Networking Technologies and Applications

Rolland Vida BME TMIT

October 14, 2016

Problems with Classful IP Addresses

Problem 3. Inflexible. Assume a company requires 2,000 addresses

- Class A and B addresses are overkill
- Class C address is insufficient (requires 8 Class C addresses)

Problem 4: Exploding Routing Tables: Routing on the backbone Internet needs to have an entry for each network address. In 1993, the size of the routing tables started to outgrow the capacity of routers.

Fix #2 (to both of these problems): Classless Interdomain Routing (CIDR)

CIDR - Classless Interdomain Routing

- Goals:
 - Restructure IP address assignments to increase efficiency
 - Hierarchical routing aggregation to minimize route table entries

Key Concept: The length of the network id (prefix) in IP addresses is arbitrary/flexible and is defined by the network hierarchy.

- Consequence:
 - Routers use the IP address <u>and</u> the length of the prefix for forwarding.
 - All advertised IP addresses must include a prefix

CIDR Example

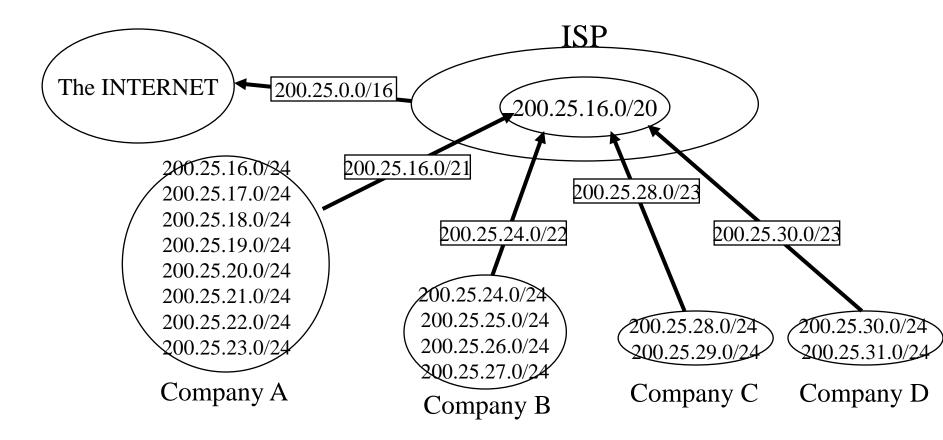
- CIDR notation of a network address: 192.0.2.0/18
 - "18" says that the first 18 bits are the network part of the address
- The network part is called the network prefix
- Example:
 - Assume that a site requires an IP network domain that can support 1000 IP host addresses
 - With CIDR, the network is assigned a continuous block of 1024 = 2¹⁰ (>1000) addresses with a 32-10 = 22-bit long prefix

CIDR: Prefix Size vs. Host Space

CIDR Block Prefix	# of Host Addresses
/27	32 hosts
/26	64 hosts
/25	128 hosts
/24	256 hosts
/23	512 hosts
/22	1,024 hosts
/21	2,048 hosts
/20	4,096 hosts
/19	8,192 hosts
/18	16,384 hosts
/17	32,768 hosts
/16	65,536 hosts
/15	131,072 hosts
/14	262,144 hosts
/13	524,288 hosts

CIDR and Address assignments

- IANA Internet Assigned Numbers Authority
 - The RIRs get short prefix CIDR blocks
 - Regional Internet Registries
 - E.g., 62.0.0.0/8 assigned to RIPE NCC
 - Réseaux IP Européens Network Coordination Centre
- RIRs fragment and redistribute parts of the address space
 - Backbone ISPs obtain large blocks of IP address space and then reallocate portions of their address blocks to their customers.


01000100

Example:

- Assume that an ISP owns the address block 206.0.64.0/18, which represents 16,384 (2³²⁻¹⁸=2¹⁴) IP host addresses
- Suppose a client requires 800 host addresses
 - $▶ 512=2^9 < 800 < 1024=2^{10} -> 32-10 = 22,$

Assigning a /22 block, i.e., 206.0.68.0/22 -> gives a block of 1,024 (2¹⁰) IP addresses to client.

CIDR example

CIDR and Routing

- Aggregation of routing table entries:
 - 128.143.0.0/16 and 128.142.0.0/16 can be represented as 128.142.0.0/15 at a router.
 - 143 = 128.<u>1000111</u>1.0.0 142 = 128.<u>10001110</u>.0.0
- Longest prefix match: Routing table lookup finds the routing entry that matches the longest prefix
 - Why?

