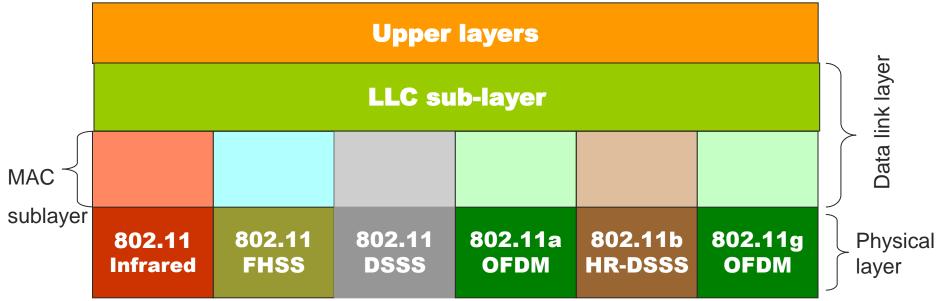
Networking technologies and applications


Rolland Vida November 21, 2017

IEEE 802.11

- WLAN Wireless Local Area Network
 - The most popular WLAN solution defined by the IEEE 802.11 standard
 - Other solutions: HiperLAN, HomeRF
- What to use it for?
 - In-building WLANs
 - Connecting buildings with each other
 - Home use
 - Extending the home broadband connection (DSL, Cable, etc.) with a wireless link
 - Public internet services (hotspots)
 - Airports, hotels, internet cafés

The 802.11 protocol stack

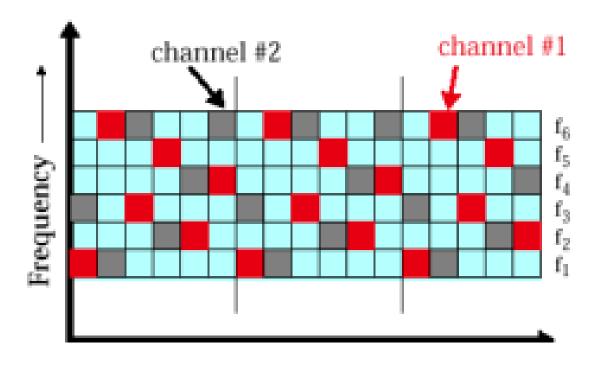
- Physical layer
 - Different solutions defined in different standards
- MAC sub-layer Medium Access Control
 - Controls the access to the communication channel
 - Who is the next station to send
- LLC sub-layer Logical Link Control
 - Hides the different IEEE 802.11 versions from the upper layers
 - Ensures reliable communication in the data link layer, if needed

Physical layer

- The 802.11 standard (1997) defines three transmission modes in the physical layer:
 - Infrared
 - FHSS Frequency Hopping Spread Spectrum
 - DSSS Direct Sequence Spread Spectrum
- 802.11a, 802.11b (1999) new transmission modes, higher speeds
 - OFDM Orthogonal Frequency Division Multiplexing
 - HR-DSSS High Rate DSSS
- 802.11g (2001) new OFDM modulation scheme, in a different frequency domain

Infrared

- Similar solution to a remote control
 - No line of sight required
- Advantages:
 - Simple, cheap solution
 - Infrared signals do not cross the walls
 - Cells in different rooms are naturally separated
- Drawbacks
 - Low bandwidth
 - 1 or 2 Mb/s transmission speed
 - Infrared signals do not cross the walls
 - To talk to an access point, you should be in the same room
 - Sunshine attenuates the infrared signals
- Not a popular solution


FHSS

- Frequency Hopping Spread Spectrum
 - In the 2.4 GHz ISM band
 - 79 channels, 1 MHz wide each, between 2.402 GHz and 2.480 GHz (Europe, USA)
 - 23 channels, between 2.473 GHz and 2.495 GHz (Japan)
 - Hopping sequence generated with a pseudo-random number generator
 - If two stations use the same starting frequency (seed), they will hop in parallel to the same frequencies
 - Have to remain synchronized in time
 - 78 hoping sequences, each with 79 channels (USA, Europe)
 - The 1st sequence in the US: 3,26,65,11,46,19,74,50,22,64,79,32,62...

