

5G INTRODUCTION

Zoltán Turányi 5G Expert Ericsson Research, Hungary

DEMAND 2020

Devices & Consumers

Applications & Industry

Service Providers

Network

INDUSTRY TRANSFORMATION

Traditional Industries

Digitalize & Mobilize

Transformed Industries

EVOLUTION TOWARDS 2020

5G REQUIREMENTS

3GPP requirements expected in end-2016 IMT-2020 requirements expected finalized in mid-2017

ERICSSON'S 5G APPROACH

5G as a Global Standard

LTE + new 5G radio

Industry Collaborations

System view on 5G

Standards,
Open Source
& industry
alliances

Academia and Research Institutes

5G RADIO CONCEPT

5G RADIO ACCESS ~2020

NX - KEY TECHNOLOGY FEATURES MANY ALSO APPLY TO LTE EVOLUTION

Flexible, scalable and future-proof design

Ultra-lean design

Energy efficient: minimize network transmissions not directly related to user data delivery

ULTRA-LEAN DESIGN

Minimize network transmissions not directly related to user-data delivery

- Higher achievable data rates
- Enhanced network energy performance
- Future-proof design

NX PHY DESIGN

High degree of symmetry

- Low-power base stations similar to devices
- Integrated D2D and radio based backhaul

Access schemes

Time-domain structure

- Physical mapping enabling fast detection/decoding
- Self-contained subframes

Example:

TDD

Avoid strict timing relations between subframes

One short subframe (~100 of µs)

RS
DL
ctrl

ACK/NAK, CSI, ...

Waveform

OFDM with flexible numerology

Mixed numerology

BEAMFORMED TRANSMISSION

To enable the capacity, data rate, and coverage needed in the 5G era

For both high and low frequencies

For both NX and LTE

Beam-centric NX design

- Self-contained data transmissions
- "Beam mobility" mobility between beams rather than nodes
- System plane matched to beam-formed user plane

ACCESS/BACKHAUL INTEGRATION

Today: Extensive use of radio backhaul

 Line-of-sight links to macro sites using dedicated technology in dedicated high-frequency spectrum

Tomorrow: Large number of low-power nodes

- Wireless backhaul must extend to non-LOS conditions
- Access link will extend to higher frequencies

Access and backhaul are becoming more similar

Access/Backhaul integration

- Same technology for access and backhaul
- Joint spectrum pool for access and backhaul

- More efficient utilization of available spectrum
- Reduced operation and maintenance effort

DEVICE-TO-DEVICE CONNECTIVITY

- Device-to-device connectivity as a further step of extreme densification
- An integrated part of the overall radio-access network
- Under network control
- When beneficial from an efficiency or service-level point-of-view

HIGH FREQUENCY CHARACTERISTICS

Outdoor-to-indoor Rain/atmospheric Body loss penetration (()) ((

(Less of an issue for small cells)

Diffraction

NX/LTE INTERWORKING

Tight interworking between LTE and NX is key to great end user experience

NX/LTE INTERWORKING

- Leverage LTE deployments when deploying NX on the higher frequency ranges
 - Coverage and performance reasons
- Support co-sited and non-co-sited deployments
- Supported using dual connectivity solutions
 - excellent mobility support using control-plane diversity
 - high user-plane throughput using user-plane aggregation or fast switching (depending on the scenario)

WIDE RANGE OF REQUIREMENTS

MASSIVE MTC

SMART METER

SMART AGRICULTURE

CRITICAL MTC

INDUSTRIAL APPLICATION & CONTROL

REMOTE MANUFACTURING, TRAINING, SURGERY

LOW COST, LOW ENERGY SMALL DATA VOLUMES MASSIVE NUMBERS ULTRA RELIABLE VERY LOW LATENCY VERY HIGH AVAILABILITY

SOLUTIONS FOR CELLULAR IOT

GSM-EC

Supported on legacy GSM equipment

automation

Leverage existing module eco-system

NB-IoT

Part of LTE evolution to 5G

LTE CAT-M

Scalable ultra low-end Cellular IoT solution

Ultra-low bit rates & extreme coverage

Native narrowband LTE solution

Broadest range of Cellular IoT capabilities

Wide range of bit rates enabling advanced applications

Efficient co-existence with MBB traffic

OPERATE AS
ONE
NETWORK

PERFORMANCE DIVERSIFICATION ON THE ROAD TO 5G

DEVICE ENERGY EFFICIENCY

- Example: LTE Rel-12 power-saving mode
 - UE performs periodic tracking area update (TAU) after which it stays reachable for paging during a configurable time
 - Otherwise the UE stays in a power-off like mode, not reachable, but still registered

Reachability (TAU cycle)	UL data inter-arrival time		
	15 min	1 hour	3 hour
15 min	9.2 years	10.0 years	10.2 years
1 hour	9.2 years	16.1 years	16.7 years
3 hour	9.2 years	16.1 years	19.4 years

Cell edge, 64/84 kb/s UL/DL, 2xAA with 4% self-discharge

NETWORK ARCHITECTURE

5G READY CORE NETWORK COMPONENTS

Management & Orchestration, Analytics & Exposure

EVOLUTION OF THE CONVERGED NETWORK

NETWORK SLICING

NETWORK SLICING

ORCHESTRATION

Network Slice Resources

Access Nw Function OSS/BSS

Transport Cloud

WHAT IS IN THE SLICE? - PRINCIPLES

- The architecture shall be flexible
 - It shall not mandate certain combination and/or location of functions
 - > Today we have to co-locate all functions of a node
 - > Any change must go through 3GPP
 - Look, what it led to in case of LIPA or SIPTO
 - It shall not mandate the existence or lack of any function
 - > Should be easy to add/remove functions
 - E.g., no mobility support for this device
 - It shall be able to utilize distributed cloud (easy deployment of VMs)
 - It shall enable programmatic composition
 - > Even on a per-flow basis

ERICSSON'S 5G APPROACH

5G as a Global Standard

LTE + new 5G radio

Industry Collaborations

System view on 5G

Standards,
Open Source
& industry
alliances

Academia and Research Institutes

ERICSSON