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Basics of game theory

* Players

. ,Strategy”

« payoff

« Laws of game
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Historical overview

John von Neumann:

minimax theorem
John Nash:

noncooperative game theory
John Harsanyi:

complete information games
Lloyd S. Shapley:

cooperative theory
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Parts of game theory

Noncooperative games Cooperative games

« Competition » Cooperation and competition
* No communication « Communication

Examples: Examples:

« card games « team games

* board games
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Simple dilemmas

* Prisoner's dilemma
* Iterated prisoners' dilemma (IPD)
* Tragedy of the Commons
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Simple dilemmas

 Prisoner's dilemma

Admit Deny
Admit 5 5 0 10
Deny 10 0 1 1
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Noncooperative game theory

» Perfect information vs. imperfect information
e Zero-sum vs. non-zero-sum
* two vs. more players
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Noncooperative matrix games
A4+4,=0 = A4,=-4

1. strategy 2. strategy n. strategy
1. st. ar a2 a1n
2. st. az1 a2 azn
m. st. am1 am2 amn

aij are the payoffs, where i denotes the strategy of first
player, and j denotes the strategy of second player.
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Noncooperative matrix games (1.)

Ath=0 = A=—h
1. strategy 2. strategy n. strategy
1. st. a a2 a1n b1 = min {aq;}
2. st. ax1 az2 azn b2 = min {a,}
m. st. am1 am2 amn bm = min {am;}
max {b;} =
max {min {a;}}

aij are the payoffs, where i denotes the strategy of first
player, and j denotes the strategy of second player.
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Noncooperative matrix games (2.)

A+4=0 = 4=-4
1. strategy 2. strategy n. strategy
1. st. ar a2 a1n
2. st. az1 a2 azn
m. st. am1 am2 amn
_ _ _ _ - _ min {c;} =
ci=max{ai1} | c2=max{aiz} cn=max{ain} min {max {a;}}

aij are the payoffs, where i denotes the strategy of first
player, and j denotes the strategy of second player.
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Saddle point

Condition of existing saddle point:
i Maxi,_ Minia, } }=,_Min{,; Max{a,} }

Optimal strategy of 1. player and 2. player is
denoted by i, and |°, respectively. Payoff value is
the value of the game : v = a0 and (i% j°, v) triple is
the solution of the game.

ion and Game Theory 11



Equivalence and Interchangeability

* Equivalence: If there are more saddle points —
e.g. (i9%,j% and (i',j') —, then the payoff values of
them are equal, i.e.: a%°= &/

 Interchangeability: furthermore the (i°, j') and
(i1, j° point are saddle points as well.
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Fundamental Theorem of
Game Theory

* Pure — Mixed strategies

 Fundamental Theorem of Game Theory: Every
matrix game with mixed strategy has solution.
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Noncooperative bimatrix game

* At non-zero-sum game the matrixes are
independent and these can be different:
bimatrix game.

« Average payoffs of two players at mixed strategy:

E=p -4-q E,=p -B-q

where p and q are the probability vectors of the two
players.
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Nash equilibrium

A strategy pair (p°, g°) is Nash equilibrium if:

E(p’,q)=E(p.q") Vp
E,(p°,q" )= E,(p".q) Vg




Solvability

A noncooperative bimatrix game is solvable (according
to Nash equilibrium) if every equilibrium possesses
attributes of equivalence and interchangeability.

The value of the game: u® = E,(p°, q°), v0 = E, (p%, q°).
The solution of the game: (p°, q°, u®, v9).
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Dominance

A strategy pair A (p', q') dominates strategy pair
B (p?, g2) at a bimatrix game, if

E(p'.9)=E(p*.q%)
E,(p',q)=E,(p°,q°)

ecision and Game Theory 17



Dominance-solvable game

The iterated elimination of dominated strategies is
one common technique for solving games that
iInvolves iteratively removing dominated strategies.

Problem: What is the situation when the game has
equilibrium and this is dominated by another point?

ecision and Game Theory 18



Cooperative game theory

« Setofplayers: N={1, ..., n}.
« The group of players S € N is the coalition. Some
special cases:

— N is grand coalition,
— @ is empty coalition.
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Characteristic function

« characteristic function : v(S)

consists the maximal payment for each S.
* Inagame (N, v)

the imputation x = (x4, . . ., X,) is

— feasible for S coalition if
z x, <v(S)
ieS

le. = v(.S)

ieS

— acceptable for S coalition if
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Distribution, core
In a game (N, v) the imputation x = (x4, . .., X,) is

- efficient if in =y(N)
ieN

* individual rational if . > v({xl. })

e coalitional rational if this is an efficient and for

every S
le. >v(S)

eS
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Shapley value

At N players in a game v € GN the it" player’s Shapley
value is

SN S| =D)!
o= 3 SHESED

B (S Ui -u(S))

Given any “ordering” of the players, where each order is equally likely,
the Shapley value ¢; measures the expected marginal contribution of
player i over all orders to the set of players who precede her.
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Game theory with engineering
applications

Strategic analysis of transition IPv4 — IPv6
Advertisement strategy of service-quality attributes
Network neutrality

Cooperation in self organizing networks

Energy housekeeping of mobile devices
Transportation systems

Frequency auction
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Frequency auction

Based on number of biddings
« first-price sealed-bid auction
« dynamic (open) auction
Based on items

 Single-unit auctions

« Multiunit auctions
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