I =
v’ = LLLILOTCLTEL IO T
||||||||||||||||||||||||||||||

|||[|||||||||||| T H ... H O NI ||||
MUEGYETE 1782
Budapest University of Technology and Economics

Department of Telecommunications and Media Informatics

Optimal Resource Pooling over Legacy
Equal-Split Load Balancing Schemes

Krisztian Németh

Ph.D. Dissertation

Supervised by

Gébor Rétvari, Ph.D.

Senior Research Fellow

Budapest, Hungary
2018

Abstract

Communication networks are increasingly, and by now almost completely based on the
Internet Protocol. These networks are continuously being enhanced, posing challenges
to protocol designers, device vendors and network operators. One of the problems they
have to face is related to traffic splitting.

Splitting traffic flows to different data paths can serve as the basis for load bal-
ancing at several places of an end-to-end connection. Unfortunately, by allowing only
equal division amongst the parallel resources, existing technologies often cannot real-
ize the optimal traffic splitting, which can have serious negative consequences on the
network performance.

In this dissertation I present a flexible and efficient traffic splitting method that is
incrementally deployable and fully compatible with practically all existing protocols
and data planes. My proposal is called Virtual Resource Allocation (VRA) and, as
the name implies, it is based on setting up virtual resources alongside existing ones,
as for example virtual links parallel to the physical links. This way one can trick the
legacy equal traffic splitting technology into realizing the required non-equal division
over the physical media.

In my dissertation I propose several VRA schemes, give theoretical bounds on
their performance, and also show that the full-fledged VRA problem is NP-complete
in general. I also provide algorithms, both optimal methods and quick heuristics, that
solve the different VRA problems. I use IP Traffic Engineering with OSPF routing
as an example application of the concept. My simulations show that VRA has huge
practical potential as it allows approaching an ideal traffic split using only a very

limited set of virtual resources.

Kivonat

A kommunikéciés hal6zatok napjainkra szinte teljesen az Internet Protokollt hasznal-
jak. E halézatokat folyamatosan fejlesztik, amely soran a protokollok tervezoinek, a
halozati eszkozok gyartoinak és a szolgdltatéknak egyre tjabb feladatokat kell megol-
daniuk. Az egyik ilyen probléma a haldzati forgalom szétosztasaval kapcsolatos.

A forgalom kiilonb6zé adatutak kozotti megosztasa a terheléskiegyenlités alapjaul
szolgalhat egy végponttdl végpontig tartéd kapcsolat kilonbozo részein is. A jelenlegi
technolégiak azonban gyakran nem képesek az optimalis szétosztas megvaldsitasara,
mivel csak egyenletesen tudjak a forgalmat a parhuzamos eréforrasok kozott szétosz-
tani, ez pedig nagyon hatranyosan befolyasolhatja a haldzatok teljesitményét.

Disszertaciomban bemutatok egy rugalmas és hatékony forgalomszétoszté mod-
szert, amely fokozatosan is bevezethetd és teljesen kompatibilis gyakorlatilag az 0sszes
meglévo protokollal és csomagtovabbitasi rendszerrel. Javaslatomat virtualis eréforras-
foglalasnak (Virtual Resource Allocation) neveztem el, és, ahogy a neve is mutatja, a
meglévo valodi eroforrasok melletti virtualis eroforrasok létrehozasan alapul: példaul
virtualis utvonalakat hozhatunk létre a valodiakkal parhuzamosan. Ezzel a megoldas-
sal rabirhatjuk a meglévd, egyenletesen szétoszto rendszereket arra, hogy a megkivant,
nem egyenlé aranyban osszak el a forgalmat a valoédi eszkozok kozott.

Ertekezésemben tobb kiilonbozd virtudlis eréforrds-foglaldsi sémat javaslok, elmé-
leti korlatokat adok a teljesitményiikre, és azt is megmutatom, hogy a teljes feladat
altalanossagban NP-teljes. A problémakhoz optimélis megoldési algoritmusokat va-
lamint gyors heurisztikdkat is adok. A javaslatom bemutatdsara példaként az OSPF
utvonalvéalasztassal megvaldsitott IP forgalomelvezetés (Traffic Engineering) téma-
korét valasztottam. A bemutatott szimulaciom eredményei aldatamasztjik a javasolt
modszer létjogosultsagat, megmutatva, hogy az idedlis osztasarany nagyon jol meg-

kozelithetd mar kisszamu virtudlis eréforras alkalmazasaval is.

i

Acknowledgements

It was a long and winding road that led me here. It would have been very hard,
if not impossible, to walk this road alone. Fortunately several people accompanied
me along the way. Some precious ones are not with us anymore, sadly, including my
father, and some have been born since then. I am grateful to everyone who helped
and encouraged me to finish what I have started back in 1998.

First of all, I would like to thank my ex-girlfriend Viki (who is now my wife) for
her invaluable, continuous and unconditional support. Thank you so much, Viki. I
am also thankful to our children, Eszter and Roland, without whom, as the joke says,
this dissertation could have been finished many years earlier. While this is certainly
not true, without them this place would be a lot lonelier and much less cheerful. My
parents have helped me in several ways, and again, all I can do is thank them for all.

In the University I had several leaders, colleagues as well as students who helped
me in various ways throughout the years, for which I am grateful. Having Gabor
Rétvari become my scientific advisor was definitely a breakthrough in my progress
towards the degree. With his professional lead I was able to carry out this work within
a few years. I am also indebted to Attila Korosi who helped me with my math-related
questions. His quick way of thinking has always fascinated me. I thank my previous
advisors, Istvan Cselényi, Krzysztof Szarkowicz and Sandor Székely for supporting
me, which also helped me staying at the University for these mostly happy years.
Thank you, gentlemen.

It is impossible to name all those co-workers who helped and encouraged me when
I was writing this dissertation. Jézsef Bir6, Gyula Csopaki, Edit Haldsz, and Tamés
Henk are definitely on this (alphabetical) list, but it is really not possible to include
everybody here as there are so many of them. Please rest assured that if you supported

me, I noticed and appreciate it. I thank you.

1ii

Last but not least, for the simulation evaluation I used “superman”, the High
Performance Computing Cluster of the University. With the help of this excellent
machine my simulations have been completed within weeks, instead of years. This
infrastructure was supported by the grant TAMOP-4.2.2.B-10/1—2010-0009.

v

Koszonetnyilvanitas

Hossza utat jartam be, mire idaig eljutottam. Ezen az uton végigmenni nehéz, sot
minden bizonnyal lehetetlen lett volna egyediil. Szerencsére azonban sokan velem tar-
tottak menet kozben. Néhanyan mar nem lehetnek koztiink — sajnos édesapam sem —,
néhanyan pedig idokozben sziilettek. Halds vagyok mindazoknak, akik biztattak és
segitettek, hogy befejezzem, amit még 1998-ban elkezdtem.

LegelGszor szeretném megkoszonni volt baratnémnek, Vikinek (akit legtobben bi-
zonyara Ugy ismernek, mint a feleségem) a felbecsiilhetetlen értékii folyamatos és
odaadd tamogatasat. Viki, nagyon koszonoém! Szintén hélas vagyok gyerkoceinknek,
Eszternek és Rolandnak, akik nélkiil — ahogy mondani szokas — ez a disszertacio
évekkel kordabban elkésziilhetett volna. Ez természetesen csak vice, de az biztos, hogy
nélkiiliik ez a hely sokkal maganyosabb és szomorkésabb lenne. A sziileim rengeteget
segitettek, minden tekintetben, én pedig tovibbra sem tehetek egyebet, mint hogy
megkoszonom nekik.

Az Egyetemen sok fonokom, kollégam és hallgatom is segitett mind személyes,
mind szakmai tanacsokkal az évek soran, amelyekért nagyon halas vagyok. Az, hogy
Rétvari Gabor a konzulensem lett, valoédi attorést jelentett a munkamban. Az 6 kivalo
témavezetoi munkaja segitségével par év alatt el tudtam késziteni azt, amit e disszerta-
ciéban leirtam. Szintén halaval tartozom Kérosi Attilanak, aki segitett megvalaszolni
a matematikaval kapcsolatos kérdéseimet. Az elképeszto gyors gondolkodasa mindig
lenyligozott. A kordbbi témavezetéim, Cselényi Istvan, Szarkowicz Krzysztof és Szé-
kely Sandor szintén sokat tettek értem, ami ahhoz is hozzajarult, hogy az Egyetemen
maradjak ezekre a javarészt vidam évekre. Koszonoém, uraim.

Lehetetlenség felsorolni azokat a munkatarsakat, akik segitettek és biztattak a
disszertaciém megirdasa kozben. Bird Jézsef, Csopaki Gyula, Halasz Edit és Henk Ta-

mas bizonyosan rajta vannak ezen a (névsor szerinti) listdn, de igazadn nem lehet

mindenkit név szerint megemliteni, mert oly sokan vannak. Ha segitettél nekem, ész-
revettem és halas vagyok érte. Koszonom.

Végiil, de nem utolsésorban, a szimulaciés vizsgalatokhoz az Egyetem ,superman”
nevi szuperszamitégépét hasznaltam. Ennek a csodéds gépnek a segitségével a szimu-
laciéim hetek alatt futottak le, egyébként mindez évekig tartott volna. Ezen infra-
strukturat a TAMOP—4.2.2.B—10/1—2010—0009 projekt tdmogatta.

vi

Contents

1 Introduction
1.1 Related Work

1.2 Organization

2 Virtual Resource Allocation Overview
2.1 Traffic Engineering, OSPF-TE
2.2 Resource Bounds L
2.3 Overview of VRA Optimization Strategies
2.3.1 OSPF Weight Optimization
2.3.2 Overlay Optimization
2.3.3 Peer-Local Optimization
2.3.4 Peer-Global Optimization
2.3.5 Summary of the Optimization Strategies
2.4 Other Use Cases i it

3 Overlay Optimization
3.1 VRA-1IN-1D Problem Definition
3.2 Boundsonthe Error
3.3 Optimal Solution of VRA-IN-1D
3.4 Other Problem Formulations
3.4.1 Application for WCMP

4 Peer-Local Optimization
4.1 VRA-1N-mD Problem Definition
4.2 Attributes of VRA-1N-mD and VRA-IN-mD-Unlimited

vii

10
11
12
13
14
14
15
16
17
17

18
20
21
22
27
29

4.2.1
4.2.2

Completeness of the Problems

Bounds on the Error

4.3 Unlimited Number of Links

4.3.1
4.3.2
4.3.3
4.3.4

Consistency of a VRA-IN-mD-Unlimited Problem
Notes on the Types of the Solution
An LP-based Iterative Solution
A Special Case: Positive Matrix G

4.4 Limited Number of Links

4.4.1
4.4.2
4.4.3

An ILP-based Iterative Solution
A Direct ILP Formulation

A Heuristic Solution

5 Peer-Global Optimization
5.1 VRA-PGO Problem Definition
5.2 Optimal Solutiono

5.3 Computational Complexity

5.3.1
5.3.2

NP-Completeness of VRA-PGO
Inapproximability of VRA-PGO

6 Numerical Evaluation

6.1 Examined Algorithms

6.1.1
6.1.2
6.1.3

Global Optimization
OSPF Weight Optimization

Implementation Aspects

6.2 Simulation ScenarioS

6.3 Simulation Results

6.3.1

Resource Consumption

7 Conclusions

7.1 Summary . o.o.o. ..o
7.2 Possible Future Work

Bibliography

Index

viii

53
53
95
29
99
68

76
76
7
78
78
79
81
83

85
85
87

92

100

Appendix A List of Theses

Appendix B List of Problem Definitions

Appendix C Auxiliary Proofs
C.1 Proof of Theorem 16
C.2 Proof of Theorem 18

C.3 Addendum on Computation Complexity

C.3.1 X3C Reduction

C.3.2 Good Simultaneous Approximation Reduction

Appendix D Publications

ix

102

106

108
108
114
120
120
123

126

Chapter 1
Introduction

Unity is strength. Treating separate network resources as one and sharing it among
users is a technique inherent to the Internet. This scheme, often called the Resource
Pooling Principle [1], can be observed at several aspects of today’s networks. Exam-
ples of this principle include multipath routing, multihoming, Ethernet Link Aggrega-
tion Groups [2], load balancing between application level servers (such as web-servers
or database servers), load balancing in Traffic Engineering. Content Delivery Net-
works [3] are also a form of resource pooling, just as cloud storage and cloud com-
puting [4]. To realize these services, data centers are being installed rapidly, often
utilizing parallel paths, which are, in many of the cases, asymmetric in capacity [5].
Furthermore, several new concepts, such as network virtualization and Software De-
fined Networking (SDN) [6] appeared in the recent years, which also take advantage
of the pooling principle in order to optimally exploit the network resources.

