5G INTRODUCTION Zoltán Turányi 5G Expert Ericsson Research, Hungary #### DEMAND 2020 Devices & Consumers Applications & Industry Service Providers Network # INDUSTRY TRANSFORMATION Traditional Industries Digitalize & Mobilize Transformed Industries #### **EVOLUTION TOWARDS 2020** #### 5G REQUIREMENTS 3GPP requirements expected in end-2016 IMT-2020 requirements expected finalized in mid-2017 ### ERICSSON'S 5G APPROACH 5G as a Global Standard LTE + new 5G radio Industry Collaborations System view on 5G Standards, Open Source & industry alliances Academia and Research Institutes # 5G RADIO CONCEPT #### 5G RADIO ACCESS ~2020 # NX - KEY TECHNOLOGY FEATURES MANY ALSO APPLY TO LTE EVOLUTION Flexible, scalable and future-proof design Ultra-lean design Energy efficient: minimize network transmissions not directly related to user data delivery #### ULTRA-LEAN DESIGN Minimize network transmissions not directly related to user-data delivery - Higher achievable data rates - Enhanced network energy performance - Future-proof design #### NX PHY DESIGN #### High degree of symmetry - Low-power base stations similar to devices - Integrated D2D and radio based backhaul #### Access schemes #### Time-domain structure - Physical mapping enabling fast detection/decoding - Self-contained subframes Example: **TDD** Avoid strict timing relations between subframes One short subframe (~100 of µs) RS DL ctrl ACK/NAK, CSI, ... #### Waveform OFDM with flexible numerology Mixed numerology #### BEAMFORMED TRANSMISSION To enable the capacity, data rate, and coverage needed in the 5G era For both high and low frequencies For both NX and LTE #### Beam-centric NX design - Self-contained data transmissions - "Beam mobility" mobility between beams rather than nodes - System plane matched to beam-formed user plane #### ACCESS/BACKHAUL INTEGRATION #### Today: Extensive use of radio backhaul Line-of-sight links to macro sites using dedicated technology in dedicated high-frequency spectrum #### **Tomorrow:** Large number of low-power nodes - Wireless backhaul must extend to non-LOS conditions - Access link will extend to higher frequencies Access and backhaul are becoming more similar #### **Access/Backhaul integration** - Same technology for access and backhaul - Joint spectrum pool for access and backhaul - More efficient utilization of available spectrum - Reduced operation and maintenance effort #### DEVICE-TO-DEVICE CONNECTIVITY - Device-to-device connectivity as a further step of extreme densification - An integrated part of the overall radio-access network - Under network control - When beneficial from an efficiency or service-level point-of-view #### HIGH FREQUENCY CHARACTERISTICS # Outdoor-to-indoor Rain/atmospheric Body loss penetration (()) (((Less of an issue for small cells) Diffraction #### NX/LTE INTERWORKING Tight interworking between LTE and NX is key to great end user experience #### NX/LTE INTERWORKING - Leverage LTE deployments when deploying NX on the higher frequency ranges - Coverage and performance reasons - Support co-sited and non-co-sited deployments - Supported using dual connectivity solutions - excellent mobility support using control-plane diversity - high user-plane throughput using user-plane aggregation or fast switching (depending on the scenario) ## WIDE RANGE OF REQUIREMENTS #### MASSIVE MTC SMART METER SMART AGRICULTURE #### CRITICAL MTC INDUSTRIAL APPLICATION & CONTROL REMOTE MANUFACTURING, TRAINING, SURGERY LOW COST, LOW ENERGY SMALL DATA VOLUMES MASSIVE NUMBERS ULTRA RELIABLE VERY LOW LATENCY VERY HIGH AVAILABILITY #### SOLUTIONS FOR CELLULAR IOT **GSM-EC** Supported on legacy GSM equipment automation Leverage existing module eco-system NB-IoT Part of LTE evolution to 5G LTE CAT-M Scalable ultra low-end Cellular IoT solution Ultra-low bit rates & extreme coverage Native narrowband LTE solution Broadest range of Cellular IoT capabilities Wide range of bit rates enabling advanced applications Efficient co-existence with MBB traffic OPERATE AS ONE NETWORK # PERFORMANCE DIVERSIFICATION ON THE ROAD TO 5G #### DEVICE ENERGY EFFICIENCY - Example: LTE Rel-12 power-saving mode - UE performs periodic tracking area update (TAU) after which it stays reachable for paging during a configurable time - Otherwise the UE stays in a power-off like mode, not reachable, but still registered | Reachability (TAU cycle) | UL data inter-arrival time | | | |--------------------------|----------------------------|------------|------------| | | 15 min | 1 hour | 3 hour | | 15 min | 9.2 years | 10.0 years | 10.2 years | | 1 hour | 9.2 years | 16.1 years | 16.7 years | | 3 hour | 9.2 years | 16.1 years | 19.4 years | Cell edge, 64/84 kb/s UL/DL, 2xAA with 4% self-discharge # NETWORK ARCHITECTURE # 5G READY CORE NETWORK COMPONENTS Management & Orchestration, Analytics & Exposure # EVOLUTION OF THE CONVERGED NETWORK #### NETWORK SLICING ### NETWORK SLICING ### ORCHESTRATION Network Slice Resources Access Nw Function OSS/BSS Transport Cloud #### WHAT IS IN THE SLICE? - PRINCIPLES - The architecture shall be flexible - It shall not mandate certain combination and/or location of functions - > Today we have to co-locate all functions of a node - > Any change must go through 3GPP - Look, what it led to in case of LIPA or SIPTO - It shall not mandate the existence or lack of any function - > Should be easy to add/remove functions - E.g., no mobility support for this device - It shall be able to utilize distributed cloud (easy deployment of VMs) - It shall enable programmatic composition - > Even on a per-flow basis ### ERICSSON'S 5G APPROACH 5G as a Global Standard LTE + new 5G radio Industry Collaborations System view on 5G Standards, Open Source & industry alliances Academia and Research Institutes # ERICSSON