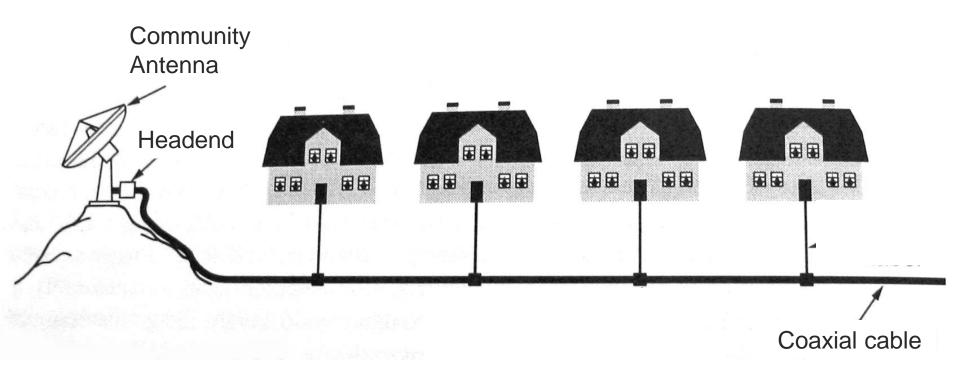
Networking Technologies and Applications


Rolland VIDA, PhD April 1, 2015

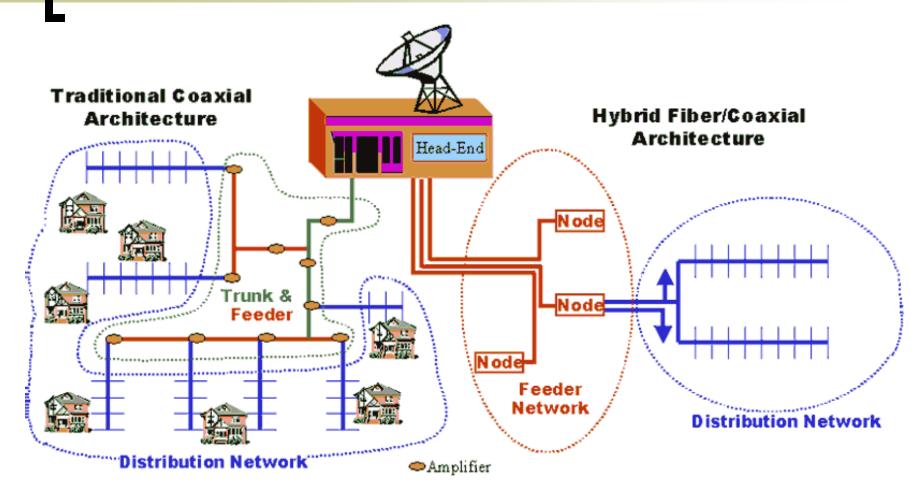
Why cable TV?

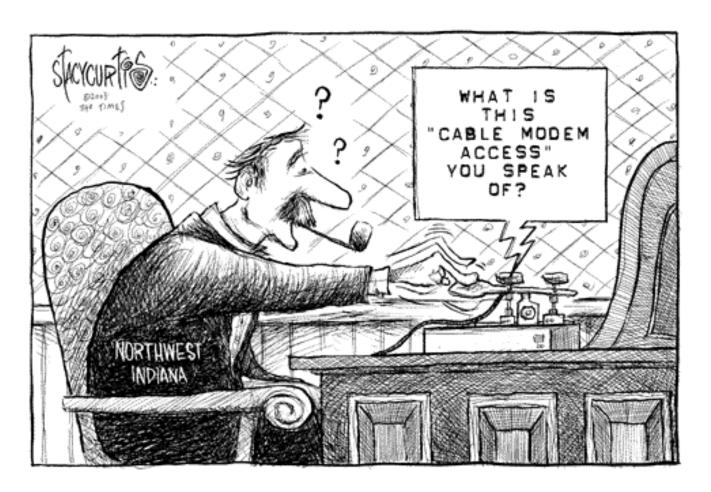
- The idea appeared at the end of the 40's
 - Better signal quality for people living in suburbs, or in the mountains
- Community Antenna Television CATV
 - A big antenna on the top of a hill
 - Headend
 - Coaxial cable
- Family business, anyone could deploy its own network
 - If more users, new cables and amplifiers needed
- One-way traffic, only from the head-end towards the subscriber

