Networking Technologies and Applications

Rolland Vida BME TMIT

November 7, 2017

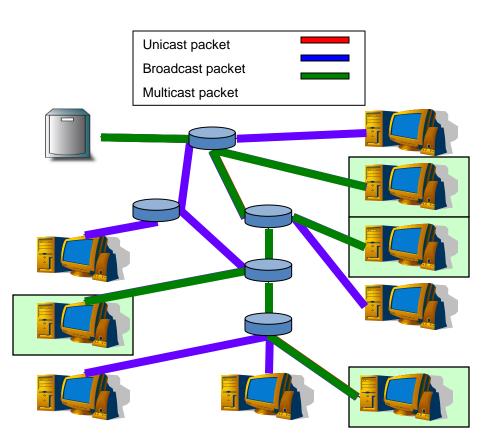
Group communication

- Goal: instead of a single destination node, communicate with a group of nodes
 - "natural" extension of the point-topoint communication (unicast)

Multicast

What is multicast?

Unicast


- Point to point
- Destination address: the address of one specific receiver

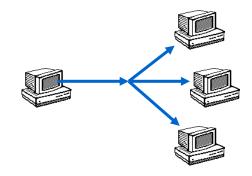
Broadcast

- Point to everyone
- Destination address: address of the (sub)network

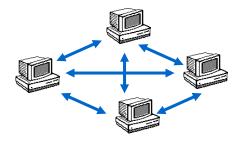
Multicast

- (Multi)point to multipoint
- Destination address: group address

Group communication


- Packets have to be sent to all members of a group, not just a single destination
 - Group membership can be dynamic

- Basic principle: once a group is created...
 - Interested receivers join the group
 - The network maintains the group and handles data delivery



Multicast applications

- Many applications are not point-to-point
 - Point-multipoint
 - Remote learning
 - Cache update
 - Video on demand

- Multipoint-to-multipoint
 - Videoconferences, Audio conferences, Chat,
 - Distributed networking games
 - Cooperative applications

Requirements

No one size fits all solution

Requirements are different

Depending on the application needs

Depending on group size

Depending on network services / support

Depending on member heterogeneity

Participation rules

Membership control

- Open group: anybody can join
- Closed group: limited membership

Source control

- Anybody can send a packet to the group
- Only a group member can be a source
- Just a selected source can send data

Reliability requirements

- Point-to-point communication
 - Reliable or best-effort (no guarantees)
 - The destination checks the packet: OK, or not
- Point-to-multipoint communication
 - Each receiver perceives the service differently

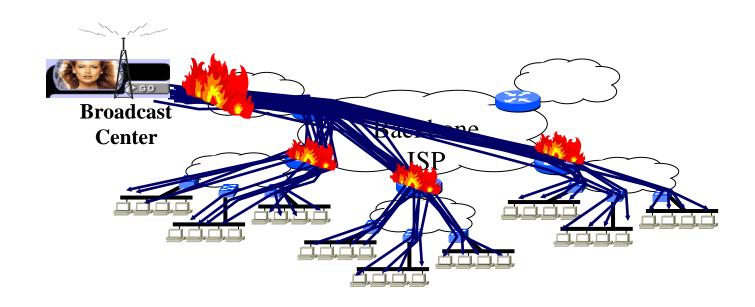
- Different reliability levels
 - 0-reliability: no receiver is guaranteed reliable transmission
 - 1-reliability: at least 1 receiver will reliably receive the packets
 - k-reliability: at least k receivers will reliably receive the packets
 - Total reliabiliy: all receivers will reliably receive the packets

Multicast at different layers

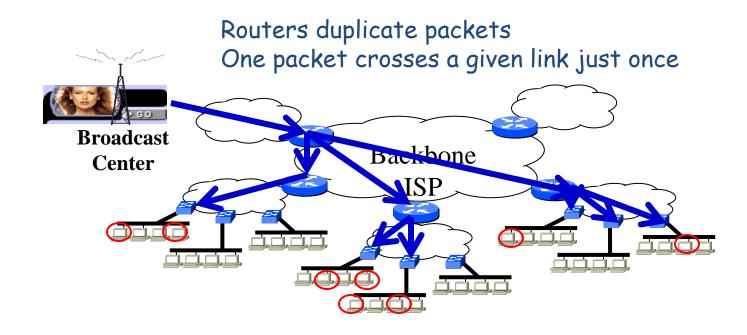
- The multicast service can be implemented in different layers
 - Data link layer
 - E.g. Ethernet multicast
 - Network layer
 - E.g. IP multicast, Xcast
 - Application layer
 - E.g. Narada, TBCP
- Which solution is the best?
 - It depends, no general solution