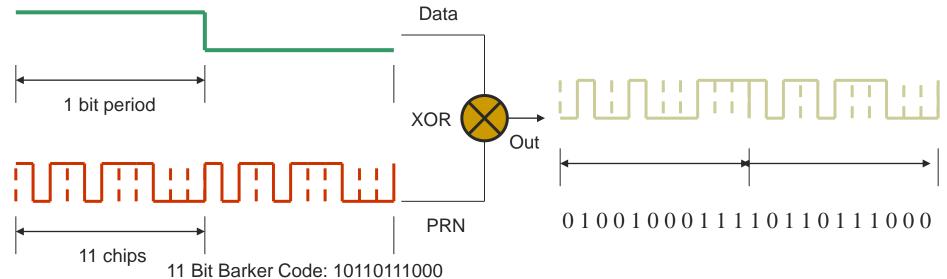
6

- In Japan, 12 hoping sequences, each with 23 channels
- The dwell time on each frequency can be modified if needed
 - Cannot be larger than 400
 - Usually used values. 32 ms or 128 ms

FHSS

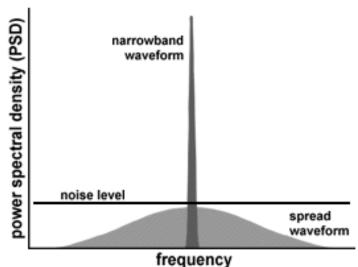
FHSS

Advantages

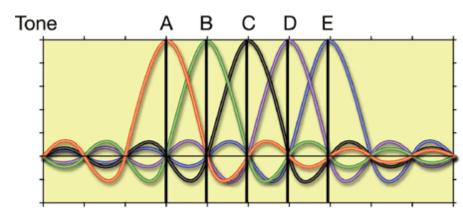

- Efficient use of the spectrum in the open ISM band
- Secure (to a given extent)
 - For eavesdropping, one has to know the hoping sequence and the dwell times
- Good protection against multipath fading
 - The signal is reflected by different objects
 - Reaches several times the receiver
 - The receiver listens to a given frequency only for a limited time interval
 - No interference with the signal reaching the receiver with some delay, on the "old" channel
- Not so sensible to radio interferences
 - Interfering signals restricted to a given frequency domain
 - The receiver jumps off rapidly from that frequency

Drawbacks

Slow speeds (1 Mb/s)


DSSS

- Direct Sequence Spread Spectrum
 - Transfer speeds also 1 or 2 Mbps
 - The "useful" data spread over a larger frequency domain.
 - XOR operation with an 11 bit chip-code (noise)
 - Pseudo-random bit string, on a much higher frequency than the original signal
 - The noise is filtered out by the receiver
 - With a second XOR operation the data can be regenerated

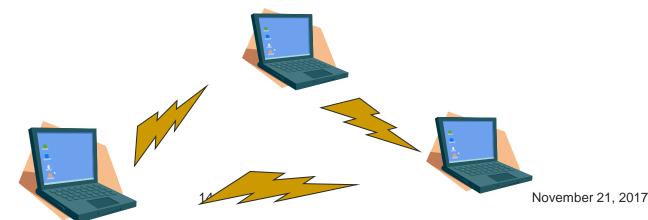

DSSS

- The useful data is spread over a large frequency domain
 - The broadband signal harder to detect
 - An eavesdropper sees only a "noise"
 - Cannot filter out the useful information
 - Originally used for military purposes
 - For an 11 bit chip-code, signal spread over a 22 MHz wide domain
 - 30 MHz between two DSSS systems, to avoid interferences
 - The ISM band is 83.5 MHz wide
 - Only 3 DSSS systems can operate in parallel without interferences

802.11a (Wi-Fi5)

