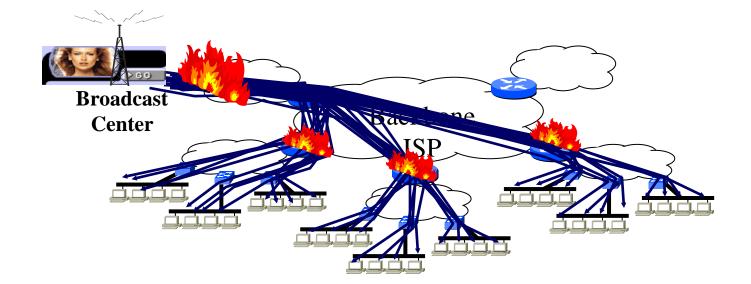
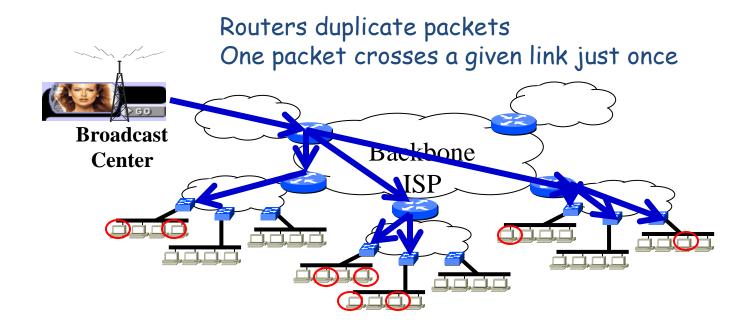

Networking Technologies and Applications

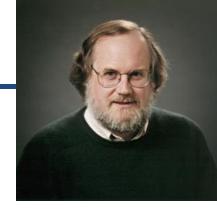
Rolland Vida BME TMIT


Multicast at different layers


- Some Ethernet MAC addresses reserved for multicast
- If we want to join a G group
 - Our network interface card (NIC) normally listens only to packets sent to our unicast adress, or the network broadcast address
 - To join, it should listen also the the group address G
 - Hardware solution, efficient
- Communication in group G
 - The sender floods all the LAN segments
 - Like in case of broadcast
 - The cards that do not listen to group address G just drop the packets

- The goal is the optimisation of networ layer resources
 - One packet crosses just once a given link
- Routers build and maintain a multicast tree
 - Traffic forwarding along the tree
 - Routers duplicate packets where needed
 - Branching points on the tree

Group level unicast is not scalable



Let's build trees instead

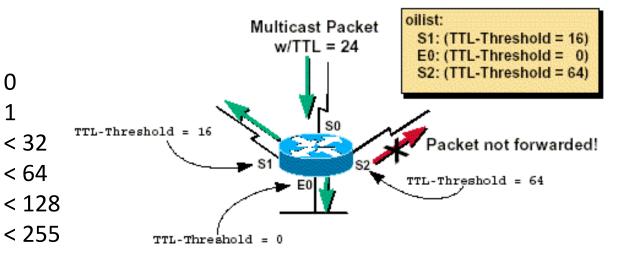
IP Multicast

- Steve Deering PhD dissertation (1990)
 - Any Source Multicast (ASM)
- Open group communication model
 - Anybody can join the group, no access control
 - One user can be member of several groups in the same time
 - Anybody can send to the group, even non members
 - Group membership is dynamic
 - Nobody knows the size of the group, or its members

IP Multicast

- S. Deering, "Host Extensions for IP Multicasting", RFC 1112, 1989.
- The source sends its packets to a group address
- Anybody who joined the group
 is reachable," through this addres
 - is "reachable" through this addressReceives packets that are sent to
 - this destination address
- A multicast group is identified by a class D IP address
 - 224.0.0.0 239.255.255.255
 - 1110 + 28 bit group ID

Bits:	1	8	9	16	17	24	25		32
Class A	ONNNNNN		Host		Host		Host		
	Range	(1-126)							
Bits:	1	8	9	16	17	24	25		32
Class B	10NNNNNN		Network		Host		Host		
	Range	(128-191)						
Bits:	1	8	9	16	17	24	25		32
Class C	110N	NNNN		Network	N	letwork		Host	
	Range	192-223)						
Bits:	1	8	9	16	17	24	25		32
Class D	1110	ммм	Mu	lticast Group	Mult	icast Group	Mult	icast G	roup
Range (224-239)									


Multicast Scoping

• The scope of an IP multicast group is limited:

0

1

- TTL based scoping
- Administrative scoping
- TTL based scoping
 - Node-local
 - Link-local
 - Site-local
 - Region-local
 - Continent-local
 - **Global Scope**

Multicast Scoping

- Administrative scoping
 - link-local scope 224.0.0.0 224.0.0.255
 - A router never forwards such a packet
 - global scope 224.0.1.0 238.255.255.255
 - Valid on the entire internet
 - administrative scope 239.0.0.0 239.255.255.255
 - Never forwarded outside the Intranet of a given organization

IP Multicast

- Joining a multicast tree done in two steps
 - On the local area network (LAN)
 - A user announces its local multicast routers about the groups he would like to join
 - IGMP (IPv4), MLD (IPv6)
 - Over the large Internet (WAN)
 - The local router cooperates with the other multicast routers of the network to build the tree and forward the packets along that tree
 - DVMRP, MOSPF, CBT, PIM-DM, PIM-SM, PIM-SSM

IGMP

- Internet Group Management Protocol
- An IPv4 protocol, running between the final users and the local multicast routers on the local network
 - Handles multicast group membership
 - Asymmetric protocol
 - User side
 - Router side
- The router learns which groups the end-users on his local network listen to
 - Not interested in how many receivers, important thing is to have at least on receiver
 - Not interested in exactly who are the receivers

