Engineering Management BMEVITMMB03

Game theory and its applications

Dr. Gábor Szűcs

BME Department of Telecommunications and Media Informatics

Basics of game theory

- Players
- "Strategy"
- payoff
- Laws of game

Historical overview

- John von Neumann: minimax theorem
- John Nash:

noncooperative game theory

John Harsányi:

complete information games

 Lloyd S. Shapley: cooperative theory

Parts of game theory

Noncooperative games

- Competition
- No communication

Examples:

- card games
- board games

Cooperative games

- Cooperation and competition
- Communication

Examples:

team games

Simple dilemmas

- Prisoner's dilemma
- Iterated prisoners' dilemma (IPD)
- Tragedy of the Commons

Simple dilemmas

Prisoner's dilemma

	Admit		Deny	
Admit	5	5	0	10
Deny	10	0	1	1

Noncooperative game theory

- Perfect information vs. imperfect information
- Zero-sum vs. non-zero-sum
- two vs. more players

Noncooperative matrix games

$$\underline{\underline{A}}_{1} + \underline{\underline{A}}_{2} = \underline{\underline{0}} \qquad \Longrightarrow \qquad \underline{\underline{A}}_{2} = -\underline{\underline{A}}_{1}$$

	1. strategy	2. strategy	n. strategy	
1. st.	a ₁₁	a ₁₂	 a _{1n}	
2. st.	a ₂₁	a 22	 a _{2n}	
m. st.	a _{m1}	a _{m2}	 a _{mn}	

aij are the payoffs, where i denotes the strategy of first player, and j denotes the strategy of second player.

Noncooperative matrix games (1.)

$$\underline{\underline{A}}_{1} + \underline{\underline{A}}_{2} = \underline{\underline{0}} \qquad \Longrightarrow \qquad \underline{\underline{A}}_{2} = -\underline{\underline{A}}_{1}$$

	1. strategy	2. strategy	n. strategy	
1. st.	a ₁₁	a ₁₂	 a 1n	b1 = min {a1j}
2. st.	a ₂₁	a ₂₂	 a _{2n}	b ₂ = min {a _{2j} }
m. st.	a _{m1}	a _{m2}	 a _{mn}	b _m = min {a _{mj} }
				max {b _i } =
				max {min {a _{ij} }}

aij are the payoffs, where i denotes the strategy of first player, and j denotes the strategy of second player.

Noncooperative matrix games (2.)

$$\underline{\underline{A}}_{1} + \underline{\underline{A}}_{2} = \underline{\underline{0}} \qquad \Longrightarrow \qquad \underline{\underline{A}}_{2} = -\underline{\underline{A}}_{1}$$

	1. strategy	2. strategy	n. strategy	
1. st.	a ₁₁	a ₁₂	 a 1n	
2. st.	a ₂₁	a ₂₂	 a _{2n}	
m. st.	a _{m1}	a _{m2}	 a _{mn}	
	c₁=max{a _{i1} }	c ₂ =max{a _{i2} }	 c _n =max{a _{in} }	min {c _j } = min {max {a _{ij} }}

aij are the payoffs, where i denotes the strategy of first player, and j denotes the strategy of second player.

Saddle point

Condition of existing saddle point:

$$\sum_{i=1}^{m} Max\{\sum_{j=1}^{n} Min\{a_{ij}\}\} = \sum_{j=1}^{n} Min\{\sum_{i=1}^{m} Max\{a_{ij}\}\}$$

Optimal strategy of 1. player and 2. player is denoted by i^0 , and j^0 , respectively. Payoff value is the value of the game : $v = a_{i j}^{0,0}$, and (i^0, j^0, v) triple is the solution of the game.

Equivalence and Interchangeability

- Equivalence: If there are more saddle points –
 e.g. (i⁰,j⁰) and (i¹,j¹) –, then the payoff values of them are equal, i.e.: a_i⁰ = a_i¹ =
- Interchangeability: furthermore the (i⁰, j¹) and (i¹, j⁰) point are saddle points as well.

Fundamental Theorem of Game Theory

- Pure Mixed strategies
- Fundamental Theorem of Game Theory: Every matrix game with mixed strategy has solution.

Noncooperative bimatrix game

- At non-zero-sum game the matrixes are independent and these can be different: bimatrix game.
- Average payoffs of two players at mixed strategy:

$$E_1 = p^T \cdot A \cdot q \qquad E_2 = p^T \cdot B \cdot q$$

where p and q are the probability vectors of the two players.

Nash equilibrium

A strategy pair (p^0 , q^0) is Nash equilibrium if:

 $E_1(p^0,q^0) \ge E_1(p,q^0)$ $\forall p$ $E_{2}(p^{0},q^{0}) \ge E_{2}(p^{0},q)$ $\forall q$

Solvability

- A noncooperative bimatrix game is solvable (according to Nash equilibrium) if every equilibrium possesses attributes of equivalence and interchangeability.
- The value of the game: $u^0 = E_1(p^0, q^0)$, $v^0 = E_2(p^0, q^0)$. The solution of the game: (p^0, q^0, u^0, v^0) .

Dominance

A strategy pair A (p¹, q¹) dominates strategy pair B (p², q²) at a bimatrix game, if

 $E_1(p^1,q^1) \ge E_1(p^2,q^2)$ $E_2(p^1,q^1) \ge E_2(p^2,q^2)$

Dominance-solvable game

The iterated elimination of dominated strategies is one common technique for solving games that involves iteratively removing dominated strategies. Problem: What is the situation when the game has

equilibrium and this is dominated by another point?

Cooperative game theory

- Set of players: N = {1, . . . , n}.
- The group of players S ⊆ N is the coalition. Some special cases:
 - N is grand coalition,
 - -Ø is empty coalition.

Characteristic function

characteristic function : v(S)

consists the maximal payment for each S.

• In a game (N, v)

the imputation $x = (x_1, \ldots, x_n)$ is

- feasible for S coalition if

$$\sum_{i\in S} x_i \leq v(S)$$

- acceptable for S coalition if

$$\sum_{i\in S} x_i \ge v(S)$$

Distribution, core

In a game (N, v) the **imputation** $x = (x_1, ..., x_n)$ is

• efficient if
$$\sum_{i \in N} x_i = v(N)$$

• individual rational if $x_i \ge v(\{x_i\})$

 $i \in S$

• coalitional rational if this is an efficient and for every S $\sum x_i \ge v(S)$

Shapley value

At N players in a game $v \in G^N$ the ith player's Shapley value is

$$\varphi_i(v) = \sum_{S \subseteq N \setminus i} \frac{|S|! (|N \setminus S| - 1)!}{|N|!} (v(S \cup i) - v(S))$$

Given any "ordering" of the players, where each order is equally likely, the **Shapley value** ϕ_i measures the expected marginal contribution of player *i* over all orders to the set of players who precede her.

Game theory with engineering applications

- Strategic analysis of transition IPv4 IPv6
- Advertisement strategy of service-quality attributes
- Network neutrality
- Cooperation in self organizing networks
- Energy housekeeping of mobile devices
- Transportation systems
- Frequency auction

Frequency auction

Based on number of biddings

- first-price sealed-bid auction
- dynamic (open) auction

Based on items

- Single-unit auctions
- Multiunit auctions