded headend
 - The dummy amplifier replaced with an intelligent digital computer system
 - High speed optical connection to an ISP's network
 - Cable-Modem Termination System (CMTS)
 - The coaxial cable a shared medium, many users use it simultaneously
 - In the PSTN network each user has its own twisted pair (local loop)
 - For the broadcast of TV channels this is not important
 - Each program transmitted over the same cable, no matter if there are 10 or 10.000 viewers at the same time
 - In case of internet access, it matters a lot if there are 10 or 10.000 users
 - If someone downloads a large file, no bandwidth for the others
 - On the other hand, much larger bandwidth on a coaxial cable than on a twisted copper pair

- Solution: a long cable is divided into many smaller segments
 - Each segment connected directly to the fiber optic node
 - The speed between the headend and the fiber optic nodes basically unlimited
 - If not many homes on a segment, the traffic can be handled
 - Today typically 500-2000 homes on a segment
 - Smaller segments expected if more subscribers and larger speed demands appear

Internet on the cable

