

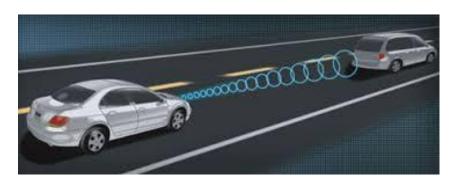
Automated driving Intelligent Transportation Systems

Rolland Vida

Unmanned systems and vehicles

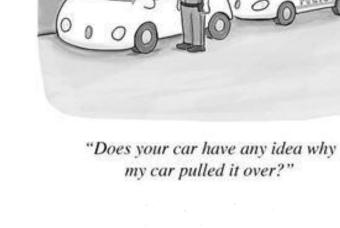
- Unmanned system: any electro-mechanical system which has the capability to carry out a
 prescribed task or portion of a prescribed task automatically, without human intervention
- Unmanned vehicle: a vehicle that does not contain a person
 - Can be tele-operated
 - Can be autonomous takes decisions independently

- Unmanned vehicles can come in several flavors: UxV
 - Land: UGV (Unmanned Ground Vehicle)
 - Air: UAV (Unmanned Aerian Vehicle)
 - Maritime: UUV, USV (Unmanned Underwater / Surface Vehicle)



Autonomous / Self-driving cars

- A vehicle capable of sensing the environment, and navigating without human input
- Different techniques to detect their surroundings
 - Radar (RAdio Detection And Ranging) radio waves to determine range, angle and velocity of objects
 - Lidar (Light Detection And Ranging) illuminating the target with a pulsed laser light, and measuring the reflected pulses
 - Odometry (odos route, metron measure) use motion sensor data to estimate position change over time, relative to a starting location
 - Computer vision detect other cars, objects on the road, road signs, traffic lights, based on image processing, machine learning and artificial intelligence


Autonomous / Self-driving cars

Benefits

- Reduced mobility costs (no driver needed)
- Enhanced mobility for children, disabled and elderly people
- Increased safety, increased consumer satisfaction, increased traffic flow, lower fuel consumption
- Less need for insurance

Obstacles to widespread adoption

- Technological challenges less and less
- Disputes on liability in case of accidents
- Long time period to replace the existing stock of vehicles
- Resistance of individuals to hand over the control
- Implementation of regulations, legal framework
- Privacy and security concerns (car hacking)
- Loss of driving-related jobs

What does automated driving mean?

- SAE International Society of Automative Engineers
 - Professional association and standards developing organization
 - Automotive, aerospace, and commercial vehicles
 - More than 138,000 individual members worldwide

- Standard J3016: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems (2014)
 - Identifies six levels of driving automation from "no automation" to "full automation"
 - Describes categorical distinctions for a step-wise progression through the levels
 - Eliminates confusion, useful across numerous disciplines (engineering, legal, media)
 - Educate a wider community by clarifying for each level what role (if any) drivers have in performing the dynamic driving task while a driving automation system is engaged.

Taxonomy

Dynamic driving task

- Includes operational aspects
 - Steering, braking, accelerating, monitoring the vehicle, monitoring the road
- Includes tactical aspects
 - Responding to events, deciding when to change lanes, turn, use signals
- Does not include strategic aspects
 - Determining destinations and waypoints

Driving mode

- Type of driving scenario with specific dynamic driving task requirements
 - Expressway merging, high speed cruising, low speed traffic jam, etc.

Request to intervene

 Notification by the automated driving system to a human driver that he/she should promptly begin or resume performance of the dynamic driving task

Autonomous vs. Automated

- Autonomous self governance, taking decisions independently
- Automated operates, takes decisions without human intervention
- Automated more accurate, but autonomous more widespread

AUTOMATED DRIVING SYSTEM MONITORS DRIVING ENVIRONMENT **HUMAN DRIVER** MONITORS DRIVING ENVIRONMENT No Automation Driver **Partial** Conditional High Full Automation Automation Assistance Automation Automation

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (Driving Modes)
Huma	n driver monit	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes
Autor	mated driving s	ystem ("system") monitors the driving environment				
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the <i>driving mode</i> -specific performance by an automated driving system of all aspects of the <i>dynamic driving task</i> , even if a <i>human driver</i> does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

