Networking Technologies and Applications

Rolland VIDA, PhD March 30, 2015

Introduction

Rolland VIDA, PhD Associate professor BME-TMIT

vida@tmit.bme.hu IE325

Slides

http://www.tmit.bme.hu/vitma341_2015_en

Introduction

- Easiest way for two computers to communicate direct connection
- If long distances and many computers too expensive
 - It's not the cost of the wires...
 - But the digging, and the work inside the buildings
- Solution: use some existing infrastructures/networks
 - Public Switched Telephone Network (PSTN)
 - Cable TV network
 - Electric network
 - Gas pipes (?)
 - Ultra Wideband radio communication
 - Drainpipes (?)
 - Optical fiber cables
- But sometimes you can build new ones as well...

Internet through the gas pipe?

- The telephony network was designed only for speech transmission
- 1876 Graham Bell patents the first telephone
 - A few hours before Elisha Gray
- You could buy the phone, but the wire was installed by the users
 - A separate wire for each pair of users
 - In a year the cities became completely "wired"

- 1878 Bell Telephone Company
 - The first switching center New Haven, Connecticut
 - A human operator switching manually between the users
- Inter-city calls
 - Linking the telephone switching centers
 - Secondary centers, hierarchical architecture
- Only in the US more than 22.000 centers today, 5-level hierarchy

- Elements of the PSTN network:
 - Local loop
 - From the user's home to the local exchange point
 - "last mile"
 - Optical local loop, wireless local loop
 - Twisted pair of copper wires
 - Switching centers / telephone exchanges
 - Optical trunks
 - Linking the a switching centers
 - Core network
- The first network was completely analog
 - Step by step transition to digital transmission, mainly in the core

Voice channel

- 4kHz bandwidth for the voice channel
 - The transmission domain of the voice signal between 0.3 and 3.4 kHz
 - Some added guard bands
- The frequency range sensed by the human ear: 20Hz
 - 15-20 kHz
 - The goal was to transmit the voice signals
 - Not all the sounds should be transmitted
 - Economic aspects

PCM

- Pulse Code Modulation
 - Transforming analog signals to digital
- Based on the Nyquist rule, for a 4kHz signal we need an 8kHz sampling
 - Quantized to 256 signal levels
 - Represented on 8 bits
 - Transmission speed: 8bit x 8kHz = 64 kbit/s

Digital speech transmission

Dial-up Access

- The digital information of a computer transformed into analog signals, and transmitted over a PSTN network
 - "Modem" modulator-demodulator
 - Amplitude modulation
 - Frequency modulation
 - Phase modulation

Dial-up modem

Modem history

- The first modem in the 50's
 - Used by the American Air Force to transmit military data over the telephone network
 - Dedicated lines
 - Half-duplex system
 - While one side transmits, the other side is silent
- Acoustic modems
 - The first commercialized modem Bell 103 (1962)
 - 300 bps full duplex transmission
 - ITU-T V.21
 - The connection is built and interrupted manually
 - Interesting fact: compatible with many of the current dial-up modems

Acoustic modems

Modem standards

- Evolution of the standards
 - o ITU-T V.22 1200 bps
 - ITU-T V.22bis 2400 bps
 - ITU-T V.32 9600 bps (1984)
 - ITU-T V.32bis 14.4 Kbps (1991)
 - ITU-T V.34 28.8 Kbps
 - ITU-T V.34bis 33.6 Kbps (1994)
 - ITU-T V.90 56.6 Kbps downstream, 33.6 Kbps upstream (1996)
 - ITU-T V.92 56.6 Kbps downstream, 48 Kbps upstream

What's the limit?

- The core network is digital
 - After the PCM coding, the signal is restricted to a 64 Kbps channel, this is the upper limit
 - In most of the systems 1 bit/byte for signaling
 - Max. 56Kbps
 - Quantization noise due to the A/D and D/A conversions
 - The actual limit is 33.6 Kbps
 - For the V.90 modems, only the downstream speed is 56 Kbps
 - If talking to a content provider that reaches the network on a digital connection
 - Fewer D/A conversions
 - Significantly lower noise

Dial-up is dying out...?

Why DSL?