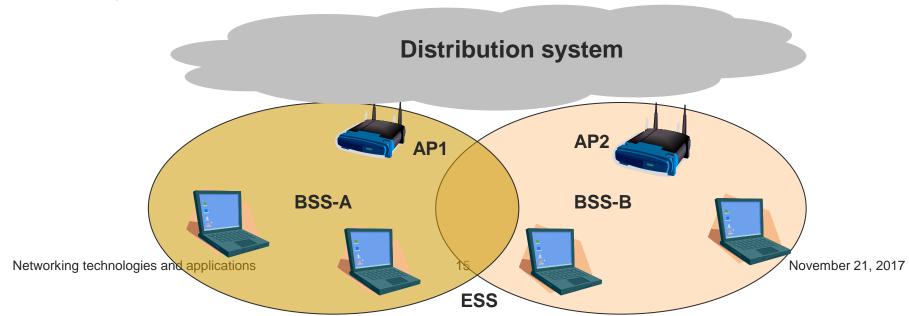
- New solutions to increase bandwidth ('99)
- OFDM Orthogonal Frequency Division Multiplexing
 - 5 GHz ISM band
 - Up to 54 Mbps transfer speed
 - The frequency domain split in many small slices (sub-carriers)
 - The signal to transmit also split in several parts
 - Transmission on several sub-carriers in parallel, higher speed
 - In traditional FDM guard bands to avoid interferences
 - Fewer possible carriers
 - In OFDM orthogonal frequencies
 - The peak of each sub-carrier corresponds to a zero level of every other sub-carrier

802.11b (Wi-Fi)


- Wireless Fidelity
- The first 802.11x standard
 - Not a follow-up of 802.11a, they were developed in parallel
- HR-DSSS
 - High Rate Direct Sequence Spread Spectrum
 - More efficient modulation than in DSSS
 - 4 transfer speeds in the 2,4 GHz ISM band
 - 1, 2, 5.5 or 11 Mbps
 - In practice usually 11 Mbps, over a 100 meter service range
- Lower speed than for 802.11a
 - Larger service range

802.11g

- Adopted in 2001
 - Uses OFDM, similarly to 802.11a
 - In the 2,4 GHz ISM band, as the 802.11b
 - Sensible to the interferences
- 54 Mbps transfer speeds
- Promises to be the technology "of the future"
 - Or it is already...
 - Huge number of deployed 802.11b networks, devices
 - Until the return on the investment is not obtained, they will not be upgraded

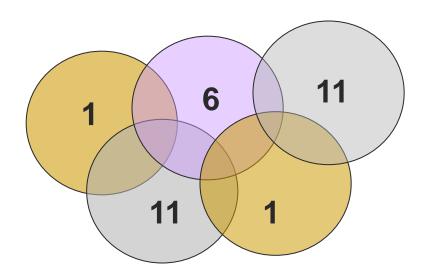

Ad-hoc mode

- Each node communicates directly with the other nodes in its radio range
- Communication between distant nodes through ad-hoc routing protocols
 - AODV, DSR, DSDV, etc.
- Each station is a router as well
 - Multi-hop ad-hoc network
 - No need for an AP
- A temporary network can be built very fast
 - Between the participants of a conference for example

Infrastructure mode

- Cellular system
 - Basic Service Set (BSS) cell
 - Access Point (AP)
 - Each cell is controlled by an AP
 - Periodically polls the nodes, controls the communication
 - Distribution System (DS)
 - A wireless or wired connection linking the APs
- Many cells form an Extended Service Set ESS

802.11b channels


- What frequency to use inside a cell?
- 802.11b in the 2.4 GHz ISM band
 - Maximum 14 channels
 - Partially overlapping
- Different regulations in different countries
 - In Europe the channels 1-13 used
 - In the US, channels 1-11
 - In Japan all the 14 channels