This list is far from being comprehensive, yet it shows the versatility of scenarios
where resources are pooled. There are several reasons to do so. First, its inherent
redundancy increases the robustness against component failures. Second, by dynami-
cally allocating more resources for a temporal peak usage higher level services can be
offered on the same infrastructure, utilizing statistical multiplexing. Third, having a
greater freedom to couple demands and resources more efficient network utilization

can be achieved along with a more scalable service.

Atraffic volume

e T

(a) Demands (b) Without resource pooling (¢) With resource pooling

Figure 1.1: Resource pooling example

A simple example of resource pooling is shown in Fig. 1.1'. If the links and the
demands are coupled in a one-to-one fashion (Fig. 1.1(b)) then lossless transmission is
not possible. With pooled resource usage (Fig. 1.1(c)), however, both demands can be
forwarded without data loss. The latter scenario is also more robust against failures:
if one link goes down, without pooling the service is completely denied for the related
demand. Shared usage of the links, however, guarantees some level of service for both
demands in case of a single link failure.

The implementation of resource pooling, however, is challenging as the load bal-
ancers can often split the incoming demands only roughly equally amongst the re-
sources (because it is simple and scalable this way). As an illustration, a load balancer
between two web-servers typically splits the incoming requests in half, which heavily
hinders the overall performance if one of the back-end servers are for instance twice
as powerful as the other. Likewise, in routing protocols such as OSPF [7] or IS-IS [§]
Equal-Cost Multipath (ECMP) is used to distribute the traffic over the shortest paths
with the same cost. ECMP, however, is only able to split traffic between these paths
uniformly, even if they have different capacities, which poses a giant barrier when
aspiring to an optimal Traffic Engineering [5, 9, 10, 11].

As a solution, I introduce a technique called Virtual Resource Allocation (VRA)
to realize optimal resource pooling over legacy equal-split load balancing schemes.
The basic idea of VRA is to virtually multiply the available parallel resources so
that the load balancing system sees a greater number than what actually exists. The

virtual resources are then grouped and assigned to the physical ones, thereby tricking

!This figure is based on Fig. 2 of paper [1].

CHAPTER 1. INTRODUCTION 3

the legacy equal splitting technology into approximating the required non-equal load
division over the existing media.

To continue the previous example, one can install two virtual machines on the
more powerful web-server and present them, along with the unmodified less powerful
server, to the load balancer. It then sees three servers, and by realizing equal split
between them the higher capacity one will eventually end up with 2/3 part of the total
load, as desired. In a similar fashion, installing virtual links or paths alongside the
physical ones (which, in practice, can be carried out via some administrative settings),
ECMP’s equal-split limitation can be amended. If, for example a 25% — 75% traffic
proportion is desired on two, equal cost shortest paths A and B, then by installing
two virtual paths parallel to B, and presenting these four to ECMP, it will happily
realize the expected traffic split rate.

The engineering problem to solve in VRA is then to come up with an optimal
setting of virtual resources so that a predefined non-equal traffic split ratio is ap-
proximated sufficiently with limited resource usage. Furthermore, placing VRA in a
broader scope, other, network-wide goals can be targeted as well.

One advantage of my VRA proposition is that it is incrementally deployable,
since it is perfectly fine to set up virtual resources only at a subset of the network
nodes. Moreover, unlike most other proposals, VRA is fully compatible with existing
hardware or software components in the network. Finally, VRA is extremely efficient,
as my numerical results indicate that by adding only a small set of virtual resources
the ideal traffic split ratio can be very well approximated, resulting in substantial
performance gain.

Later on in this dissertation Traffic Engineering (TE) in IP networks will be used
to introduce the VRA proposal. The idea is to set up virtual links alongside the
existing ones and present them to OSPF, as described above. This way near-optimal
TE can be achieved without any hardware or software modification on the network
infrastructure. Let me emphasize, however, that TE is just a descriptive example
application of the VRA concept, and its possible fields of usage are much broader. To
name one other use case, in certain SDN-based scenarios VRA can be used for rule

table optimization.

4 1.1. RELATED WORK

1.1 Related Work

In this section I briefly overview the most relevant publications.

Achieving near-optimal traffic engineering solutions for current OSPF/IS-1S net-
works [12] targets the same problem as I do in my TE example: overcoming the equal
split limitation of the OSPF/IS-IS routing protocols. Their basic idea is to modify
the forwarding table and this way controlling the set of shortest paths assigned to
different routing prefix entries. If this is done properly, the ideal traffic split ratio can
be approximated without changing the routing protocols or the forwarding mecha-
nism of the routers. However, unlike at VRA, in this proposal the control path of the
routers are affected by the modified way of the forwarding table maintenance.

Penalizing Exponential Flow-spliTting (PEFT [13]) is a proposal for a provably
optimal traffic engineering using link state protocols and hop-by-hop forwarding. Dis-
similarly from VRA, here the traditional operation of the routing protocols is modified:
not only the shortest paths are used but all of them, and the amount of traffic on
a path depends on the total path length. PEFT provides quick and optimal traffic
engineering, but at the expense of modifying the routing basics and using unlimited
number of next hops.

Weighted Cost Multipath (WCMP [5]) targets unequal traffic splits at data centers.
It assumes SDN-capable switches, yet the installed rules are based on longest prefix
matching, just like in the case of a traditional routing protocol. The WCMP proposal
assigns weights to each egress port in a multipath group, and realizes traffic split
proportional to the weights by essentially adding several duplicated entries to the
multipath forwarding table. The total number of table entries is constrained, as in
the VRA case. On the other hand, using SDN rules enables the designers to treat
each demand separately, avoiding the unfortunate coupling of independent demands,
which happens in my VRA-1IN-mD problem presented in Section 4.1.

WCMP is therefore similar to my work both in terms of the goal and the applied
technology (longest prefix match-based forwarding). The similarities continue if we
look at the WCMP problem formulation. Their fundamental mathematical problem
is perfectly identical to my VRA-1IN-1D case (see Sec. 3.1): find a set of integers that

sums to a low number and their relative quotients approximate a given ratio. Even

CHAPTER 1. INTRODUCTION d

the error function is essentially the same across the two papers: the maximum of
ratios of the actual and the intended traffic per output ports.

While paper [5] proposes heuristic solutions only, my algorithms, which can di-
rectly be applied to the WCMP problems, provide optimal solutions for this case and
not just approximations. Furthermore, my proposals can achieve this with comparable
or even smaller computational complexity.

Fibbing [14] is a fresh proposal aiming to compound the advantages of traditional
routing protocols (primarily: scalability and robustness) and the ones of SDN-based
routing (easy manageability and flexibility). The basic idea of Fibbing is to inject
fake nodes and links through standard routing protocol messages, thereby effectively
“lying” to other participants of the routing. The applicability of Fibbing for per desti-
nation load balancing with uneven splitting ratios has recently been demonstrated [15].
If a routing has a single shortest path for a destination and two parallel paths are to
be used with equal traffic share, advertisements of a fake node and a fake link has
to be injected to the network. Likewise, if for example 33%-67% traffic ratio is to be
achieved in an unequal load sharing case then two fake nodes and links have to be
advertised. My VRA-1N-1D algorithm (Sec. 3.1) can be used with Fibbing to find the
best approximation of an arbitrary split ratio using bounded number of fake entities.
Nevertheless, it is yet unknown if the operators will favor the advantages provided by
Fibbing over the extra abstraction level it requires.

Niagara [10] is another SDN-based proposal, which provides flexible traffic split-
ting between load balancers. Its goal is inherently the same as mine: to divide the
incoming traffic (towards different servers in this case) according to a given ratio.
This is achieved by a set of rules for selecting the next hop, taking into account the
destination IP address and some of the least significant bits of its source IP address,
too. The goal is to approximate the given split ratio with a small number of rules.

The underlying mathematical problem is similar to mine: try to approximate
a given ratio by the sum of fractions of small integers. In VRA I will mostly use
fractions with common denominator, Niagara uses sums of 1/2°. T will aim for a small
denominator, in the Niagara case the number of terms in the sum should be kept low.
With some clever enhancements to Niagara negative terms can be allowed in the sum

as well (e.g., 1/441/16—1/64) and by sharing rules among different traffic aggregates

6 1.1. RELATED WORK

the number of rules can be further lowered. This latter case is somewhat similar to
my VRA-IN-mD (see Sec. 4.1) problem.

Niagara, just like WCMP, can treat different demands independently of each other,
and by using the source address as well for rule creation it can achieve a more concise
rule table than WCMP. As shown in Sec. 5.1 of [10], NTAGARA utilizes a greedy algo-
rithm to minimize the total number of rules for multiple aggregates. I have adopted
this idea in Alg. 3.4 (p. 28), and proven to be optimal in Sec. 3.4. Niagara seems
to be a promising and powerful tool. On the other hand, VRA poses much lower
requirements on the network, and is therefore more easily deployable.

COYOTE [16] is recent proposal applying the VRA concept. It is designed to be a
readily deployable TE scheme for robust and efficient network utilization. COYOTE
takes as input a capacitated network, and a set of traffic demands with a source
and destination node and a traffic volume range (so-called “uncertainty bounds”),
within which the traffic amount can change arbitrary. It then calculates static traffic
splitting ratios that are optimized with respect to all scenarios within the uncertainty
bounds. These ratios are then realized in the network by combining the Fibbing way
of injecting fake protocol messages and some of my algorithms to optimize the number
of the fake entities.

Data centers are a special and nowadays very important field of application of
load balancing. In a data center high speed interconnections are required between
the nodes, which are typically realized by parallel data paths [17]. These paths, on
the other hand, are often asymmetric in capacity [5], demanding an adequate load
balancing technique. There are several techniques and proposals for this purpose and
I highlight some of the most important ones below.

ECMP [18] and the flowlet-based Flare [19] are traditional choices in data cen-
ters to realize multipathing. They, however, can only split the traffic evenly and not
proportionally to the available resources if the parallel paths are asymmetric in ca-
pacity. One possible workaround is to handle the large “elephant” flows separately,
like Hedera [20] does. WCMP is also intended to be used in data centers, just like
Presto [21], which realizes load balancing in the soft network edge (virtual switches)
and DRB [22], which is a per-packet routing algorithm for data centers. FlowBen-
der [23] tackles the issue at the flow level, by taking advantage of the congestion
notifications. CONGA [24] and HULA [25] operate with flowlets, handling the traffic

CHAPTER 1. INTRODUCTION 7

at a finer granularity. Both use an explicit feedback mechanism. For CONGA it is
signaled leaf-to-leaf, while HULA uses periodic probes with a distance vector style
distribution of the network utilization information. DRILL [26] slightly modifies the
data plane to be able to handle very short term congestions. Finally, LetFlow [27]
takes advantage of the realization that the size of the flowlets changes automatically
with the traffic conditions on their path. Using this elastic property LetFlow can reach
nearly as good performance as the ones that use information on the global traffic con-
ditions of the data center, like CONGA, but by making very simple decisions based
on local information only.

The actual realization in the data plane of a predefined (equal or non-equal) split-
ting rate is out of the scope of my dissertation, but such a functionality is naturally
required for the traffic splitting. This subproblem is not straightforward, either. A
packet-based solution can very accurately achieve the required splitting ratio, but it
may cause reordering of datagrams of a single flow, which could cause disturbances
in the higher network layers [19]. Using network flows as the unit of splitting, on the
other hand, may be a less exact solution [28]. Accordingly, an intermediate approach,
the so-called flowlet-based splitting has been proposed [19] and it is now available
in commercial routers and servers [29]. Another—in a sense packet based—option
is the increasingly popular Multipath TCP (MPTCP, [30]), which has recently been
incorporated into the flowlet-aware HULA in the MP-HULA proposal [31].

