Engineering Management BMEVITMMB03

Complex decision problems Dr. Gábor Szűcs

BME Department of Telecommunications and Media Informatics

Fundamentals of decision theory

- Problem Owner, Decision-maker
- Decision task = problem
- Tools
- Decision logic

Simple decision tools

- Decision table
- Decision tree

Software tool groups for decision problems

- MSS Management Support System
- ES Expert System pl. MYCIN, DENDRAL
- DSS/GDSS (Group) Decision Support System
- EIS Executive Information System
- ESS Executive Support System
- Others: e.g. Artificial Intelligence, simulation

Decision logics

ALLOCATION type :

- in fix time
- race condition
- limited resource
- OUTPUT: distribution

• CREDIT type:

- unlimited time
- unlimited piece
- requirements
- no race condition
- OUTPUT: yes / no

SELECTION type

- in fix time
- race condition
- viewpoint/respect system
- choosing 1 from more alternatives
- OUTPUT: winner

Circumstances of decisions

- **Decision rules**: All rules of the circumstances
 - E.g. public procurement procedure

Influencing factors

Decision types

- Decisions under certainty
- Decisions with risk
- Decisions under uncertainty

	Q1	Q2	Q3
В	6.1	6.2	6.3
R	6	6.5	7
S	3	6	9
Е	0	6	12

- Allais paradox
- St. Petersburg paradox

• Allais paradox

• A: 1 M\$

B: 10% 5 M\$
89% 1 M\$
1% 0

• Allais paradox

• St. Petersburg paradox

Decision problems in many respects

Multi-criteria Decision Analysis (MCDA) Multi-criteria Decision Making (MCDM)

Multi-criteria Decision Models

- Analytic Hierarchy Process (AHP)
- Analytic Network Process (ANP)
- ELECTRE (Outranking)
- Multi-Attribute Utility Theory (MAUT)

AHP

- Method is based on decomposition and synthesis.
- Pair-wise comparison
- Quantitative and qualitative variables.
- E.g.: Expert Choice software.

Hierarchical structure of AHP method

ALTERNATIVES

AHP procedure

- Let us see C₁,...,C_m criteria in a level of the hierarchy
- The weights corresponding to criteria: $\omega_1, \ldots, \omega_m$

AHP procedure (2)

 Pair-wise comparison of criteria: how much times more important criteria C_i than criteria C_j

 $-\mathbf{r}_{ij} = \omega_i / \omega_j$

- r_{ii} values: R matrix. In ideal case:
 - $-R^*\omega = m^*\omega$
 - where $\omega = [\omega_1, \dots, \omega_m]$

AHP procedure (3)

- Property of matrix R:
 - r_{ji} = 1 / r_{ij}

and

- $-\mathbf{r}_{ij}^{*}\mathbf{r}_{jk} = (\omega_i/\omega_j)^{*} (\omega_j/\omega_k) = \omega_i/\omega_k = \mathbf{r}_{ik}$
- In case of r_{ij} comparisons derived from decision makers:
 ω_i' are the estimated values of ω_i values.
 R'*ω' = λ*ω'
- Solution of eigenvalue problem (linear algebra)
- Rank of R is 1, r_{ii}=1, consistency can be verified by the difference between *m* and maximal eigenvalue

MAUT (Multi-Attribute Utility Theory)

- Base on utility functions
- E.g:

MAUT

Decision procedure:

- Gathering the alternatives, declaration of viewpoints.
- Definition of utility functions.
- Determination of weights of each viewpoint.
- Valuation of all alternatives in each viewpoint.
- Summarization of weighted values.
- Analysis after the assessment, and proposal.

Group decision support methods

- Brain Storming
- Delphi methods
- Nominal Group Technique (NGT)
- Other Creative Problem Solving Processes
- Synectics
- Decision conference