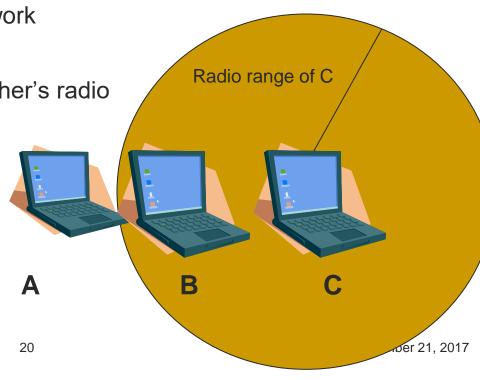
Channel	Frequencies (GHz)
1	2.412
2	2.417
3	2.422
4	2.427
5	2.432
6	2.437
7	2.442
8	2.447
9	2.452
10	2.457
11	2.462

The IEEE 802.11b channel frequencies used in the US

802.11b channels

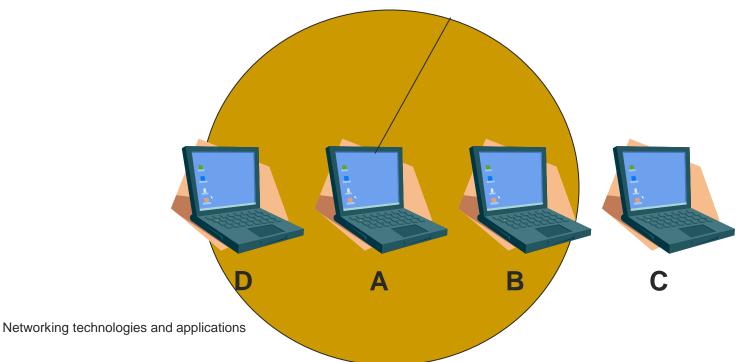
- We form small channels
 - Each neighboring cell uses a different channel
 - The corresponding frequencies do not overlap

802.11b channels


- The channel is defined by the middle frequency
 - E.g., around 2,412 GHz channel 1, around 2,417 GHz channel 2
 - Only 5 MHz distance between the middle frequencies
 - The 802.11b signal covers a 30 MHz wide spectrum
 - The signal occupies about 15 MHz of spectrum on both sides of the middle frequency
 - Overlap and interferences between neighboring channels
 - In cellular systems two neighboring cells have to be at least 5 channels away from each other
 - Usual combination (1, 6, 11)

Joining a new cell

- A station joins a BSS when...
 - It is powered up
 - It exits sleep mode
 - It moves inside a BSS
- Passive Scanning
 - The station waits for a Beacon Frame from the AP
 - The AP periodically sends it, it contains synchronization information
- Active Scanning
 - The station tries to find an AP
 - Probe Request message is sent
 - Probe Response answer is expected from the API
- If many APs respond, chooses the "best one"
 - The best SNR Signal to Noise Ratio

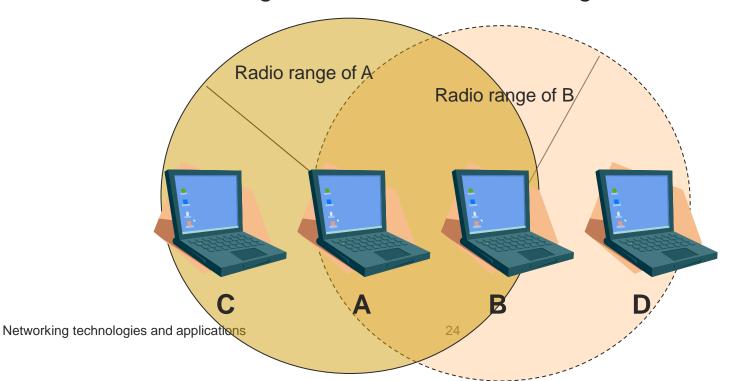

802.11 MAC sublayer

- Different from Ethernet (CSMA/CD)
 - An Ethernet station waits for the channel being unused, then starts to send
 - Collision detected, if it occurs
 - Does not work in a wireless network
- Hidden terminal problem
 - Not al the stations are in each other's radio range
 - C sends to B
 - A thinks the channel is empty
 - A starts to send to B
 - Interference occurs