The packet-to-interface mapping is usually realized via hashing. In its simpler form
hashing only supports equal split, but a table-based hashing can be used to implement
unequal split ratios [32]. Algorithm 3.1 (see p. 25) could actually be used to compute
the optimal thresholds or indexes in such algorithms (see Sec. IV.B in [32]), but if
the number of bins is much larger than the number of outgoing links then simpler
approximation algorithms would suffice as well.

Some related work focus on the wutility of splitting. Papers [33] and [34] examine
the performance gap between a splitting and a non-splitting scenario under various
assumptions. If traffic splitting is allowed it is often constrained, just like in my work.
In [35] the number of paths available for a demand is limited, which is similar to my
Overlay Optimization problem discussed in Chapter 3. However, there the authors
aim for network utility maximization, which means to maximize the aggregate utility

of each source-destination pair, where the utility function is a concave, increasing,

8 1.1. RELATED WORK

Topic Papers referenced Related contribution
Optimal Traffic Achieving near-optimal. .. [12], Thesis Groups 1, 2, 3 in
Engineering PEFT [13], COYOTE [16] Chapters 3, 4, 5
Flexible traffic Achieving near-optimal. .. [12], Thesis Group 1 in
splitting WCMP [5], Niagara [10], Chapter 3

Fibbing [14] (partially),
COYOTE [16] (partially),
Utility of splitting: [33], [34], [35], [36]

Multipath WCMP [5], Flare [19], Hedera [20], Thesis Group 1 in
support in Presto [21], DRB [22], Flowbender [23], Chapter 3
data centers CONGA [24], HULA [25], DRILL [26],

LetFlow [27], MP-HULA [31]
Realization in the Summary: [28], Hashing Not in the immediate
data plane performance: [32] scope of this work

Table 1.1: Summary of Related Papers

continuous function of the throughput. I have, on the other hand, worked with fixed
demands for the source-destination pairs, where transferring less is unsatisfactory
and transferring more is superfluous. This corresponds to a non-continuous utility
function. Accordingly, I have aimed for maximum link load minimization, which is a
fundamentally different objective from network utility maximization. Finding the op-
timal traffic values for the sources and the best routing simultaneously while obeying
the path cardinality constraint is practically intractable so the authors had to revert
to heuristic solutions.

A follow-up of this work is presented in [36], where instead of the number of paths
the split ratio granularity is constrained. This is again similar to my Overlay Opti-
mization, however in [36] the demands are split into exactly p parts whereas in my
work it is at most p (F < @ with my notations). Furthermore, their objective is
still the network utility maximization while mine is the maximal link load minimiza-
tion.? Due to these dissimilarities the results, while being similar, are not directly
comparable; nevertheless, they complement each other in the field of unequal traffic
splitting.

Table 1.1 shows a short summary for this Related Work section indicating the

association between the references and the different parts of this dissertation.

2Note that [36] also refers our paper [37], and points out this difference.

CHAPTER 1. INTRODUCTION 9

1.2 Organization

This dissertation consists of seven main chapters and an appendix. After this Intro-
duction, Chapter 2 introduces the VRA concept with some simple examples. It also
covers the different possible constraint types and the potential optimization strategies.
Chapters 3, 4 and 5 carry my main theoretical results about different versions of the
original problem: Overlay Optimization, Peer-Local and Peer-Global Optimizations,
respectively. The numerical evaluation, which includes my algorithms as well as the
existing best-practice solution, is presented in Chapter 6. Chapter 7 concludes this
dissertation, also incorporating a section on possible future work.

After the Bibliography and the Index, in Appendix A the list of my theses is
presented. Appendix B lists the problem definitions given throughout this work. Ap-
pendix C contains proofs that were too long to fit into the main text without disturb-

ing its readability. Finally, Appendix D lists my scientific publications.

Chapter 2

Virtual Resource Allocation

Overview

In this section I present an overview of the Virtual Resource Allocation concept, using
Traffic Engineering as a descriptive example.

The idea behind VRA is fairly simple and is best explained by a small sample
problem. Consider the triangular network shown in Fig. 2.1(a). Suppose we would like
to transfer 30 units of traffic from A to C' without overutilizing any of the links. Using
stock OSPF would allow us to set the link weights!, thereby we could easily create
two equal cost shortest paths (i.e. paths with minimal total cost/weight): A— B —C
and A—C', by using for example the weights shown in Fig. 2.1(b). On the other hand,
OSPF ECMP only allows splitting the traffic equally between the shortest paths
implying a 150% load on links A — B and B — C.

If, however, we could set up a virtual link on top of the existing link A — C
and expose it to OSPF (see Fig. 2.1(c)), it would happily split the traffic in three,
sending one third on path A— B — C and the rest on physical link A—C' (Fig. 2.1(d)).
Naturally, installing a virtual link over physical link A—C' does not change its capacity,
it only enables OSPF ECMP to use its full potential. The link weights would also
remain unchanged, and the new virtual link would have the same weight as the
respective physical one. By this simple administrative intervention we can route the

traffic through this network without exceeding the link capacities.

Link weights are also often called link costs, link metrics or SPF (Shortest Path First) metrics.
I will use these terms interchangeably.

10

CHAPTER 2. VIRTUAL RESOURCE ALLOCATION OVERVIEW 11

o >

10 20

10 [1] 10 i A
8® >0 g~ . >'c pg®—— >, g " >cC
(a) Original topology (b) Link weights and (c¢) Adding a virtual (d) Link weights and
with link capacities shortest paths link shortest paths

Figure 2.1: A triangular network. Demand: A — C' : 30

There are several possible ways to set up a virtual link parallel to an existing
one. These options include Ethernet Virtual LANs (VLANs), IP-IP tunnels, Generic
Routing Encapsulation (GRE) tunnels, etc. The exact method of setting up this
Layer 2 connection is out of the scope of this dissertation, I only focus on the effect

of the virtual links on the network performance.

2.1 Traffic Engineering, OSPF-TE

Traffic Engineering (TE) [38] is the scientific area of performance management in
operational communication networks. Several methods exist for assigning traffic flows
to data paths and thereby approximating optimal network utilization, perhaps the
most well-known being MPLS [39] with RSVP-TE [40] (MPLS-TE [38]). However, for
a network with N nodes and a full traffic matrix it requires N? label switched paths.
Either for this or for other reasons some operators are reluctant to deploy MPLS-TE
in their network.

A less demanding alternative is OSPF Traffic Engineering (OSPF-TE). Its basic
idea is to adjust the administrative link costs so that the shortest paths calculated
by OSPF will map exactly to the ones chosen by the administrator. These paths may
be a result of an adequate linear program or some related heuristics [41]. The link
costs can be inferred from the dual of a similar linear program [42]. There is, however,
a fundamental problem with this solution. It may result in several parallel equal

cost shortest paths, with different amount of traffic to be transmitted over them. On

12 2.2. RESOURCE BOUNDS

the other hand OSPF ECMP provides only even split? and consequently for certain
networks the quality of OSPF-TE can become arbitrarily poor compared to optimal
TE [9].

Finding the best link weight configuration for a network with OSPF ECMP (a
process called “OSPF weight optimization”) is not straightforward, either. It is well
known to be NP-hard [9], and as a recent study revealed even approximating it by a
computationally efficient algorithm within any constant ratio is infeasible [43]. Still,
there are proposed weight optimization heuristics that perform well in real-life sce-
narios [44, 45].

2.2 Resource Bounds

We shall see that generally a network using VRA performs better as the number of
applicable virtual links grows. In practice, however, the number of next hops one can
provision for a particular destination entry in the routing table is typically limited
by the OSPF implementation, in line with Section 16.8 of the OSPF RFC [7]. For
example, in many Cisco, Ericsson and Juniper routers this limit is adjustable, but
the maximum allowed setting is 16 [46, 47, 48]. Similar limits exist for other routing
protocol implementations, like EIGRP, IS-IS, RIP [46].

In other use cases similar bounds may exist. For example in SDN the number of
rules to be installed have got a maximal value, too. For WCMP and Niagara this limit
is in the order of several hundreds to several thousands. This is much larger than the
number of allowed next hops in OSPF ECMP, but the important point is that there
exists an upper bound.

On that ground, I shall also study the form of VRA, when an upper limit is given
on the applicable resources. I will examine the following three models, which are

important from theoretical and/or practical point of view:

1. Unlimited Resources. In this simple case we pose no upper bound on the maximum

usable resources. Certainly, this approach is not directly applicable in real life

2The rationale for OSPF ECMP supporting equal-splitting only is out of the scope of this work.
Nevertheless, two likely reasons are: (1) the link metrics do not contain the necessary information
about the required split ratio, and (2) allows simpler hardware implementation in the data plane [32].

CHAPTER 2. VIRTUAL RESOURCE ALLOCATION OVERVIEW 13

settings, but in some scenarios solving this simpler problem will lead to the

solution of the more complicated ones.

2. Bounded Total Resources. In this model the total number of resources, including
the real and virtual ones, are limited. For example in Sec. 3.1 the total number
of outgoing links used for a demand is bounded by a constant). In this case, as
@ is fixed, the higher the number of used physical links, the smaller the number

of allowed virtual links.

3. Bounded Virtual Resources. Here the number of virtual resources is limited by a

constant R, which is independent of the number of existing physical resources.

2.3 Overview of VRA Optimization Strategies

As shown above, installing virtual resources (virtual links in this particular case) in
a pure OSPF ECMP environment can reduce the congestion in a network. It is not
straightforward, however, where and how many virtual links to install in order to
attain the ideal TE scenario. I propose several virtual resource allocation strategies,
each aiming to answer these questions.

Unless otherwise stated, throughout this dissertation the applied metric of TE
optimality is the widely adopted Mazimal Link Utilization (MLU). The link utilization
is defined as the link traffic volume divided by the link capacity, and the MLU is the
maximum of this measure over all the links of the network. The goal is of course to
minimize the MLU.

The different VRA approaches are introduced using the example network shown
in Fig. 2.2. The only demand to route is from A to D, with a volume of 35 units
of traffic. Clearly, the optimal solution fully utilizes all the links, resulting in MLU
of 1.0. On the other hand, achieving this in an OSPF routing environment is not a
trivial task. Let us limit the number of allocated virtual links per node to R = 4 (cf.
Bounded Virtual Resources in the previous section); or the total number of usable
next hops for a destination to @@ = 6 (Bounded Total Resources model), which are
identical in this case.

This example is used in the following subsections to enumerate different TE strate-

gies, which are discussed in depth in the upcoming chapters.

14 2.3. OVERVIEW OF VRA OPTIMIZATION STRATEGIES

5
fe—> >0

U
A' 28 'D

Figure 2.2: A capacitated example network. Demand: A — D : 35

2.3.1 OSPF Weight Optimization

In this simplest scenario we are not utilizing any kind of virtual resources. Conse-
quently, our degree of freedom is limited to setting the link weights, so that running
OSPF ECMP over the shortest paths will generate optimal result (realizing OSPF-
TE). I will use this case as one of the reference points in my evaluation.

In the current example the best we can do is having one minimum cost path,
A — D, by setting for example all link weights to 1. This causes MLU of 35/28 = 1.25.
(See Table 2.1 for the MLUs of this example.)

2.3.2 Overlay Optimization

In this important scenario I suppose that a set of source-destination tunnels are al-
ready set up; yet, splitting the traffic between these tunnels have to be done somehow.
Having MPLS-TE with a Path Computation Element (PCE) or some other kind of
advanced means at our disposal, this problem can be tackled relatively easily. As
another example, Cisco Express Forwarding (CEF) allows traffic splitting roughly
proportionally to the MPLS tunnel bandwidth [49].3 In many cases, however, no such
tool is at hand, only the pre-allocated tunnels are present, and OSPF has to be used to
transfer the traffic through this overlay network. In this scenario we can still achieve
a near-optimal traffic distribution, by presenting virtual resources, in this case virtual
paths (i.e., virtually multiplicated tunnels), to OSPF.

To examine this scenario, suppose we have three paths (tunnels) already set up, as

shown in Fig. 2.3. If proportional load sharing was not implemented and these paths

3Note that even this implementation uses fractions of small integers to approximate the desired
split ratio, just as I propose in this dissertation. In CEF the Bounded Total Resources model is used
with @@ = 16.