IGMPv1

- S. Deering, "Host Extensions for IP Multicasting", RFC 1112, 1989.
- A multicast router sends regular **Query** messages to the multicast address of all the users (224.0.0.1)
- A user answers with a Report message, in which specifies the groups he listens to
 - The Report is sent to the multicast addresses of those groups
- To decrease the number of Report messages:
 - Using timers
 - A user does not answer immediately to the Query
 - Host Suppression
 - If someone else answers faster, it deletes its own Report message
- Unsolicited Report
 - If a user wants to listen immediately to a new group

- An IGMPv1 router maintains a multicast membership table
 - Which multicast groups have members on its network
 - When was the last Report message received about those groups
- Soft-state protocol
 - If in a given time nobody refreshes its interest in a given groups, the group will be deleted from the multicast membership table
- It forwards to the local network all packets that are sent to a multicast destination address that is contained in its membership table

- W. Fenner, "Internet Group Management Protocol, Version 2", RFC 2236, November 1997. http://www.ietf.org/rfc/rfc2236.txt
- IPv6 version: MLD (Multicast Listener Discovery)
 - S. Deering, W. Fenner, B. Haberman, "Multicast Listener Discovery (MLD) for IPv6", RFC 2710, November 1999. http://www.ietf.org/rfc/rfc2710.txt
- Introduces a Fast Leave mechanism
 - Do not have to wait until a timer expires to cut off a group

IGMPv2 messages

- Membership Query
 - General Query
 - Group Specific Query
- Membership Report
- Leave Group Message
- If a host wants to leave a group, it sends a Leave message to the multicast address of all the multicast routers (224.0.0.2)
- Before cutting off the group, the router has to ask if anybody else is still interested in that group or not
 - Group Specific Query
 - If no answer in a given limited time, the router cuts off the group from its table
- IGMPv3 later...

Multicast Routing

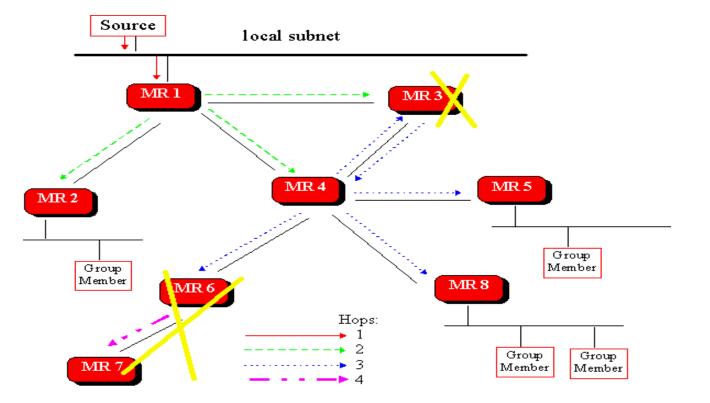
- A source sends its packets to the group's multicast address
- The multicast routers in the network build and maintain a multicast tree
 - Packets are forwarded along that tree
- The local multicast router, based on its IGMP membership table, joins or leaves this tree
- A multicast routing protocol runs among the routers of the network
 - MOSPF, DVMRP, CBT, PIM

MOSPF

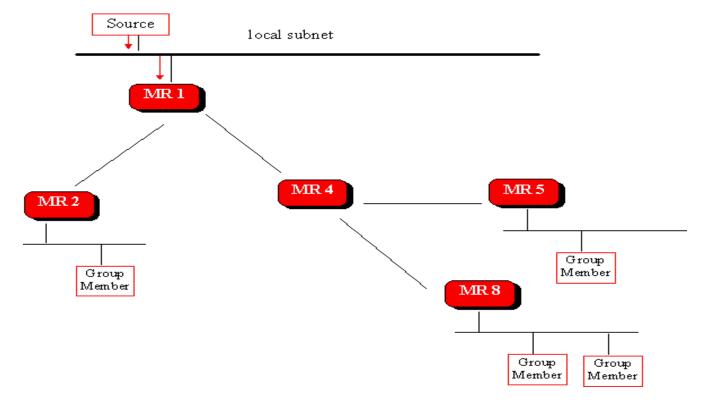
- Multicast Open Shortest Path First
 - J. Moy, "Multicast Extensions to OSPF", RFC 1584, March 1994 http://www.ietf.org/rfc/rfc1584.txt
- Link State protocol
- Extends the OSPF unicast routing protocol
 - Multicast group membership information is also distributed among the routers
 - Each MOSPF router learns which multicast groups have listeners on which local network
 - Based on this information they build a shortest path tree for each source and each group
- Large signaling overhead
- Difficult to handle topology changes
 - All the trees have to be recalculated

Distance Vector Multicast Routing Protocol

 D. Waitzman, C. Partridge, S. Deering, "Distance Vector Multicast Routing Protocol", RFC 1075, November 1988 http://www.ietf.org/rfc/rfc1075.txt


- Distance vector protocol
 - Uses the RIP unicast routing protocol

DVMRP


• Flood and prune

- Flooding
 - Checks the incoming interfaces of the packets
 - If not over the shortest path towards the source, the packets are dropped
 - If yes, packets are flooded over all the interfaces
- Pruning
 - If no interested receiver on the local network
 - If packet not received over the shortest path
- An internal router learns its interfaces over which it recieved a Prune message
 - The upcoming packets are not forwarded over those interfaces anymore
 - Prune messages become obsole after a while (one minute by default)

DVMRP flooding

DVMRP prune