Exposed terminal problem

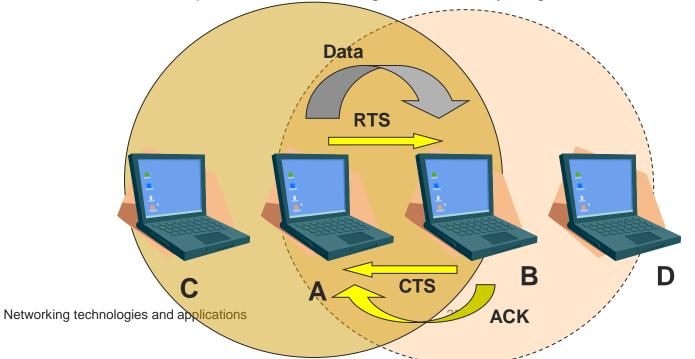
- B wants to send to C
 - Listens to the channel, and sees that it is occupied by A
 - B thinks that it cannot send to C, to avoid collisions
 - It might happen that A sends something to D, thus B would not cause interference at node C

DCF vs. PCF

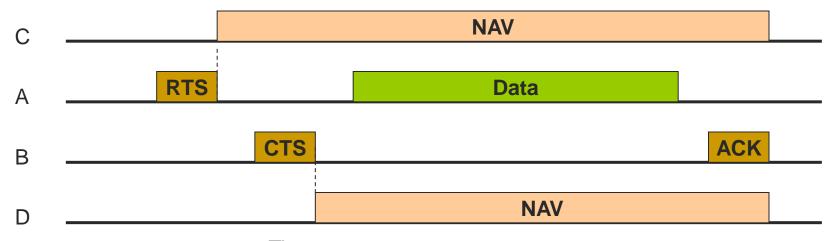

- In 802.11, no CSMA/CD
- Two other solutions:
 - DCF Distributed Coordination Function
 - No central control
 - Each device should support it
 - PCF Point Coordination Function
 - The access point controls all the activities inside the cell
 - Optional support

802.11 DCF

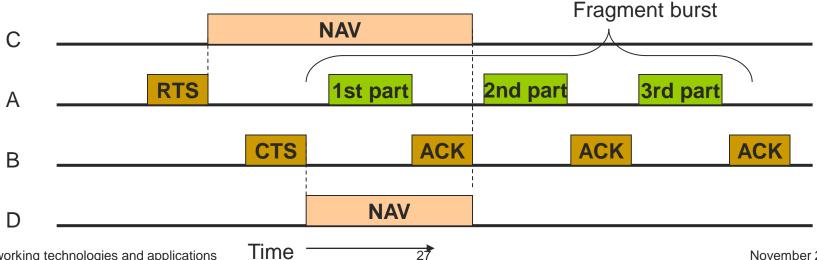
- CSMA/CA (instead of CD)
 - Carrier Sense Multiple Access with Collision Avoidance
 - Two operation modes:
 - Physical and virtual carrier sensing
- Physical carrier sensing:
 - If a station wants to send, it senses the channel
 - If empty, it starts the sending
 - It does not listen to the channel while sending
 - There might be interferences at the receiver
 - If the channel is not empty, waits until it becomes free


MACAW

- Multiple Access with Collision Avoidance for Wireless
 - Virtual carrier sensing
- A wants to send data to B
 - C in the radio range of A
 - D in the range of B, but outside the range of A


MACAW

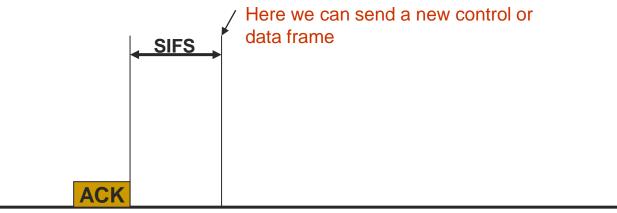
- A sends an RTS frame to B, asking the permission to send a data frame
 - Request To Send
- If B gives the permission, it sends back a CTS frame
 - Clear To Send
- A sends the data frame, and starts an ACK timer
 - o If B receives the packets in order, it replies with an ACK frame
 - o If the timer expires without receiving an ACK, everything starts from scratch