Multicast at different layers

Unicast Multicast Layers **Applications Application layer Overlay Multicast Middleware** Reliable Multicast **Transport layer** TCP **Network layer IP Multicast** IP **Ethernet Unicast/Multicast Data link layer**

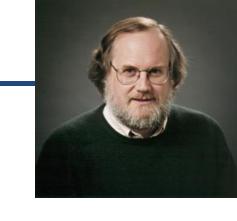

Ethernet Multicast

- Some Ethernet MAC addresses reserved for multicast
- If we want to join a G group
 - Our network interface card (NIC) normally listens only to packets sent to our unicast adress, or the network broadcast address
 - To join, it should listen also the the group address G
 - Hardware solution, efficient
- Communication in group G
 - The sender floods all the LAN segments
 - Like in case of broadcast
 - The cards that do not listen to group address G just drop the packets


Network layer multicast

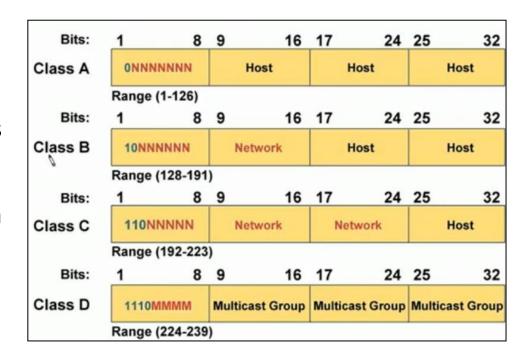
- The goal is the optimisation of networ layer resources
 - One packet crosses just once a given link
- Routers build and maintain a multicast tree
 - Traffic forwarding along the tree
 - Routers duplicate packets where needed
 - Branching points on the tree

Group level unicast is not scalable



Let's build trees instead

IP Multicast


- Steve Deering PhD dissertation (1990)
 - Any Source Multicast (ASM)

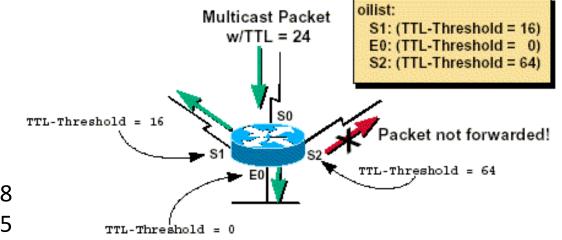
- Open group communication model
 - Anybody can join the group, no access control
 - One user can be member of several groups in the same time
 - Anybody can send to the group, even non members
 - Group membership is dynamic
 - Nobody knows the size of the group, or its members

IP Multicast

- S. Deering, "Host Extensions for IP Multicasting", RFC 1112, 1989.
- The source sends its packets to a group address
- Anybody who joined the group is "reachable" through this address
 - Receives packets that are sent to this destination address
- A multicast group is identified by a class D IP address
 - **224.0.0.0 239.255.255.255**
 - 1110 + 28 bit group ID

Multicast Scoping

- The scope of an IP multicast group is limited:
 - TTL based scoping
 - Administrative scoping


•	TTL	based	scoping
---	-----	-------	---------

_	Node-local	0
_	Link-local	1
_	Site-local	< 32

– Region-local < 64</p>

— Continent-local < 128</p>

Global Scope< 255

Multicast Scoping

- Administrative scoping
 - link-local scope
 224.0.0.0 224.0.0.255
 - A router never forwards such a packet
 - global scope 224.0.1.0 238.255.255.255
 - Valid on the entire internet
 - administrative scope239.0.0.0 239.255.255.255
 - Never forwarded outside the Intranet of a given organization