Early cable TV system

The development of cable TV

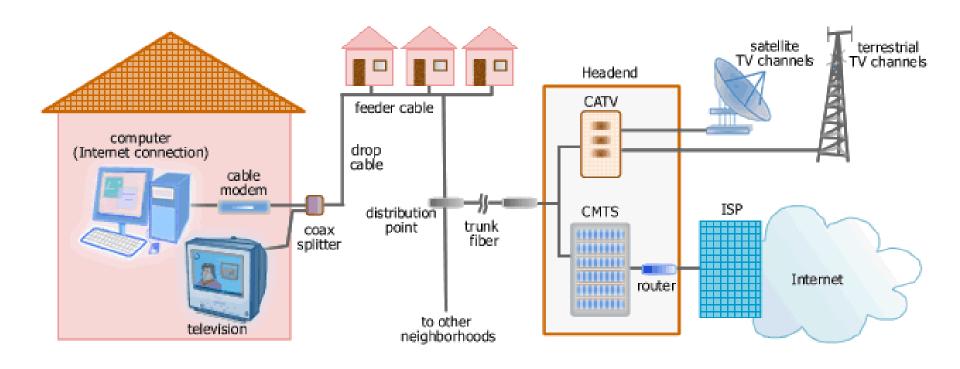
- Thousands of independent systems in the 70's
- HBO starts in 1974, as the first TV channel transmitted exclusively on cable
 - Many new thematic cable TV channels news, sports, cooking, etc.
- Big companies start to buy the small local networks, and extend them with new cables
 - Cables linking the different cities
 - Similar process to the evolution of the PSTN networks
- The inter-city links changed later for optical fiber


HFC system


- HFC Hybrid Fiber Coax
 - Optical fiber to span large distances
 - Coaxial cable to reach the homes

- Fiber optic node
 - Electro-optical converter
 - Converts optical signals to electrical ones, and vice-versa
- One optical cable can feed many coaxial cables
 - Much larger bandwidth

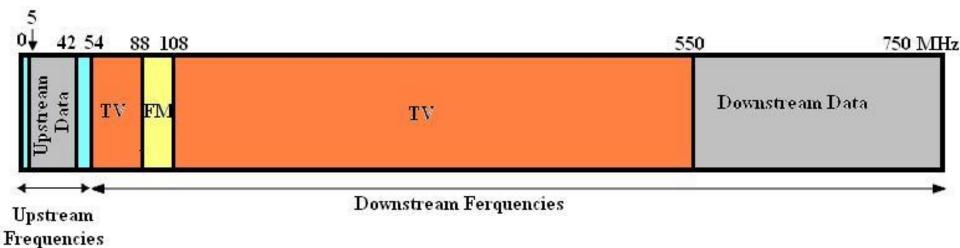
Modern Cable TV system



- The service providers started to enlarge their services
 - Internet access
 - Telephony
- The network has to be transformed
 - One-way amplifiers changed to two-way amplifiers
 - Upgraded headend
 - The dummy amplifier replaced with an intelligent digital computer system
 - High speed optical connection to an ISP's network
 - Cable-Modem Termination System (CMTS)
 - The coaxial cable a shared medium, many users use it simultaneously
 - In the PSTN network each user has its own twisted pair (local loop)
 - For the broadcast of TV channels this is not important
 - Each program transmitted over the same cable, no matter if there are 10 or 10.000 viewers at the same time
 - In case of internet access, it matters a lot if there are 10 or 10.000 users
 - If someone downloads a large file, no bandwidth for the others
 - On the other hand, much larger bandwidth on a coaxial cable than on a twisted copper pair

9

- Solution: a long cable is divided into many smaller segments
 - Each segment connected directly to the fiber optic node
 - The speed between the headend and the fiber optic nodes basically unlimited
 - If not many homes on a segment, the traffic can be handled
 - Today typically 500-2000 homes on a segment
 - Smaller segments expected if more subscribers and larger speed demands appear


Spectrum allocation

- The cable network cannot be used exclusively for internet access (at least not yet...)
 - Many more TV viewers than broadband subscribers
 - The cities regulate what can be offered on the cable, a TV service is mandatory
 - The frequencies should be divided between TV channels and Internet access
- USA, Canada
 - FM radio: 88 108 MHz
 - Cable TV channels: 54 550 MHz
 - 6 MHz wide channels, with a guard band
 - NTSC National Television System Committee
 - Resolution: 720 x 480, 29.97 fps