CHAPTER 2. VIRTUAL RESOURCE ALLOCATION OVERVIEW 15

Figure 2.3: Paths for Overlay Optimization

were exposed to OSPF, it would split the traffic in three equal portions, resulting in
a utilization factor of (35/3)/2 ~ 5.833 on link B — D.

Nevertheless, we could apply virtual paths to optimize the traffic. We would put
the maximum allowed 4 virtual paths to the one hop path A — D, resulting in an
5 : 1 : 1 traffic split ratio. In this case the MLU (still on B — D) would drop to
(35/7)/2 = 2.5.

We are even better off if we allow not to utilize some of the paths at all. In this case
we could disregard path A — B — D, and use the 4 virtual links to A — D, splitting the
traffic in 5 : 1. Now the maximal link utilization is on link B — C: (35/6)/5 ~ 1.167.

In this scenario traffic splitting occurs within an overlay network of pre-allocated
tunnels, implying the name Quverlay Optimization. I will refer to the latter case, where

not all the paths are used, as Quverlay Optimization with Path Exclusion.

2.3.3 Peer-Local Optimization

In this scenario there is no overlay network and traffic optimization takes place directly
on the physical infrastructure. During the optimization the link weights are adjusted,
and virtual links are set up.

We first compute the optimal routing, which is trivial in our example: fully utilize
each link. Next, the link weights have to be set accordingly, meaning in this case that
each of the three paths shown in Fig. 2.3 would be a shortest path. Fig. 2.4(a) shows
a sufficient weight allocation. Finally, for each node where traffic splitting occurs,
the desired split should be approximated by applying virtual links. This is done for
each node individually, independently on the other nodes, hence the name Peer-Local

Optimization.

16 2.3. OVERVIEW OF VRA OPTIMIZATION STRATEGIES

(a) Link Weights (b) Peer-Local (c) Peer-Global
Optimization Optimization

Figure 2.4: Peer-Local and Peer-Global Optimization

In our case at node A the 7 : 28 split can be achieved exactly by adding 3 virtual
links to A—D (see Fig. 2.4(b)). At node B, however, the 5 : 2 ratio cannot be perfectly
realized by using only 4 virtual links (5 would be enough, though). The best we can
do is allocating 2 virtual links to B — C. Thus the optimal virtual link allocation
results in (7-3/4)/5 = 1.05 utilization on links B — C and C' — D, which is the MLU

in this case as well.

2.3.4 Peer-Global Optimization

There is a fundamental problem with the previous approach: as the errors of the
local optimizations propagate downstream with the data flows they encounter other
imperfect splitting points, whereby local errors can enlarge or weaken each other’s
effect. The unintended effects of this kind of cascade errors can be avoided by minimiz-
ing the errors concurrently, in a centralized manner. This is what I call Peer-Global
Optimization.

In this case we determine both the link weights and the number of applied virtual
links for each physical link simultaneously. Just as with the previous approaches, at
this point I do not detail how to do it, only describe its potential. In the example
network the optimal global solution uses the same link weights as Peer-Local Opti-
mization (see Fig. 2.4(a)) and the virtual link provisioning is plot in Fig. 2.4(c). With
this allocation the MLU will be on link A — D: (35-5/6)/28 ~ 1.042.

Notice that this result is better than the one for Peer-Local Optimization. This

is because we sacrificed the otherwise realizable perfect split at node A in order to

CHAPTER 2. VIRTUAL RESOURCE ALLOCATION OVERVIEW 17

Optimization strategy MLU
OSPF Weight Optimization (no virtual links) 1.25
Overlay Optimization 2.5
Overlay Optimization with Path Exclusion 1.167
Peer-Local Optimization 1.05
Peer-Global Optimization 1.042
Optimal Solution 1

Table 2.1: Performance of the different optimization strategies

lower the error downstream, at node B. This trick would hardly be possible using

local considerations only.

2.3.5 Summary of the Optimization Strategies

The maximal link utilization of the different optimization strategies for our simple
rectangular example network are shown in Table 2.1.

Although the main purpose of this example was to give a quick insight into the
different TE approaches, the listed results also suggest that OSPF-TE enhanced by
VRA may result in considerably better network performance than pure OSPF-TE.
Actually, in this case Peer-Global Optimization approaches the theoretical optimum
by only 4% —without using any kind of advanced traffic engineering technology. More

realistic numerical studies are presented in Chapter 6.

2.4 Other Use Cases

It is important to emphasize again that the deployment of VRA algorithms are not
limited to Traffic Engineering. Several other use cases are possible, including SDN rule
optimization for WCMP or minimization of Fibbing virtual link and node numbers,
as discussed in Sec. 1.1. See also Sec. 3.4.1 for application of VRA for WCMP.

In the following chapters I explain in detail, formalize and analyze these VRA
optimization approaches. For the sake of simplicity in delivery I will continue to use
TE as the scenario for VRA, keeping in mind that most of my algorithms can be used

more generally.

Chapter 3
Overlay Optimization

This chapter is devoted to Overlay Optimization [37], which has been shortly intro-
duced in Sec. 2.3.2. The basic assumption is that end-to-end tunnels are already set
up, using MPLS-TE for example, and OSPF ECMP is deployed on top of this overlay.

A sample scenario is plot in Fig. 3.1(a). In this simple transit network there are
three edge routers A, B and C, and a full mesh MPLS overlay is realized between
them containing two paths per router pair. This MPLS overlay, in turn, is seen as an
IP topology deployed on top, which runs plain OSPF as a routing protocol. Easily, if
the ideal traffic splitting ratios are like the ones given in the figure then this traffic
allocation is impossible to implement with ECMP. With my proposed technique,
however, we can set up 4 virtual links' (one between A — B and three between A —C)
to obtain exactly the required splitting.

The beauty of Overlay Optimization is that traffic splitting only occurs at the
source nodes, meaning that the demands can be treated separately from each other.
For example, adding virtual links between A and B does not affect the transmission
of the other demands in any way.

Overlay Optimization can also be used in the more general case, when only a
capacitated network and the demands are given, and we can assume the ability of
setting up (possible parallel) end-to-end tunnels. In this case we first have to calculate
a set of end-to-end tunnels, then use the VRA Overlay Optimization method over

these paths. The major steps of my proposed technique are shown in Fig. 3.1(b).

IThe phrase “virtual path” could be more appropriate in this case, but for simplicity I continue
to call them virtual links.

18

CHAPTER 3. OVERLAY OPTIMIZATION 19

network +
. - demands
link capacities

multi-commodity
flow problem LP

primal solution

per link
per demand
traffic

| path decomposition |

route(s) for
each demand

(a) Overlay Optimization example (b) Overlay Optimization with
tunnel /route setup

Figure 3.1: Overlay Optimization

The LP (Linear Program) for the multi-commodity flow problem, which allows
branching [50], can be solved in polynomial time and supplies the per link per demand
traffic volumes as the primal solution. The next step is to combine these per link traffic
volumes into end-to-end routes: generally there is more than one route for a demand,
each with a possibly different traffic share. This is called path decomposition (or
subflow decomposition), which can be done in several ways, resulting in higher or lower
total number of routes. There are polynomial time algorithms for the decomposition,
like SimPol proposed in [51], but finding the minimal number of routes is a strongly
NP-hard problem [52], which cannot even be efficiently approximated better than
some fixed constant [53].

The final, and for now the most important step is denoted by VRA-1N-1D in the
figure, which stands for “VRA for One Node, One Demand”. Indeed, as explained
above, here each demand can be treated separately, and splitting only occurs at their
sources. This means that the VRA problem can be decomposed into D independent
VRA-1IN-1D problems, easing the underlying mathematical problem substantially.

Using the method summarized in Fig. 3.1(b) I will be able to compare Overlay

Optimization with the other techniques, as described in the Evaluation section.

20 3.1. VRA-1IN-1D PROBLEM DEFINITION

Notation Description

k number of outgoing links used

g1, 92, -+ -, g € Z* desired traffic volume per outgoing links

Go=F g total traffic volume

hi, ha, ..., hg actual traffic volume per outgoing link

Ui=hi/gi error on the ith outgoing link

U = max; U; error of a virtual resource allocation

€1, €9, ..., €k number of allocated links (physical and virtual together)
E=Y" e total number of allocated links

QeZr upper bound on the total number of links

Table 3.1: VRA-1N-1D notations

The rest of this chapter is devoted to solving the VRA-1IN-1D problem, which is

a crucial step of Overlay Optimization. I start with a precise problem definition.

3.1 VRA-1N-1D Problem Definition

We are given a single node, where the traffic of a single demand has to be split. It is
supposed to use k outgoing links (or paths/tunnels, but for simplicity I will use “link”
in the remainder of this section), each with g1, go, ..., gx desired traffic volume (see
Table 3.1 for a list of notations). We can safely suppose that g; € Z".? Furthermore
let Gg = Zle gi-

Our objective is to share the traffic over the outgoing links using OSPF ECMP
such that the actually emerging hy, hs, ..., hy subflow values are as close as possible
to the nominal g1, g9, ..., g subflow volumes. Here “closeness” between the ith
subflows is defined as the per link error U; = h;/g;, and the ultimate error metric to
be minimized (U) is the maximum of the per link errors.?

Note that this time I compare the actual traffic to the desired traffic volume, not
to the link capacities (MLU). The reason for this is that VRA-IN-1D is just a part

2Using integers for the traffic volumes simplifies the analytical study of the problem. On the
other hand, it is not a real restriction, as any rational division ratio can be expressed this way. The
absolute values of the volumes can be varied by changing the unit, so this should not cause problem,
either. For example 1.5 Mbps is not an integer value, but 1500 kbps certainly is.

3Note that I refer to U; and U as “errors”, but in fact they represent actual-to-required traffic
ratios. Usually zero or close-to-zero errors are preferred, but in this case U = 1 is the ideal condition.

CHAPTER 3. OVERLAY OPTIMIZATION 21

of Overlay Optimization, which only focuses on realizing the traffic split rate given
by {g;}. This approach also makes VRA-1IN-1D reusable in other resource pooling
schemes, like WCMP (SDN) and Fibbing, as described in Sec. 1.1. Certainly the MLU
metric can be used for Overlay Optimization as a whole, as shown in Chapter 6.

To reach our objective, I apply virtual links parallel to the physical ones. Let e;
denote the total number of (virtual and physical) links in place of the ith physical
link, and E =}, e; the total number of allocated links. To save space, I only examine
the case without link disabling possibilities (i.e., no “Path Exclusion”: e; > 0).

Applying the equal-split principle of OSPF ECMP we get:

i Goe; :
hi:GQ ke = 06, 1=1...k
and) G
U:max—i:ma 0 .

G o Ey;
As described in Sec. 2.2, the total number of outgoing links for a demand is
limited in the practical router implementations. Consequently, 1 use the Bounded
Total Resources model here, requiring £ < Q).

The following formal definition summarizes this section:*

Problem 1, VRA-1IN-1D. Given k, {¢;} and Q, find {e;} that minimizes U such
that >, e; < Q.

3.2 Bounds on the Error

Let us examine the theoretical bounds on the error of VRA-1N-1D, starting with a

lower limit:
Lemma 1. U > 1.

Proof. By contradiction: U < 1 means Vi : Goe;/(Eg;) < 1, i.e., Goe; < Eg;. Sum-
ming these over 7 yields: Go Y, e; < EY; gi, i.e.: GoE < EGy. O

Easily, if the number of links is unlimited, U = 1 can always be reached:

4For a comparative list of problem definitions see Appendix B.

22 3.3. OPTIMAL SOLUTION OF VRA-1IN-1D

Lemma 2. If Q > Gy then 3{e;} for which U = 1.
Proof. Using e; = g; means E = G and U; = Goe;/(Fg;) = 1 Vi. O
Corollary 3. If Q = oo then 3{e;} for which U = 1.
There is a simple upper bound on the error, which will be useful later on:
Lemma 4. U < G,.
Proof. Since g; > 1 (as g; € Z1) and ¢; < E, Vi: U; = Goe;/(Eg;) < Go. O
A stronger upper bound is:

Lemma 5. U < —So_

min; g;

Proof. Similarly to the previous proof, Vi: U; = Goe;/(Eg;) < Go/g;. Therefore U =
max; U; < max; Go/g; = Go/ min; g;. O

This latter bound is also applicable if the desired traffic split ratio is given by real
numbers in the form of {v;}: ;v = 1. (7 = ¢;/Go can be used if integer g;s are
given.) In this case the bound is U < 1/ min; ;.