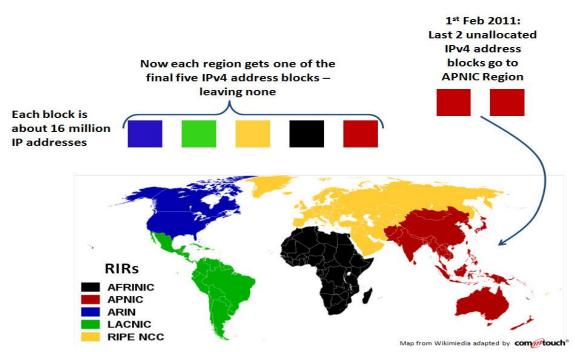
E.g., What is the outgoing interface for destination IP address: 128.143.137.0?

Prefix	Interface/outgoing link
128.143.128.0/17	interface #1
128.128.0.0/9	interface #2
128.0.0.0/4	interface #5

Routing table

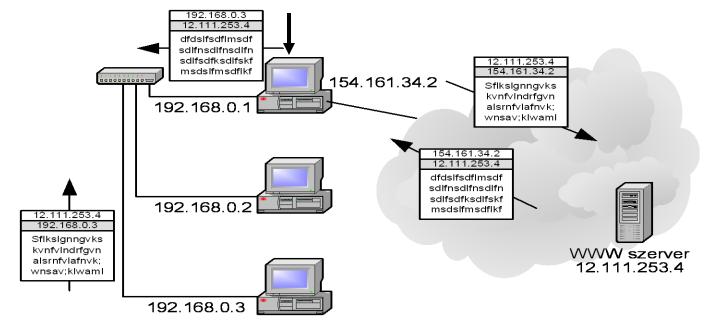
Problems with Classful IP Addresses

Problem 5. The Internet is going to outgrow the 32-bit addresses


- Fix #3: IP Version 6

Exhaustion of IPv4 addresses

- No problem in the US
 - "Internet Heaven"
- Serious problem everywhere else
 - In China they have asked IP addresses for connecting 60.000 schools, they received a Class B address (65.534 addresses)
 - Many European or African countries received just a Class C address (254 addresses)
- Fast development of the Internet outside Northern America
 - Asia (2.5 billion people), Eastern Europe (250 million), Africa (800 million), South and Latin America (500 million)
- New communication devices need IP addresses
 - Mobile phones, PDAs, sensors, cars, etc.
- The exhaustion of IPv4 addresses was always projected for the next month/years (for more than 10 years)


Is the Internet "full"?

• On February 1st, 2011, the last /8 IPv4 address block allocated to the RIRs

Reuse of private addresses

- Private addresses are not "visible" from the Internet
- Network address translation

- Just an intermediate solution
 - Cannot establish a connection from outside with a host behind a NAT
 - More and more applications require public IP addresses
 - VoIP, videoconferencing, network games
 - Many protocols do not work on a network with NAT

IPv6 chronology

• **TUBA** (1992)

- TCP and UDP over Bigger Addresses
- Based on the OSI CLNP (Connection-Less Network Protocol)
- abandoned
- **SIPP** (1993)
 - Simple IP Plus
 - 64 bit addresses
- IPng, based on an extended SIPP version (1994)
 - 128 bit addresses
 - From December 1995 officially called IPv6

IPv6 addressing scheme

- The IPv6 address pool is huge
 - $-2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$
 - 67 billion billion addresses for each cm² on the surface of the Earth
 - 10³⁰ address for each person on the Earth
 - The address distribution and routing requires a hierarchical structure

IPv6 addressing scheme

- IPv6 addressing quite similar to IPv4
 - 128 bit long addresses, instead of 32 bits
- Three address types:
 - Unicast addresses
 - Identify a unique interface
 - Multicast addresses
 - Identify a group of interfaces, each of these will receive the message
 - Replace the broadcast addresses as well
 - Anycast addresses
 - Identify a group of interfaces, message will be delivered to one of these interfaces

Writing IPv6 addresses

- 128 bits = 16 bytes = 32 x 4bits = 32 hexadecimal digits grouped in 8 segments FECD:BA98:0000:0000:00CD:BA98:0000:3200
- The opening 0 digits in each segment can be neglected Instead of FECD:BA98:0000:00CD:BA98:0000:3200 we write FECD:BA98:0:0:CD:BA98:0:3200
- Adjacent 0 segments can be neglected, if there is only one siuch case in an address FECD:BA98::CD:BA98:0:3200
- Netwrok prefix is encoded as in case of IPv4 CIDR entire IPv6 address/prefix length in bits 12AB:0000:0000:CD30:FFFF:DEC8:0000:0000/60 12AB:0:0:CD30:0:0:0/60 12AB:0:0:CD30::/60