Spectrum allocation

- Europe
 - TV channels above 65 MHz
 - 6-8 MHz wide channels
 - PAL and SECAM systems with higher resolution
 - PAL Phase Alternating Line
 - SECAM Système Electronique Couleur Avec Mémoire
 - Resolution: 768 x 576, 25 fps
 - The lower frequencies not used
- Modern cables provide good transmission quality above 550 MHz, up to 850 MHz or more
 - Solution: uplink traffic between 5 − 42 MHz (5 65 MHz in Europe)
 - The upper part of the spectrum used for downlink traffic

Spectrum allocation

Asymmetric system

- TV and radio downstream
 - From the headend towards the end user
 - In the upstream direction, amplifiers working in the 5-42 MHz frequency range
 - In the downstream direction, amplifiers that work above 54 MHz
 - Larger downstream than upstream
 - Technological reasons, not like in the case of ADSL
 - Not a good solution for P2P traffic
 - Designed for asymmetric web traffic

Modulation

- Each 6-8 MHz is modulated with 64-QAM
 - Quadrature Amplitude Modulation
 - If a good quality cable, 256-QAM
- On a 6 MHz channel with 64-QAM → ~ 36 Mbps
 - Effective bandwidth without headers 27 Mbps
 - With 256-QAM, ~ 39 Mbps
 - o In Europe larger bandwidths, because of the 8 MHz channels
- On the upstream channel 64-QAM is not acceptable
 - Too much noise, from microwave systems, CB-radios, etc.
 - Citizen Band walky-talky
 - QPSK modulation
 - Quadrature Phase Shift Keying
 - Only two bits per symbol (with 64-QAM 6 bits, with 256-QAM 8 bits)
 - Much larger difference between the upstream and downstream speeds

Cable modem

- Transforms the analog signals coming on the cable to digital data, and vice versa
 - MOdulates és DEModulates
- Two interfaces one towards the PC, one towards the cable network
 - Ethernet/USB/WLAN connection between the cable modem and the PC
 - Many PCs on the same LAN, if needed
 - Each PC needs an IP address
 - Buy more IP addresses from the ISP
 - NAT (Network Address Translation) many hosts behind the same IP address

Connection

- When establishing the connection, the modem starts to scan the downlink channels
 - The CMTS periodically sends a special packet, with system parameters to enable new modems to connect
 - The modem register itself at the CMTS
 - The CMTS assigns the uplink and downlink channels of the newcomer

18

- This can be changed later, e.g., for load balancing
- Many modems on the same uplink channel
- The first packets from the modem to the ISP
 - Ask for an IP address, through the DHCP protocol
 - Dynamic Host Configuration Protocol
 - Time synchronization with the CMTS

Contention based reservation for upstream traffic

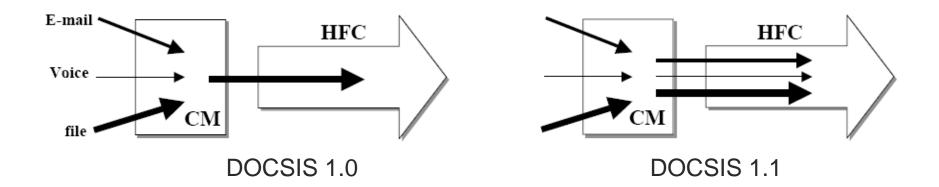
- The modem measures its distance to the CMTS
 - Ranging similar to a ping
 - Necessary to handle time slots correctly
- The upstream channel is divided (in time) into mini-slots
 - Each upstream packet has to fit in one or more mini-slots
 - The length of the mini-slots is different in different networks
 - Typically 8 bytes of user data have to fit in one mini-slot