The final remark on the error limits is about large Ggs:

Lemma 6. If G is unbounded and E is bounded by a finite Q) then U can be arbitrarily
high for any @ > 2.

Proof. Let k =2, g1 = 1, go = x, so that x > @ (x € Z). Then Gy = = + 1 and
the optimal allocation of links is e; = 1, e =) — 1. The link traffic volumes are
hiy = (x+1)/Q, hy = (x + 1)(Q — 1)/Q. The errors are U; = (x +1)/Q, Uy =
(x +1)(Q — 1)/(Qx). Since (Q — 1)/x < 1, Uy < U, meaning that U = Uy, i.e.
U = (x +1)/Q, which can be arbitrary high, as @ is fixed and z is unbounded. O

3.3 Optimal Solution of VRA-1N-1D

Now I answer the question: which virtual link allocation minimizes the error? As
there are only finite link allocations due to the constraint £ < @, an exhaustive
search might be a possibility. To check its validity first let us cont the number of

possible allocations:

CHAPTER 3. OVERLAY OPTIMIZATION 23

Lemma 7. The number of possible VRA-1N-1D allocations is (%)

Proof. We have to dispense () — k virtual links between k + 1 places: the first k
places are the k physical links, and the last one is a place for the unused virtual

links (allowing F <). This is a combination with repetitions with the number of

possibilities being: <(fo,2j:1(;€j11)71) - (g) -

For a given () and for 1 < k < @, (ff) is the largest for k = |@Q/2]. For example
the largest number of possible VRA-1N-1D allocations for () = 30 is (‘Z’g) ~ 1.55-10%;

for @ =50 it is (gg) ~ 1.26-10'. A well-known lower bound on binomial coefficients

is: (%)k < (f) For the “worst case”, i.e., k = (/2 this lower bound is 29/2 = (1/2)€,
an exponential function.

This means for small @) values (like @) < 30...50) an exhaustive search may be
feasible, but not for much larger ones. For the given example of OSPF-TE @) < 16
is probably enough in most practical cases, but VRA-IN-1D can be used in other
scenarios, where () could be in the order of thousands as well (like SDN, where
(@ represents the maximal rule number). Therefore a more computationally efficient
solution is necessary.

First I present an Integer Linear Program (see LP 3.1 on the following page),
which solves the problem. The idea is to minimize the error U, by requiring for each
link error:

U — @ _ e, G <

gi Ly

and minimizing «. Variables y; help to find the optimal E: y; = 1 if £ = ¢ and
y; = 0 otherwise, which is enforced by constraints (3.3) and (3.4). The (3.5) system of

a i=1..k (3.1)

constraints is only effective if £ = j, and then results in inequality (3.1). The second
term of the objective function (3.2) ensures that if there are several optimal solutions,
then the solver would choose the one with the smallest number of links altogether.
Although this would not be necessary as long as > e; < @, it is somewhat nicer to
have it.

Due to the nature of the problem, LP 3.1 must contain integer variables. This, on
the other hand, means that it is not guaranteed to run in polynomial time. Therefore
I present an iterative algorithm that can solve the link allocation problem in pseudo-

polynomial running time.

24 3.3. OPTIMAL SOLUTION OF VRA-1IN-1D

LP 3.1 VRA-IN-1D

variables: e;

(
yi (g €{0,1},7=1...Q)
a (aeR)
constants: Q (Q € ZT)

g; (gz € ZJr, =1]i))

k
G = Zgi

i=1

7 (a small number, e.g., 107°)

M (a large number, e.g., 10°)

k
objective: mina +r Y e (3.2)
i=1
Q
constraints: Y y; =1 (3.3)
j=1
k Q
dYoei= 5y (3.4)
i=1 =1
eiG

Saj+M(1—vy), i=1..kj=1...Q (35

)

Let us start with Algorithm 3.1 on the next page that checks for a given «, k, {g;}
and E whether or not it is possible to assign the links with U < a. If the assignment
is feasible then it also provides a solution and indicates if it is the only solution. I

prove that Algorithm 3.1 provides correct result:

Theorem 8. VRA-IN-1D-Fixed-E can be solved with U < « if and only if ¢ | x; >

E, where x; = {%J

Proof. For any correct solution {e;}, for alli =1...k:

h; _ hi Goe;
a>U=max L > — = 0 ,
i=l-kgp T g By

thus ag; E/Gy > e; and since e; € Z,

ag; B S {agiE

CHAPTER 3. OVERLAY OPTIMIZATION 25

Algorithm 3.1 VRA-IN-1D-Fixed-E

Input: o, k, {g;}, F

Output: feasible, single solution, {e;}
fori+1...kdo

i {O‘ZOEJ (3.6)

end for

if >F 2, < F then
feasible < false

else if Zle z; = F then
feasible < true
stngle__solution < true

else
feasible < true
single_solution <— false

end if

if feasible = true then
Solve the following set of equations to find an {e;}:

k
=1

end if

So if Y x; > E, then we can find e; values such that (3.7) is satisfied, and then due
to (3.8) we will have a valid assignment, where U < a.

On the other hand, if 3" x; < F, then we cannot find e;s such that (3.7) is satisfied,
and U < a. To see this, suppose the opposite. Then (3.8) still must be true, and then
the supposed ¥ | z; < E contradicts Y e; = E in (3.7). O

As calculating x;s according to (3.6) is simple (i.e., O(1)) and solving (3.7) can
be done in O(k), Algorithm 3.1 has a complexity of O(k).

Next, I utilize a binary search framework to find the minimal « for which there is
a feasible solution of algorithm VRA-1N-1D-Fixed-E, given g¢;s and E. To do so, we
need a lower and an upper bound on U. For this, I shall use 1 and G, respectively,
as given by Lemmas 1 and 4. (Lemma 5 could have been used, too.) To stop the
iteration, we also need a lower bound on |U — U’|, where U and U’ belong to two

different link allocations, {e;} and {é€;}. The following lemma helps:

26 3.3. OPTIMAL SOLUTION OF VRA-1IN-1D

Algorithm 3.2 VRA-1N-1D-Bin-Search
Input: k, {¢;}, F
Output: {e;}, U
lower < 1.0
upper < Gq
while upper — lower > 1/(GoFE) do
a < (upper + lower) /2
if VRA-IN-1D-F1xeDp-E(a, {¢;}, F) finds a solution then
upper < «
else
lower < «
end if
end while
{e;} < VRA-IN-1D-FIXED-E(, {¢;}, F) {Lower limits are not valid settings,
upper limits are valid. We need a valid setting}
Calculate U from {g;} and {e;}

Lemma 9. Consider two different link allocations, {e;} and {e}}, both using a total
number of E links. For the the associated errors, U and U’, if U # U’ then |U —U'| >
1/(GoE).

Proof. We can suppose U > U’. Then

U—-U = max U; — max U, > min U, —U =

1<i<k 1<j<k 7T 1<i i<k, U UL dJ
. Goei Goej _Goeigj—ejgi _ Go 1 1
= min — - mn— —— 4" Z = = 7
Eg; Eg; E gig; E G5 GoE
since at the last inequality e;g; — €’ g; is a positive integer and g;g; < G3. U

Note that it is indeed possible, that U; = U J’ An example for this is the following:
k=2 g =1,g90 =1, E = 3. One possible allocation is e; = 2,e5 = 1, where U; = 4/3;
another possible allocation is €] = 1,€, = 2, where U, = 4/3. This has no effect on
the lower limit given in Lemma 9: if these Us happen to be the optimal errors for two
different allocations, just like in our example, then finding the optimal a results in
> x; > E, meaning that there are more than one optimal solutions.

The binary search method is described in Algorithm 3.2. This algorithm runs in
log(GEE) steps, yielding an overall O(klog(GZFE)) polynomial complexity.

CHAPTER 3. OVERLAY OPTIMIZATION 27

Algorithm 3.3 VRA-IN-1D
Input: &, {¢;}, Q
Output: {e;}, U(F), U
best U <+ Gy+ 1.0
for E«+ k...() do
{current_e;}, current_U <— VRA-1IN-1D-BIN-SEARCH({yg;}, E)
if current U < best_ U then
best U < current_ U
{best_e;} < {e;}
end if
U(E) < best_U {used in Sec. 3.4}
end for
U<+ best U
{e;} < {best_e;}

What remains is to find the value of E that yields the smallest error for the
given (). This is done by the simple Algorithm 3.3. Note that this is theoretically
not a polynomial time algorithm as its complexity is O(Qklog(G2Q)), which is not
polynomial in the size of @ (i.e., log(Q)). Yet, this complexity is low enough, so the

algorithm is easily tractable for the practical use cases.

3.4 Other Problem Formulations

The algorithms for Problem VRA-IN-1D described above can be used with minor
modifications to answer a set of related questions. I list three such problems here

along with the proposed solutions.

Problem 2, VRA-1N-1D-Link-Min. Given k, {g;}, and Uy, > 1, find {e;} that
minimizes the total number of links (E) such that U < Uyy,.

The solution is simple. Consider U(FE) generated by Alg. 3.3. For the input @
of Alg. 3.3 use Gy. It is a weakly decreasing function, whose domain is a subset of
the positive integers. The solution of the problem is F, where U(E — 1) > Uy, and
U(E) < Uy, or k, if U(k) < Ujn-

The number of loop cycles until this algorithm finds the suitable £ depends on
Uim and on the shape of U(FE). Nevertheless, Lemma 2 guarantees that in the worst
case E = G is suitable, thus the complexity is O(Goklog(G3)).

28 3.4. OTHER PROBLEM FORMULATIONS

Algorithm 3.4 N-VRA-1N-1D
Input: {k}, {g;}, Q
Output: {e;}, {Q:}, U
for i < 1...N do {initialization}
U;,Ui(E) < VRA-IN-1D(k;, {gi;}, Q)
Qi < ki
end for
while > Q; < @ do {greedy algorithm}
i = argmax U; {if there is more than one such i, select any of them}
Qi+ Qi+1
end while
fori<1...N do
{eij} < VRA-IN-1D(k;, {g;}, Qi)
end for

The next, somewhat harder problem is about solving several VRA-1IN-1D prob-
lems concurrently, so that the total number of physical and virtual links of all the
nodes together is limited and the goal is to minimize the error over all the links of all

the nodes:

Problem 3, Parallel-VRA-1N-1D. Given k, (n = 1...N), {gni}, and @, find
{eni} that minimizes Uy = max U, such that 3, E, =3, > eni < Q.

Although in my OSPF-TE example this problem is not directly addressed, in
other use cases, just like WCMP, where the total rule number is constrained, this is
indeed a valid an important question. A simple greedy algorithm (similar to the one
mentioned for Niagara in Sec. 5.1 of [10]) provides an optimal solution, as shown in
Algorithm 3.4. We use ()1, @2, ...Qy links for each problem, such that >~ Q; = Q.

Theorem 10. Algorithm 3.4 finds an optimal solution to Problem 3.

Proof. 1 prove by contradiction. Suppose Alg. 3.4 results in {Q);} and U, and yet there
is {R;} with U’ < U, such that > R; <Y Q; = Q. Because of the last condition, and
because 3i : R; #); there is at least one j, such that R; < @;. Due to the nature of
the algorithm and the nonincreasing property of U;: U;(Q; — 1) > U > U;(Q;). On
the other hand U’ > U;(R;) > U;(Q; — 1) > U, which contradicts U' < U. O

The complexity of Algorithm 3.4 is O(NQklog(G2Q) + @), where k = maxk;,
Gp = max Gg;. Note that the algorithm could be implemented more efficiently by

CHAPTER 3. OVERLAY OPTIMIZATION 29

calculating U;(E) only when it is needed for the computation of arg max, resulting in
a complexity of O((Q + N)klog(G2Q)).
Finally, here is another variant of Paralle]l-VRA-1N-1D, minimizing the total num-

ber of links over several nodes with a given error limit:

Problem 4, Parallel-VRA-1N-1D-Link-Min. Given k, (n=1...N), {gn:}, and
Ulim, find {en;} that minimizes Y., E, = >, > €ni such that U, = max U, < Uy,

This problem can trivially be decomposed into NV independent VRA-1N-1D-Link-

Min problems, which can be solved as described above at Problem 2.