- DSL Digital Subscriber Line
- Dial-up speed 56 Kbps
 - Cable modem 10Mbps on shared cables
 - Wireless technologies up to 50 Mbps
 - Obliged to move, if you want to keep the subscribers
- Emerges the broadband connectivity
 - Mostly a marketing term
 - Not clear what broadband means
- xDSL different DSL versions

Why is DSL fast?

- Why is dial-up slow?
 - The PSTN network optimized for voice transmission
 - A band-pass filter in the local exchange
 - Only the 4 KHz large voice channel remains
 - Data is also restricted to this channel
- The line of the xDSL subscriber has no filter
 - You can use the entire capacity of the local loop
 - It depends on the length of the loop, the thickness and the quality of the cable
 - Optimal case: new cables, thin bundles, short loop
- If you want higher speed, you need many local exchanges
 - If someone lives far away, he should move closer
 - Lower the speed, higher the service range more potential subscribers
 - Lower the speed, fewer interested subscribers
- Solution?
 - Mini exchanges close to the users (expensive, but no better way)

ADSL - Asymmetric Digital Subscriber Line

- Two competing and incompatible modulation schemes
 - DMT Discrete Multitone Modulation deployed today
 - CAP Carrierless Amplitude Phase Modulation not used since 1996
- DMT
 - 1.1 MHz frequency domain
 - 256 channels, 4.3125kHz each
 - Channel 0 POTS (voice)
 - Channels 1-5 guard band (empty)
 - To avoid interferences between voice and data channels
 - 1 upstream and 1 downstream channel for signaling
 - The remaining channels split between upstream and downstream user data
- Frequency allocation in ADSL
 - o 0-4 kHz voice
 - 4-25 kHz guard band
 - 25-160 kHz upstream band
 - 200 kHz 1.1 MHz downstream band

ADSL architecture

- At the operator
 - POTS Splitter
 - Frequency splitter to separate voice and data traffic
 - Voice is directed to the local exchange
 - Everything above 26 KHz is directed to the DSLAM
 - DSLAM DSL Access Multiplexer
 - Splits the bit stream into packets and sends them to the ISPs network
- At the subscriber
 - POTS Splitter
 - ADSL modem
 - Digital signal processing
 - High speed connection to the PC
 - Ethernet cable and card
 - Sometimes USB connection
 - Internal ADSL modems

ADSL architecture

The service range

- Repeaters
 - Regenerator
 - Regenerates the signal
 - Amplifiers
 - Amplify the signal
 - ADSL service on a range of up to 16 km

ADSL G.dmt

- ITU-T G.992.1 standard (1999)
 - http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.992.1
- Much larger bandwidth for downstream traffic than for upstream
 - Designed for the needs of web browsing
 - Maximal downlink speed 8 Mbit/s
 - usually 512 Kbit/s 1 Mbit/s
 - Maximal uplink speed 1 Mbit/s
 - usually 64 Kbit/s 256 Kbit/s
- Service range of max. 3 km from the local exchange

ADSL G.dmt 2

- ITU-T G.992.3 standard (2002)
- Extends the traditional ADSL technology
 - Maximum downlink speed increased to 12 Mbit/s
 - Service range extended with ~ 500 meters
 - The improvements mainly due to the limitation of the interferences on long loops
- ADSL2 is energy efficient
 - As opposed to ADSL, it differentiates between periods with or without traffic
- ADSL2 can temporarily switch to "complete digital" mode
 - The voice and guard channels used for data traffic

ADSL G.dmt 2

- Seamless rate adaptation (SRA)
 - 20-25 twisted pairs in a bundler
 - "Crosstalk" from the neighboring pairs
 - Might lead to the ADSL connection being dropped
 - ADSL2 can adapt the speed
 - If too much noise on a channel, it can be blocked
 - The modem and the DSLAM agree on which channels to use

ADSL 2+

- ITU-T G.992.5 (2003)
- Bandwidth is increased by enlarging the frequency domain
 - The frequencies used for voice and upstream traffic do not change
 - The upper frequency of the downlink channel is increased from 1.1 to 2.2 MHz.
 - The maximum downlink speed increases from 8Mbit/s to 16 Mbit/s
 - The service range is lowered to 1.5 km

Networking Technologies a

March 26, 2013

0.14 MHz

1.1 MHz

2,2 MHz

G.SHDSL

- Symmetric High-speed DSL
 - o ITU-T G.991.2 (2001)
- 2.3 Mbit/s maximum speed in both directions
 - If a second twisted pair is added, it can be extended to 4.6 Mbit/s
 - service range of 3 km
 - As distance increases, the transmission quality is gradually decreasing