Contention based reservation for upstream traffic

- The CMTS periodically announces the start of a new group of mini-slots
 - Because of the signal propagation on the cable, the modems do not hear it in the same time
 - Each modem can calculate the beginning of the first mini-slot (using the results of the previous ranging)
 - Each modem is assigned a special mini-slot to ask for upstream bandwidth
 - Several modems on the same mini-slot
- If a modem wants to send a packet, asks for sufficient mini-slots
 - If the CMTS accepts the request, it sends and acknowledgment with the assigned mini-slots
 - If the modem wants to send further packets, in the headers it can ask for new slots
 - If two modems ask in the same time for slots, collision occurs, no acknowledgment is received
 - The modem waits for a random time interval, and then tries again
 - A timer set to random value chosen from the [0, x] interval
 - If a new collision occurs, the upper limit of the interval is doubled
 - A timer set to random value chosen from the [0, 2x] interval

No contention in the downstream traffic

- Downstream traffic is sent only by the CMTS
 - No contention, no need for mini timeslots
 - No collisions, lower probability for bit errors, no need for retransmission
 - Large packets in the downstream traffic
 - Typical packet length: 204 bytes
 - Includes Reed-Solomon error correcting code
 - 184 bytes for user data


Cable modem

- In the early years each operator had its own modems, installed by a technician
 - An open standard was needed
 - Open the market, lower the prices
 - Contributes to the spread of the technology
 - If the users installs the modem, costs can be cut
- CableLabs
 - Association of the largest cable operators
 - DOCSIS standards
 - Data Over Cable Service Interface Specification
 - EuroDOCSIS European version
 - Many were not happy about it
 - Could not hire out anymore their expensive modems to the defenseless subscribers

DOCSIS

- DOCSIS 1.0 (1997)
 - RF Return
 - Two-way communication
 - Telco Return
 - Dial-up connection for the upstream traffic
 - No need to modify the infrastructure, one-way communication on the cable
 - Modem prices fall from \$300 (1998) to < \$30
- DOCSIS 1.1 (1999)
 - VoIP, gaming, streaming
 - Compatible with DOCSIS 1.0
 - QoS, CM authentication

DOCSIS

- In DOCSIS 1.0 all the services are in contention for upstream bandwidth, on a "best effort" basis
- In DOCSIS 1.1 QoS guarantees can be associated to applications

DOCSIS

- DOCSIS 2.0 (2002)
 - Capacity for symmetric services
 - Larger upstream capacity than for DOCSIS 1.0 (x6) or DOCSIS 1.1 (x3)
 - Instead of QPSK, it uses 32-QAM, 64-QAM or 128-QAM on the upstream part as well
 - TDMA and S-CDMA in the MAC layer, instead of simple TDMA
- DOCSIS 3.0 (2006)
 - 160 Mbps downstream, 120 Mbps upstream
 - Channel bonding
 - Many channels associated in parallel to the same user

Secure communication

- Shared cable
 - Anyone can read the traffic that passes by
- Two way traffic encrypted, to avoid the eavesdropping of the neighbors
 - Agreement between the modem and the CMTS on a common encryption key
 - Between two strangers, on a shared, eavesdropped link
 - Diffie-Hellman algorithm
 - Alice and Bob agree on two large prime numbers n and g
 - O Public values, e.g., Alice chooses them, and send them to Bob, without encryption
 - Alice chooses a large (512 bit long) number: x
 - Bob chooses a similar one: y
 - Alice starts the key exchange, and sends the triplet (n, g, g^x mod n) to Bob
 - Bob sends back the value g^y mod n
 - Both of them calculate the shared key:
 - $(g^x \mod n)^y = (g^{xy} \mod n) = (g^{yx} \mod n) = (g^y \mod n)^x$
 - Carol knows g and n, but cannot obtain x and y
 - o It would take too much time, even with a supercomputer

MITM attack

- Diffie-Hellman does not protect against a MITM attack
 - Man-In-the-Middle
 - How do I know that Alice is really Alice?
 - Carol chooses a number z
 - It intercepts the triplet (n, g, g^x mod n) sent by Alice, and replaces it with her own triplet (n, g, g^z mod n)
 - It intercepts Bob's answer gy mod n and replaces it with her own gz mod n
 - Carol agrees with Alice in the shared key (g^{xz} mod n), and with Bob in a different key (g^{yz} mod n)
 - Alice and Bob think they talk to each other, but in reality they talk to Carol
- Some authentication scheme is required
 - Digital signature public/private keys
 - Alice knows Bob's public key
 - Certificate authority trusted third party
 - Bob attaches a digital signature to its packet, using his private key
 - Alice verifies if the packet was really sent by Bob or not, using his public key