3.4.1 Application for WCMP

The concept of Virtual Resource Allocation and the related algorithms presented in
this dissertation has high application potential in several parts of communication net-
works. An example is the enhancement of Weighted Cost Multipathing (WCMP, [5]).

Sections 3.2.1-3.2.3 of paper [5] propose heuristic solutions. My algorithms de-
scribed in Sec. 3.3 and 3.4 (especially Alg. 3.3 and 3.4) could directly be applied
to the WCMP problems as well and they always provide optimal solutions, not just

approximations. The computational complexity of these algorithms are:

e Find a solution with minimal error if the maximal number of links/rules is

given (Problem 1). WCMP (with our notation): O(k* + k(Gy — Q)), VRA:
O(Qklog(G7Q)).

e Find a solution with minimal links/rules if the maximal error is given (Prob-

lem 2). WCMP: O(k(Gy — k)), VRA: O(kGlog(G?)).

e Simultaneously minimize the error for N problems using maximum a total num-
ber of @ links/rules (Problem 3). WCMP: O((Xn Goi — Q) - > ki(Goi — ki),
VRA (using k£ = max; k;, Go = max; Gy;): O((Q + N)klog(G2Q)).

Although these numbers are not directly comparable, if Gqg > @, k, which is
a very possible scenario, my algorithms run either similarly to, or faster than, the
ones proposed for WCMP, and unlike those mine are guaranteed to provide optimal

solutions.

Chapter 4
Peer-Local Optimization

Peer-Local Optimization has been briefly introduced in Sec. 2.3.3 and is described in
full detail in this chapter. In this scenario we are given a capacitated network and
a set of demands (see Fig. 4.1). The optimization task is to determine for each link
a weight and the number of parallel virtual links, which, if fed together to OSPF,
will result in minimal MLU (Maximal Link Utilization). In other words, Peer-Local
Optimization provides input for OSPF-TE (see Section 2.1) enhanced by VRA.

Just as before, here we have a limit on the number of usable links per node as
well, using the Bounded Total Resources model, described in Sec. 2.2. In this scenario,
however, the limit exists per node per demand, in line with the router constraint that a
single traffic flow cannot be split onto too many outgoing links. As an example consider
the capacitated network in Fig. 4.2(a) with two demands: A — E : 30, A — F : 40.
Clearly, for optimal routing all the links have to be fully utilized, requiring a traffic
split of 2 : 1 and 1 : 3 for the demands at node A. Suppose we are allowed to use at
most () = 4 outgoing links per node per demand. We can reach an optimal solution
by setting up virtual links as shown in Fig. 4.2(b). Although this way six links are

leaving node A, none of the demands are split onto more than four, obeying the limit.

network +
. L demands
link capacities,

VRA-PLO

Figure 4.1: Virtual Resource Allocation—Peer-Local Optimization

30

CHAPTER 4. PEER-LOCAL OPTIMIZATION 31

A O [)
/ 0 l
) A network with link) Installed virtual links
capacities

Figure 4.2: Multi-demand constraint example. Demands: A — E : 30, A — F : 40

® A
multi-commodity / X
flow problem LP
primal solution B@®

per link
per demand
traffic

network +
link capacities

dual solution

<
\
N|

D@ E
VRA-1N-mD | A->D:3
i i A—>E:2

(a) Peer-Local Optimization (b) VRA-IN-mD
operation example

Figure 4.3: Peer-Local Optimization

As introduced in Sec. 2.3.3, Peer-Local Optimization works at the node level. The
overview of its operation is shown in Figure 4.3(a). The first step is the same as for
Overlay Optimization: solving a multi-commodity LP with splittable flows, which can
be done in polynomial time. The primal solution provides the per link per demand
traffic volumes, just as before, but in this case I also extract the dual solution. These
contain the link weights (minus a constant r) [42], necessary for OSPF-TE. The
next and final step is to solve the VRA-1IN-mD problem for each node independently.
VRA-1IN-mD stands for “Virtual Resource Allocation for One Node and multiple
Demands” and provides locally optimal virtual link settings, as detailed later in this
chapter.

It has to be noted, however, that the link weights gained this way are not always

ready to use by OSPF ECMP. The good news is that according to these weights each

32 4.1. VRA-IN-MD PROBLEM DEFINITION

link that has nonzero traffic from a demand will be part of a shortest path between
the corresponding source and destination nodes. The bad news, however, is that the
opposite direction is not true: there can be links belonging to a shortest path of a
demand that have zero traffic from that demand. It has been proven in [54] that
by carefully changing the link weights (without modifying the primal solution) this
effect can be minimized (which the authors call minimal shortest path representation),
but the ideal case, where all links of each shortest path have nonzero traffic for the
corresponding demand (called perfect shortest path representation), is not achievable
in general.

Unfortunately, VRA-IN-mD cannot handle a non-perfect shortest path represen-
tation, where a link on a shortest path has zero traffic from the corresponding demand.
One workaround to this problem is what I followed in my simulation evaluation (Chap-
ter 6), to divert a minimal amount of traffic to these links. This is denoted by the
dashed arrow in Fig. 4.3(a).

In VRA-1IN-mD we deal with a single node and several demands routed through it.
Consider the example shown in Fig. 4.3(b) with the link capacities and the demands.
Suppose identical link weights. It is easy to see that at node A the first flow requires
a 33%—67% percent split, while the second one needs a 50%-50% divide for optimal
network performance. These requirements are contradictory: for the first demand a
virtual link along A — C' is preferred, while the second is routed best without any
virtual link. Clearly, both cannot be done at the same time, meaning that there is no
perfect solution. Nevertheless, a setup with the minimal error can indeed be selected.

In the remainder of this chapter we examine, how.

4.1 VRA-1IN-mD Problem Definition

The formal definition of the VRA-1N-mD problem, using the notations summarized

in Table 4.1, is as follows. For a network node A we are given a matrix

g1 G912 - Qik
go1 922 .. Q2

gdp1 9p2 --- YDk

CHAPTER 4. PEER-LOCAL OPTIMIZATION 33

Notation Description

k number of outgoing links used

D number of demands

G = (gij) € ZP** desired traffic volume per demand per outgoing link (g;; > 0)
[= (v;5) € RD** row-normalized version of matrix G

Y= (O’ij) S {0, 1}D><k Oij = 0 if Gij = 0, Oij = 1 otherwise

G; = Z§:1 9ij total traffic volume of demand 7

hij actual traffic volume per demand per outgoing link

€1, €2, .., €k number of allocated links (physical and virtual together)

Ez' = Z?:l ejal-j
Uij = €5/ (Vi Ei)
U= maX%,j>0 Uij

total number of parallel links on shortest paths for demand ¢
per demand per link error (only where ;; > 0)
per node error

Q=>E; (Vi), QeZ"

upper bound on the number of usable links per demand

Table 4.1: VRA-1N-mD notations

representing how demands 1... D arriving at the node should be split among outgoing
links 1...k: g;; is the traffic volume that belongs to demand ¢ and should be sent
out on link j. g;;s are non-negative integers. We can assume for simplicity that G
contains no all-zero rows or columns. Later on I will also use the row-normalized and
the signum versions of G:

Gij 0, ifgy; =0

Yijg = ; Oij =

==
anl Gin 1, if Gij > 0

As an example I show these matrices for the simple instance shown in Fig 4.3(b):

TR R

We set up e; number of parallel links (including the physical and virtual ones) for

)1
I

Y=

Y

N Wl
N = WIN

outgoing link j of node A. Our goal is to find ey, ..., e, such that an error metric is
minimized.

An important question is if we allow disabling a physical link instead setting
up parallel links, in a similar fashion to Overlay Optimization with Path Exclusion.

Formally it would mean setting the number of links to zero on an outgoing link,

34 4.1. VRA-IN-MD PROBLEM DEFINITION

i.e., having e; = 0 for some j. Whether or not this can be performed is a network
administration issue, and is outside the scope of this work. Nevertheless, due to space
constraints, in the rest of this dissertation I suppose that such link disabling is not
permitted (i.e., e; > 0).

Let E; = Z;‘?Zl e;0;; be the total number of parallel links on the shortest paths for
the ith demand (i.e., we only sum those e;s, where the corresponding g;; is not zero),
and G; = Z?Zl gi; be the offered load for the demand.

According to ECMP’s equal-split rule, the per demand traffic volume on an out-
going link is: . ej_GZ-

ij 7

For the same reasons as described at VRA-IN-1D, here we introduce the per
demand per link error, defined as the ratio of the transmitted traffic and the offered
volume on a given outgoing link j, for a given demand 7, but it is only defined if the
offered traffic is non-zero:

h Gie;j e;

’ Gij gijEi %’jEi (!)

The per node error (or shorty just error) is defined as the maximum of the per link

per demand errors:

6 .

U= max —2
4,575 >0 ’}/Z]EZ

Y

which we aim to minimize in the rest of this chapter.

To complete the previous example, suppose that e; = 2, e; = 3, which yields:

|

This results in U = 6/5, which can be shown to be actually the minimal error for the

~—~

=

SN~—

|
1
SN
vio Sl

given problem.

Like in the Overlay Optimization Section, below I will also study the problem
variant with limited number of links used for traffic splitting. I am using the Bounded
Total Resources model (Sec. 2.2), but here the upper limit is applied on a per demand
basis (by requiring £; < @ for all i = 1... D), as detailed for Fig. 4.2.

To sum up, we can formulate the problem as follows.

CHAPTER 4. PEER-LOCAL OPTIMIZATION 35

Problem 5, VRA-1N-mD. Given k, D, G, and Q, find {e;} such that E; < Q for

alli=1...D and U is minimal.
As a first approach, however, I will examine a simplified problem variant:

Problem 6, VRA-1N-mD-Unlimited. Given k, D, and G find {e;} such that U

s minimal.

4.2 Attributes of VRA-1N-mD and VRA-1N-mD-
Unlimited

After the definition, first I examine the problems without trying to solve them yet.
In this section I present an observation about the completeness of the problems and

statements about the possible values of the error metric.

4.2.1 Completeness of the Problems

I present an important finding about the completeness of the problems:

Theorem 11. Any nonnegative matriz with at least one mon-zero element in each
row and in each column can be the matrix G of a VRA-1N-mD or a VRA-1N-mD-
Unlimited problem, which is the result of Peer-Local Optimization in a suitable net-

work.

Proof. For a given matrix G, I construct a network where after the Peer-Local Opti-
mization process (see Fig. 4.3(a)) at a certain node the required splitting ratios are
exactly as given in G.

Let G be in the form of (4.1). The corresponding capacitated network is shown
in Fig. 4.4. There are altogether d demands in the system, the ith going from S; to
D;, i.e., there is no traffic between S; and D, if i # j. For each demand 7 the desired
splitting ratio is given by g¢;; (j = 1...k). Note that if for some 7, j g;; = 0 then the
corresponding link can be omitted from the network.

Trivially, at node A Peer-Local Optimization will result in a VRA-1N-mD/VRA-
IN-mD-Unlimited problem with the given matrix G. U

This result is significant as it allows us to focus on the matrices only, instead of

the possibly much more complex networks.

36 4.2. ATTRIBUTES OF VRA-IN-MD AND VRA-IN-MD-UNLIMITED

N

B1‘ Bg‘ - Bk‘

D, Dy

Figure 4.4: Capacitated network corresponding to a given matrix G

4.2.2 Bounds on the Error

Let us now see the theoretical bounds on the error of VRA-1N-mD and VRA-1N-mD-

Unlimited. The first statement is analogous to Lemma 1, giving a lower limit:
Lemma 12. U > 1.