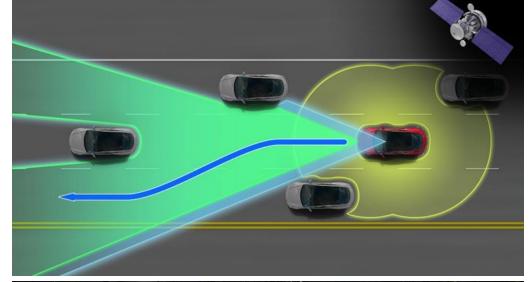
- Level 0 (no automation) The human driver controls all (steering, brakes, throttle, power)
 - Only warnings form the automated system
- Level 1 (driver assistance) "hands on"
 - Most functions still controlled by the driver
 - One function (steering OR acceleration) done automatically by the car
 - Driver must be always ready to take over the full control
 - E.g., adaptive cruise control driver controls the steering, the automated system controls speed
 - E.g., parking assistance driver controls speed, the automated system controls steering
- Level 2 (partial assistance) "hands off"
 - Driver is disengaged from physically operating the car
 - Hands off the steering wheel AND foot off the pedal at the same time
 - Driver must be always ready to take back the control of the vehicle
 - Often, the hand is required to be on the steering wheel, to confirm that the driver is ready to take over control, if needed

- Level 3 (conditional automation) "eyes off"
 - Driver not required to monitor the environment anymore
 - The system (vehicle) does it, the driver can watch a movie
 - Driver still present and will intervene if needed
 - Within a limited amount of time, specified by the manufacturer
 - The car will handle emergency situations (e.g., fast braking)
 - First commercial car at level 3 Audi A8 Luxury Sedan
 - Traffic Jam Pilot
 - Slow-moving traffic, up to 60 km/h, on highways, physical barrier for the opposite lane
 - Some manufacturers (e.g., Ford) want to skip this level
 - If the driver does not have to monitor the environment, you cannot expect from him to intervene

- Level 4 (high automation) "mind off"
 - Vehicles perform all safety-critical driving functions, and monitor the roadway conditions
 - Driver may go to sleep, or leave the driving seat
 - It does not cover all driving scenarios, only limited areas (geofencing) or special conditions (traffic jam)
 - Outside these scenarios, the vehicle must safely abort the trip, park the car, until the driver retakes control
- Level 5 (full automation) Equal the human driver in every driving scenario
 - Extreme environments and road conditions (e.g., dirt roads)
 - Driverless vehicles not expected at this level in the near future

History of automated cars

- Experiments since the 1920s, promising trials from the 1950s
- General Motors Firebird II (1956)
 - For the "highway of the future"
 - Electric wire embedded in the road sends signals to guide the car
- First truly autonomous prototype cars in the 1980s
- ParkShuttle in the Netherlands, Schiphol Airport (1997)
 - World's first driverless vehicle
 - Magnets embedded in the road surface
- Would they be allowed on public roads?
 - In 2015, allowed in Nevada, California, Florida, and some other states
 - Test circuit is build now near Zalaegerszeg, Hungary

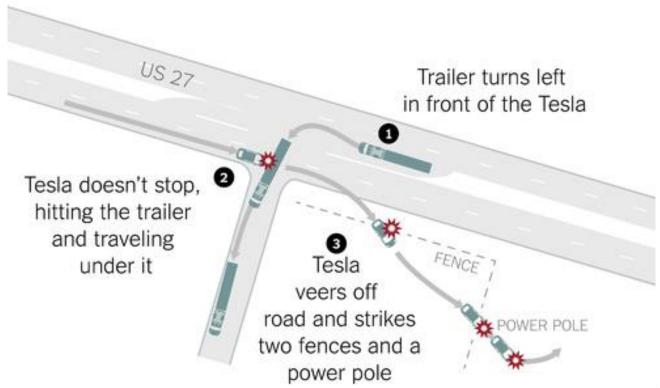


Tesla Autopilot

- Autopilot 8.0 October 2014
 - Tesla Model S and X, Level 2 (partial assistance)
 - Assist highway driving, enable cars to self-steer, adjust speed, detect nearby objects, apply brakes and park
 - Driver advised to keep his hands on the steering wheel
 - Forward looking radar (up to 150 meters) detect the vehicle's surroundings
 - Front camera backup for the radar, can see traffic signs, traffic lights
 - Sonar 360 degrees, 12 ultrasonic sensors, detect nearby obstacles (children, dogs, cars in blind spot)
 - GPS, navigation system automatically change lanes and exit freeway
 - Activated also with the turn signal