MACAW

- C hears A, receives the RTS frame
 - Deduces that in the next moments someone will start to send data
 - It stops its own transmission, while the other conversation is not finished
 - Knows when it ends from the ACK timer, included in the RTS frame
 - It sets an internal reminder to himself, saying that the channel is virtually occupied
 - NAV Network Allocation Vector
- D does not hear about the RTS, but hears the CTS
 - Also sets a NAV for himself.

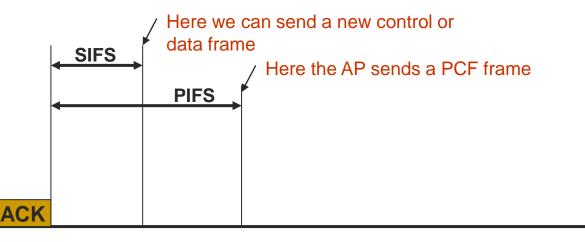
Fragment burst

- In wireless networks, too much noise and high packet loss
 - The bigger a frame is, the higher the probability of an error is
- Frames can be split
 - If access to the channel is obtained through RTS/CTS, send several consecutive parts
 - **Fragment burst**
 - Increases transfer capacity
 - In case of an error, only the given part should be retransmitted
 - The NAV process avoids the collisions only for the first part
 - Newer solutions can take care of the entire burst

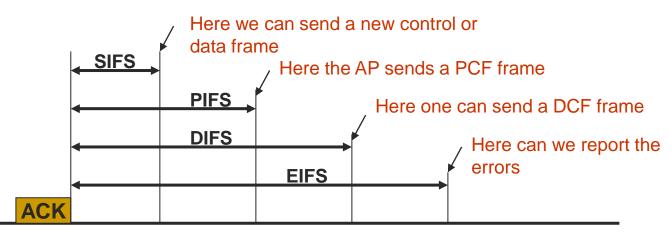


802.11 PCF

- The AP controls the communication
 - No collisions
- The AP polls the other stations, to find out who has data to send
 - The standard defines only some basic features of the poll
 - Does not define the frequency, or the order in which different stations are polled
 - Does not ask for equal treatment for all the stations
- The AP periodically sends a beacon frame
 - 10-100 beacons / s
 - It contains system parameters
 - Hopping sequence and dwell times (for FHSS), clock synchronization, etc.
 - New stations are invited to participate in the polling
- The AP can send some stations to sleep mode
 - Until the AP or the user does not wake them up
 - Spares the battery
 - The AP buffers (for a while) the packets intended to the sleeping node


PCF vs. DCF

- PCF and DCF can operate in parallel inside the same cell
 - Distributed and centralized control in the same time?
 - Is possible, if carefully defined timers are used
 - After the sending of a frame, a certain guard time is required before any other transmission
- Four specific timers
 - SIFS Short Inter-Frame Spacing
 - The shortest spacing, to support those devices that currently occupy the channel for a short conversation
 - After the SIFS, a receiver can send a CTS to an RTS
 - After the SIFS, a receiver can send an ACK for a given part of the data frame
 - A new part can be sent, without a new RTS


PCF vs. DCF

- PIFS PCF Inter-Frame Spacing
 - After an SIFS, only one specific station can send
 - If nothing is sent until the end of the PIFS, the AP has the possibility to take over the channel, and send a new beacon or a polling frame
 - An ongoing conversation can be finished without disturbing it
 - The AP can access the channel without a contention
 - No contention with the greedy users

PCF vs. DCF

- DIFS DCF Inter-Frame Spacing
 - If the AP does not have anything to send, after the DIFS anyone can try to gain access to the channel
 - Usual contention rules
 - Exponentially increasing back off interval, if collision
- EIFS Extended Inter-Frame Spacing
 - Used to signal am error or an unknown frame
 - Lowest priority