Proof. 1 will prove a stronger claim: in every row of GG there is an element for which
the per link per demand error is at least one. The proof is by contradiction: suppose
this is not the case for the 7th row. This means that for all j = 1...k, where 0;; = 1:

Uij =e;/(1i;Ei) <1, that is e;/E; < 7;;. Summing these yields

> 2 < X i

j=1..kig;;=1 j=1..kio;=1
meaning that F;/FE; < 1, which is clearly a contradiction. O

Note that U = 1 is attainable for some matrices G by properly selecting {e;}, but
for other G there is no such {e;} setting. Examples and detailed discussion on this
topic is available in Sec. 4.3.1.

Next, I give an upper bound on the error:

Lemma 13.

1
U ——
MY iy ;>0 Vi

CHAPTER 4. PEER-LOCAL OPTIMIZATION 37

Proof.
Ui’ — ej - k ej S i 9
Ervig (Ot €nOin)Yij — Vij
from which the theorem follows. O

Lemma 14. There is no universal (G-independent) upper bound on the error.

Proof. For any M > 0 integer the following matrix G results in U = M:

{ 1 2M—1] - S ALl

2M — 1 1 2M-1 1

oM oM
Easily, the optimal solution is e; = ey = 1, for which U = Uy; = Uy = % =
M. O

As in this optimal solution the total number of virtual links is zero, this theorem
is valid even if the number of virtual links is not limited in any way, i.e., it is valid

for both the VRA-1IN-mD and the VRA-IN-mD-Unlimited problems. Likewise, the

other two bounds on the error given above are also valid for both problem variants.

4.3 Unlimited Number of Links

After exploring the theoretical limits, I look for an optimal link allocation. I start with
a simplified version of the problem, where the maximum number of link constraint is
relaxed, i.e., we allow unlimited number of parallel links to be used simultaneously, as
defined in Problem 6, VRA-1N-mD-Unlimited. Notice that in this case the problem is
practically defined by the matrix G itself. Accordingly, I will use the problem instance

and the matrix interchangeably in this section.

4.3.1 Consistency of a VRA-1N-mD-Unlimited Problem

Definition 1. A matrix G is consistent if and only if U = 1 can be achieved with a

suitable {e;}, allowing unlimited number of parallel links.

38

4.3. UNLIMITED NUMBER OF LINKS

Here are some examples on consistency:

Example 1.

Example 2.

Example 3.

Example 4.

The following G is consistent, and U = 1 for the given {e,}:

1 2 4 0 O
G=10 3 6 1 0
0 0 30 5 1

e=[15 30 60 10 2]

This matrix is also consistent:

01 0 200
00 2 001

G —
000037
53 0 60 0

e=153 14 6 3 7

This matrix is inconsistent:

1 2
11

This matrix is also inconsistent:

G —

1 2 4 00

0 3 10
G =

00 30 51

20 0 70

An Algorithm for Deciding Consistency. Algorithm 4.1 decides whether a

given G is consistent, and if it is, it also supplies an {e;} for which U = 1. Note
that the algorithm could be extended by dividing the resulting vector e by the GCD

of its coordinates to have a “nicer” result, but as we supposed unlimited total number

of available links, this is not necessary.

CHAPTER 4. PEER-LOCAL OPTIMIZATION 39

Algorithm 4.1 Deciding Consistency of a Matrix G

Input: G
Output: consitent, {e;}

1: function VECTORMERGEANDCHECK (v1,v2) {Check for all the coordinates of v;
and vy if they are either equal or one of them is 0. If true, merge the non-zero
elements of v, into v;. Requires identical vector sizes.}

2: for all coordinates i do

3: if v1[i] = 0 then

4: U1 [l] <— U2 [Z]

5: else if v,[i| # 0 and v4[i| # v2[i] then

6: return false

7 end if

8: end for

9: return true

10: end function

11: function ISCONSISTENT(G) {Decides whether G is consistent. If true, also re-
turns an {e;} for which U = 1}

12: if GG is empty or G has only one row then

13: e+ G

14: return true, e

15: end if

16: e < st row of G

17: remove 1st row from G

18: while G is not empty do

19: found < false

20: for all rows 7 in G do

21: for all coordinates j of the ¢th row of G do

22: if G;; # 0 and e; # 0 then

23: found < true

24: exit the innermost for all loop

25: end if

26: end for

27: if found = true then

28: exit the innermost for all loop

29: end if

30: end for

31: if found = true then

32: f < ith row of GG

33: remove ith row from G

40 4.3. UNLIMITED NUMBER OF LINKS

34: p<gj

35: q<f;

36: d < GCD(p, q)

37: p < p/d

38: q<+q/d

39: e < ¢ - e {multiply a vector by a scalar}

40: f < p- f {multiply a vector by a scalar}

41: if VECTORMERGEANDCHECK (e, f)=false then
42: return false

43: end if

44: else{the remainder of G is independent of the already processed one}
45: cons, new__e <—ISCONSISTENT(G)

46: if cons = false then

47: return false

48: end if

49: VECTORMERGEANDCHECK((e, new__e)

50: return true, e {exiting the main loop}

51: end if

52: end while

53: return true, e

54: end function

The idea of Algorithm 4.1 is to build the vector e by iterating through the rows
of matrix G. We start with e being the first row of G (lines 16-17). Then, we search
for a row in GG, which has at least one non-zero element in a column, where e is also
nonzero (lines 18-30). If found, then we remove it from G and check if that row is
“compatible” with e, in the sense, that the ratio of the coordinates, where each vector
is non-zero, is identical. If they are not compatible, then G is inconsistent (lines 31-
43). If they are, then we extend e with the non-zero elements of the given row of G
(lines 41, 1-10). We repeat this until there are no more rows of G that have non-zero
elements, where e is non-zero. We then re-run the whole algorithm on the remainder

of G and merge the resulting e with the current one, if possible (lines 44-51).

Complexity of Algorithm 4.1. Examining the loops, it can be seen that at most
d*k + 4dk steps are required, so the complexity of the algorithm is O(d*k).

LP for Deciding Consistency. Linear Program 4.1 also solves this problem in

polynomial time. There is a feasible solution for the LP if and only if the matrix is

CHAPTER 4. PEER-LOCAL OPTIMIZATION 41

LP 4.1 Deciding Consistency

variables: e; (e;j >€,e; €R, j=1...k)

constants: gi;; (9i;; > 0,95, €Z,i=1...d,j=1...k)
e (e>0)

objective: —

constraints: e;, gij, = €5,Gi;; (Vi=1...d, j1,jo=1...k: ¢ij,9ij, # 0)

consistent. The role of € is only to provide e; > 0, as the resulting vector e could
be multiplied by any constant and still be valid. A disadvantage of this LP-based
approach is that it returns real numbers as the solution, which are not trivial to map
to integer number of links.

The same problem could also be solved as an Integer LP (requiring e; € Z7), but
it could result in non-polynomial running time. An intermediate solution would be to
use a rational solver, but in that case having a polynomially limited running time is
also not straightforward.

Note that LP 4.1 might look at first sight as a homogeneous system of linear
equations, but as the variables are required to be positive, the classical solutions, like

the Gaussian elimination, are not applicable here.

Consistency and Errors. Finally, I present a lemma on the nature of the errors

that are related to a consistent matrix G.

Lemma 15. If a matriv G is consistent then for an {e;} for which U = 1: U;; =1
V’l,j 045 = 1.

Proof. By definition, for this {e;} setting U;; < 1 (Vi,j : 0;; = 1). We have to
show that U;; = 1 holds. Suppose the opposite: da,b : 04 = 1, Uy < 1. Then
U = /(b la) < 1, ie.,

ev/Ey < Yab - (4.2)

Similarly for the rest of the matrix: U;; < 1, which means

ej/Ei S Vij VZ] . Z] 7é ab, Oij = 1. (43)

42 4.3. UNLIMITED NUMBER OF LINKS

Now let us sum (4.2) and (4.3) over the ath row:

o
> fj< Y Ve

j=1..kiogj=1 "2 Jj=1..k:oq;=1

meaning that E,/E, < 1, which is a contradiction. O

4.3.2 Notes on the Types of the Solution

I now show two, somewhat surprising observations about the types of the optimal
solution. As the complete proofs are quite lengthy, they are moved to Appendix C,
and here I only highlight their most important steps.

For simplicity, in the remainder of Section 4.3 I will use the normalized version of

the link number e;, denoted by f; to avoid confusion:

€j

=k
21:1 €;

k
fj = fj c R+, ij =1. (44)
j=1

Theorem 16. There is at least one VRA-1N-mD-Unlimited problem, where matrix G

contains integers only but the single optimal solution contains only irrational numbers
as f;s.

Sketch of Proof. Consider the following input matrix:

210
2 21

I prove in the Appendix C.1 that for this matrix for any optimal solution Uy = Uy =
Usz and Uy < Usy, Usy < Uyy. Furthermore, I also show that there is a single optimal
solution (f1, fa, f3) in this case, for which expanding and solving the Uy = Us; = Usg
system of equations and using that fi, fo, f3 > 0 and that f; 4+ fo + f3 = 1, we get:

f1=§(7—\/3_4), fgzé(—16+3\/3_4), fgzé(7—¢3_4) : 0

This theorem has an important consequence:

Corollary 17. The optimal settings for the VRA-1N-mD-Unlimited problem cannot

always be reached using finite total number of links.

CHAPTER 4. PEER-LOCAL OPTIMIZATION 43

The next theorem is even less straightforward than Theorem 16.

Theorem 18. There is at least one VRA-1N-mD-Unlimited problem, whose only
optimal solution contains at least one f; that cannot be written in a finite form using

integer constants and the usual +, —, -, / and the nth root (n € Z*) operators only.

Sketch of Proof. Consider the following matrix:

100000
6 1 00 00
G:661000
6 6 6 1 00
6 6 6 610
6 6 6 6 6 1

I prove in Appendix C.2 that for this case the maximal error terms for the optimal
solution are Ugy = Uy = Usz = Uy = Uss = Ugg. This leads to a fairly simple system
of equations on fi,..., fs. From these equations fs,..., fs can be eliminated, and

what remains is a polynomial of fi:

923521 7 — 16980 870 f; + 118 664 280 f7 —
— 3905776802 + 934673904 f, — 336117600 =0 . (4.5)

[used the mathematical software Maple [55] to show that this polynomial equation
has got a single real root only (and four complex ones). According to Galois theory [56],
a polynomial equation can be solved by radicals® if and only if its Galois group is a
solvable group. Using Maple I found that the Galois group of the polynomial given
in (4.5) is the symmetric group Ss. This group, consisting of 120 elements, is not

solvable, meaning that (4.5) cannot be solved by radicals. O

A solution of the VRA-1N-mD-Unlimited problem is given as fi, fo, ..., fr, where
f; € RT. We expect real constants f; to be presented by an algorithm that solves

the problem in some sort of closed form, but “closed form” can be defined in several

li.e., having a solution that can be written in a finite form using integer constants and the +, —,

-, / and the nth root (n € Z*) operators only

44 4.3. UNLIMITED NUMBER OF LINKS

ways. For now I require f;s to be given by finite expressions that consist of integer

constants and the usual 4+, —, -, / and the nth root (n € Z") operators only.

Corollary 19. No algorithm can give an optimal solution to VRA-1N-mD-Unlimited
in finite number of steps; even if the number of steps may depend on the actual

problem.

The idea behind this corollary is that an optimal solution cannot be computed in
finite number of steps if for some inputs it cannot be written in a closed form, since

writing the output is part of the solution.

4.3.3 An LP-based Iterative Solution

From the previous subsection we know that finding the exact solution is infeasible. I
can, nevertheless, search for an approximation of the optimal solution.

As a first step, I set up an LP that computes {f;} while keeping the per node
error under a given constant «. Naturally, for too small as the LP will not have a
solution.

I do this by enforcing each per demand per link error term to be less than or equal

to o
e <a
Yij Zn:l Uz’nfn

which can be rearranged as:
0< Z a mf n .)
n=1

Vij &

which leads to LP 4.2.