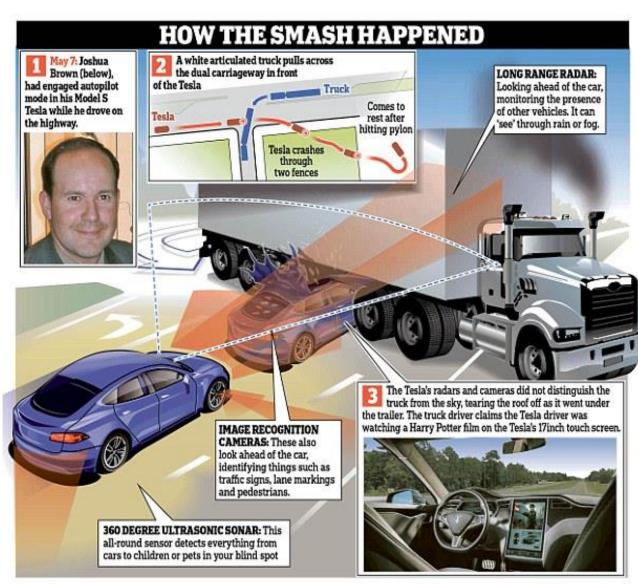
Tesla Autopilot

- Autopilot 8.1 (Enhanced Autopilot) October 2016
 - Equip all cars with the hardware necessary for self-driving cars
 - Just a software update, when software is ready, safe and mature enough to be activated
 - 8 cameras instead of the single front camera
 - 4 currently active, 4 will become active later, in the "fully self-driving mode"
 - 360 degree vision extended to 250 meters
 - In fully self-driving mode, just tell the car your destination
 - If not, it guesses from your calendar
 - Or it takes you home
 - Let you off and park itself later

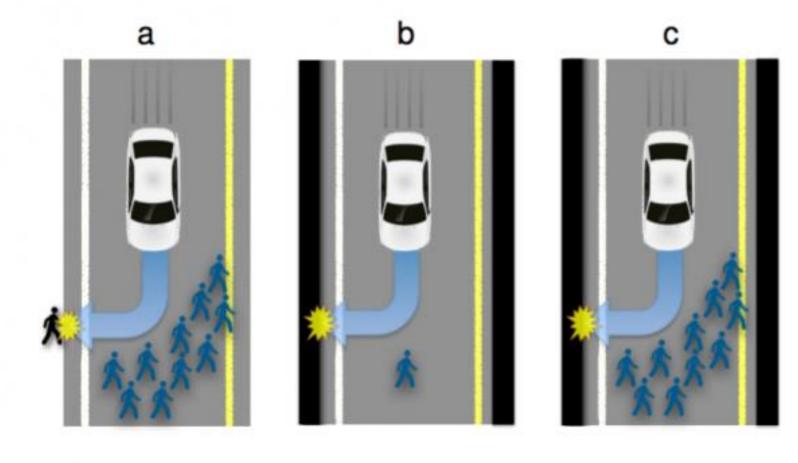


First fatality with Tesla Autopilot

- In May 2016, Joshua Brown died, while using Autopilot mode
- The car struck a tractor trailer that turned left, and crossed the path of the Tesla
- Could not distinguish the white side of the trailer from the bright sky (in sunny weather)



First fatality with Tesla Autopilot


- Engaged a long debate on self-driving cars
 - Although it was not a "self-driving car", just level 2 (partial assistance)
- First fatality after 130 million miles
 - For regular cars US average 1,3 deaths / 100 million miles
- Self-driving cars will make traffic safer
 - Number of accidents decreased with 80% by 2040
- New business model for insurance companies
 - They need also a classification regarding the different levels of automation / autonomy

Ethical issues

- What is the ethical decision to take in case of an unavoidable accident?
 - Minimise the death toll?
 - Protect the passengers in the car?