SHDSL applications for business

Web hosting

- If a web server is operated over a DSL connection
- High upstream bandwidth needed

Videoconferencing

- Text, voice and video data to be transmitted
- Symmetric traffic

VPN (Virtual Private Network) services

- Private network over a public telecommunication infrastructure
- The privacy of the data transfer ensured through tunneling and encryption
- VPN connections over SHDSL, linking the remote offices of a company, if there is no FTTx solution, or it is too expensive

Remote LAN Access

- Teleworking or SOHO (Small Office Home Office)
- High speeds needed to ensure the same user experience as in the real office

SHDSL applications at home

Internet Gaming

- The home user operates a game server, or plays against other home users
- A good upstream connections is essential

Residential Gateway Access

 A CPE (Customer Premises Equipment) that provides access to several services such as home video monitoring or intelligent home applications

Peer-to-peer applications

- File sharing, application layer multicast
- Symmetric connection is needed

VDSL

- Very-high-data-rate digital subscriber line
 - o ITU-T G.993.1 (2004)
- Significantly higher speeds on lower distances
 - 52 Mbit/s downstream,16 Mbit/s upstream
 - Might be symmetric as well (26-26 Mbit/s)
 - 12 MHz bandwidth
 - Max. 1 km service range
 - Usually rather 300 m
- Mainly used to extend the optical access inside buildings
 - Optical cables are not recommended inside buildings, because of the many necessary inflections
 - The twisted copper pair (VDSL) is a good replacement

VDSL2

VDSL2 = VDSL speeds with ADSL/2+ service range

VDSL2

- ITU-T G.993.2 (2005)
 - 100 Mbit/s downstream and upstream
 - 30 MHz frequency domain
 - 3 km service range
 - High speed and large range are not compatible
- 8 specified profiles, different service levels
 - Different user expectations in different geographical areas
- ADSL-compatible (VDSL is not)
 - Easy to deploy, attractive technology for the service providers

ADSL compatibility

Triple Play

- Triple Play
 - marketing term for 3 parallel IP services:
 - internet
 - television
 - Video on Demand (VoD) or Live Streaming
 - MPEG 2, Set Top Box (STB)
 - telephony
 - Voice over IP (VoIP)
 - Rather a business model more than a technology standard
- Quad(ruple) Play
 - The same 3 services, over a wireless interface

VDSL2 QoS

- No Quality of Service support in VDSL
 - In VDSL2 yes
 - Necessary for triple-play services
- Applications have different requirements

Application	Sensible to delay	Sensible to packet loss
Data	/	Yes
Video	No	Yes
Voice	Yes	No
Gaming	Yes	Yes

- Voice
 - Delay max. 150ms end-to-end
 - o BER between 10⁻⁵ and 10⁻², depending on the used codec
- Video
 - Delay seconds! for VoD or streaming
 - Zapping delay
 - BER from 10⁻⁷ (video telephony) to 10⁻¹³ for HDTV
 - High Definition Television

VDSL2 QoS

- Different traffic types
 - Voice
 - Small packets (100-400 byte/packet)
 - Generated with constant speed
 - Video
 - Large packets
 - Generated with changing speeds (bursty traffic)
- "dual path" "dual latency" support in VDSL2
 - Specified bandwidth per traffic type
 - The bursty video does not affect the voice traffic

G.fast

- Proposed in 2014, to be deployed in 2016
- Speeds between 150 Mb/s and 1 Gb/s, for very short loops (100-200 m)
- Time Division Duplexing (TDD) instead of Frequency Division Duplexing (FDD) as in ADSL2 and VDSL2
 - FDD separate frequencies for uplink and downlink
 - TDD alternating time slots for uplink and downlink
 - Better usage of spectrum, possibility for energy saving
 - Discontinuous TDD, transmitter and receiver disabled for longer intervals than needed for the direction change.
 - Trade-of between throughput and power consumption

Other DSL solutions

- HDSL (High bit-rate DSL)
- IDSL (ISDN DSL)
- MSDSL (Multirate Symmetric DSL)
- RADSL (Rate-Adaptive DSL)
- No large-scale deployment