Note that in this LP I have provisionally relaxed the constraint >, f; = 1 (see
(4.4)), and introduced variables fj to avoid confusion. The reason for this change is
that I wanted to enforce f; > 0, meaning that a link cannot be disabled. In an LP,
however, only “greater than or equal to” type constraints can be used and no “strictly
greater than” types. So I have released Y f; = 1 and added (4.6) requiring fj > 1,
which does the trick. On the other hand, if an {f,} satisfies (4.8) then each {cf;}
does so as well, where ¢ > 0. Therefore the objective function (4.7) has been added;

mainly for aesthetic reasons, as for the unlimited links case any fjs satisfying (4.8)

CHAPTER 4. PEER-LOCAL OPTIMIZATION 45

LP 4.2 VRA-1IN-mD-Unlimited, Given «

indices: 1 =1...D
j=1...k
constants: a (a>1, a € R)

k
Vij (”Yz‘j €Q, v; >0, Vi: Z Yin = 1)

n=1

oij = sgn(vy)

variables: fj (f] >1, fj €eR) (4.6)
k
objective: minimize Y f; (4.7)
=1
k R]?
constraints: 0 < Z Oinfn — =2, Vi,j:7; >0 (4.8)
n=1 iy

are equally good. Solving LP 4.2 may return large fjs, but they can be normalized to
one by dividing by their sum, and thereby acquiring f;s that conform to (4.4).

Now we can use binary search to find the smallest o for which LP 4.2 is solvable,
as described in Algorithm 4.2. Note that ey describes how close we want to get to
the optimal error: providing it is necessary due to the consequences of Corollary 17.
A typical value could be e = 1078, Nevertheless, this way we can approximate the

optimal solution arbitrarily close.

Complexity of Algorithm 4.2. This algorithm is based on a linear program that
contains no integer variables, hence it can be solved in polynomial time. The ques-
tion is, how many times is this LP run? Algorithm 4.2 does a binary search on the
[1,1/min; ; v;;] interval, until it reaches an optimal solution with an error less than
ey For this log,(1/(ey min; ; v;;)) steps are enough, meaning that Algorithm 4.2 runs

in polynomial time.

Summary. [have given an iterative algorithm for the VRA-1N-mD-Unlimited prob-
lem, which quickly converges to an optimal setting. According to Corollary 19 signif-

icantly better solution cannot be given.

46 4.3. UNLIMITED NUMBER OF LINKS

Algorithm 4.2 VRA-IN-mD-Unlimited
Input: G, ¢y
Output: {f;}
lower < 1.0 {See Lemma 12}
upper < 1/(min; ;v;;) {See Lemma 13}
while upper — lower > €; do
a < (upper + lower) /2
if soLvE__ LP 4.2(«, G) finds a solution then
upper — «
else
lower < «
end if
end while
f < sowvE__LP 4.2(upper, G) {Lower limits are not valid settings, upper limits
are valid. We need a valid setting}

Algorithm 4.3 VRA-1IN-mD-Unlimited, Positive Matrix G
Input: G (g;; #0)
Output: {f;}
1 Vij < Gij) SF_ gin (vepeated fori=1...d, j=1...k)
2: 7} <= mini—y_q7v; (repeated for j =1...k)

3 fj = Z,j_jl " (repeated for j =1...k)

4.3.4 A Special Case: Positive Matrix GG

In this subsection I examine a special case of the VRA-1N-mD-Unlimited problem,
in which matrix G contains only positive elements. For this case Algorithm 4.3 will
provide a quicker and simpler solution than Algorithm 4.2. Furthermore, this solution

is exact and not just approximative.

Theorem 20. For a VRA-1N-mD-Unlimited problem in which matrix G is positive,

Algorithm 4.3 provides the single optimal solution.

Proof. The error U to be minimized is the maximal element in

S f Jr
Yir o m2 T Mk
S S i
v vz T ok
(Uj) =™ ™)
S S e
LYar Yaz "7 Vdk

CHAPTER 4. PEER-LOCAL OPTIMIZATION 47

Let us examine this matrix column by column. Clearly, the identity of the maximal
element in each column j is independent of f; and this value is max;—1_.a fj/vi; = f3/7}
(see Step 2 of Alg. 4.3). Thus the solution of the original problem is reduced to
minimizing the maximal element in
N | L i
(U;) = A VZ
Now I show that the single optimal solution is { f;} as given in Step 3 of Alg. 4.3.

In t?is case for each j = 1...k: U] = f; /v = 1~/ >, =U. For any other {f;} setting
(32 fj = 1) there trivially exists a j for which f; > f; and then U} > U; = U. O

Note that Z?:yyé < 1: by definition v} < vy (j = 1...k) and Zle 7 =1, so
> 7; < 1. Consequently, U =1 / >>7; > 1, in accordance with my previous results. It
also follows that U =1 if and only if GG is consistent, again, as expected.

Easily, Algorithm 4.3 runs in O(kd) steps. As reading the input itself requires kd

steps, this is very effective.

4.4 Limited Number of Links

Now I give solutions to the original VRA-1N-mD problem, which has limit on the out-
going links used in parallel. We are searching for positive integers {e;} that minimize
the error, on the conditions £; < @ (i =1...D).

Clearly all link allocations are valid for which e; > 0 Vj and Z;‘?:l e; < Q. Also,
as shown at the beginning of this chapter, there could be valid allocations for which
E; <@ Viholds, but 3°; e; < @ does not hold. This means that according to Lemma 7
there are at least (f) valid link allocations, which calls for a more efficient solution

than the simple exhaustive search.

4.4.1 An ILP-based Iterative Solution

Linear Program 4.2 can be easily modified to LP 4.3 to suit the “limited total number
of links” case. Note that the objective function might be omitted here as well, it only

forces the LP solver to select a solution with the fewest total number of links. Just as

48 4.4. LIMITED NUMBER OF LINKS

LP 4.3 VRA-1IN-mD, Given «

indices: 1 =1...D
j=1...k
constants: (> 1, a €R)

k
Yii (v €Q, v >0, Vi: Z’Yz‘j =1)

j=1
oij = sgn(vy)
Q (QeZ") (4.9)
variables: e; (e; € ZT) (4.10)
k
objective: minimize Z €;
j=1
constraints: 0 < Z Oinfn — =2, ¥i,j:7v; >0
n=1 ija
k
> o6, <Q, Vi (4.11)

J=1

Algorithm 4.4 VRA-IN-mD by ILP
Input: G, Q, ey
Output: {e;}
This is the same as Algorithm 4.2, but with solving LP 4.3 instead of LP 4.2.

before, LP 4.3 works for a fixed «, but using it in Algorithm 4.4 (see above) results
in an arbitrarily good approximation for the VRA-1N-mD problem.

Note that LP 4.3 is actually an Integer Linear Program (ILP), and thus although
it is a simple and elegant way to find an optimal link setting, polynomial running
time is not guaranteed anymore.

Algorithm 4.4 stops if the difference of the errors in the last two iteration steps is
less than an input constant, €y, hence it is an approximation only in general. In the
“unlimited number of links” case there is no theoretical lower bound on the difference
of the errors of two different {e;} settings, therefore a sufficiently low number was
recommended, such as e = 1078, In the “limited total number of links” case, however,
due to the finite number of possible allocations, it is possible to give an absolute lower
bound on the difference of the errors for two link allocation settings and thus to find

an optimal solution. The following lemma gives such a lower bound.

CHAPTER 4. PEER-LOCAL OPTIMIZATION 49

Lemma 21. For a VRA-1N-mD problem and for any two valid link allocation settings
{e;j} and {€}} the following holds:

1
AU =|U-U'| >)
(max; j gi;)*Q?
Proof. We can suppose U > U’. Then
AU =U-U"= max U;— max U, >
1,5:9:5>0 T,Y:gzy>0 Yy
Gi . Gxel
> min {Uij—U;y}:min{ % ——y,}:
0,9,%,Y:9ij>0,92y>0,Ui; >Up,, 9iiEi 9oy
. Gil,ej9my — G Eie, i 1
= nin / = 20)2
9ij 9y LiE, (max; ; gij)*@Q

The last inequality is true because the numerator of the left-hand side fraction is a
positive integer, thus it is greater than or equal to one. For the denominator E;, E! <
@ by definition. O

This means that for the “limited total number of links” case the recommended

constant for Algorithm 4.4 is

1
(maXz’,j gij>2Q2 .

€y =

4.4.2 A Direct ILP Formulation

Theorems 16 and 18 (page 42) are valid for the “unlimited total number of links” case
only. This means that instead of the iterative solution shown above, theoretically a
single ILP with e;s and the error («) as variables might be set up. Actually this really
is the case, and LP 4.4 is such an ILP formulation.

A few notes on this ILP. First, variable y;,, equals one if F; = n, and zero otherwise.
This is enforced by the first two constraints. Therefore (4.13) is only effective if y;, = 1,
i.e., E; = n. In this case the constraint is: e;/v;; < aF;, which is the usual U;; =
e;/(Vi;E;) < a error condition.

In the objective function (4.12) the main goal is to minimize the error, but if there
are several equally good solutions then we try to select one with the smallest total

number of links.

20 4.4. LIMITED NUMBER OF LINKS

LP 4.4 VRA-1IN-mD, Direct, Optimal Solution
indices: 1=1...D

j=1...k
n=1...Q
variables: e; (e; € Z1)
a (a>1, a€eR)
Yin (ym € {Ov 1})
k
constants: v;; (vi; >0, v €Q, Vi: Y 7 =1)
=1
oij = sgn(vy)
Q (@>0, QeZ)
r (a small number)
M (a large number)
k
objective: minimize o + 1Y _ e; (4.12)
=1
Q
constraints: Z Yin = 1
n=1
k
> oije; = Zymn
7j=1
So<an+ M1 —yi), Vijivy; >0 (4.13)
Vij
k

Zaijej S Q, \V/Z
j=1

Next, some words on choosing r and M. Constant r should be small enough so
that the ILP solver finds the minimal «. In theory r can be arbitrary small, and the
smaller the better, but in practice a too small » may cause rounding errors. According
to (4.12) we need o > 7’2;?:1 e;, thus r < o/ Z?Zl e;. As in practice o =~ 1...10
and Z?Zl ej ~Q, r < 1/Q is a good guess. For Q = 16 r = 10~° was proven to be a
good choice. Using r = 107!°, however, produced incorrect results in practice (using
GLPK [57] with C4++ and Lemon [58]) due to arithmetic underflow.

Similarly, theoretically M can be arbitrary large, in practice, however, a too large
M might cause errors because of the finite number representation. Here due to (4.13)
the rule of thumb is M > e;/v;;. Using M >)/ min ~y;; is satisfactory, but it depends
on G. Nevertheless, if () = 16 and ~;; > 0.02, then M = 1000 is suitable. Practically,

CHAPTER 4. PEER-LOCAL OPTIMIZATION 51

Algorithm 4.5 VRA-1IN-mD Heuristic
Input: G, Q, ey
Output: {e;}

{f;} + ALcoriTHM 4.2(G, €)

{e;} + ALcoriTuM 3.3*({f;}, Q)

for () = 16 and ;s inferred from real network capacities, M = 1000 was proven to
be a good choice, while M = 10° already resulted in incorrect behavior.

Finally, let us note that although a single ILP may look more appealing than an
iteratively used one, in practice the latter (i.e., Alg. 4.4) was proven to be much faster,
especially for large (Js. This is most probably due to the large number of auxiliary

integer variables (y;,) in LP 4.4.

4.4.3 A Heuristic Solution

I provide a suboptimal, but fast heuristic as an alternative to the previously described
ILP-based solutions. The idea is to somehow represent matrix G of a VRA-1N-mD
problem with a vector of length k, and treat that as vector g of a VRA-1IN-1D prob-
lem. The latter can be solved quickly, as described in the previous chapter. What
remains is to find an efficient method for the matrix G to vector ¢ mapping. Solving
the VRA-1IN-mD-Unlimited problem does exactly this: the resulting f;s can simply be
treated as vector g. This process is summarized in Algorithm 4.5. Certainly some in-
formation is lost during the matrix to vector conversion, which can lead to suboptimal
results. That is, nevertheless, acceptable as this method is a heuristic only.

A note on Algorithm 3.3* (referred at Alg. 4.5): Algorithms 3.1, 3.2, and 3.3
require integer g;s as input, but internally they only use their normalized form: g;/Go,
where Gy = Z?Zl g;. Sightly modified versions of these algorithms, marked with an
asterisk, take g;/Go as input. In Algorithm 4.5 we provide {f;} as this input. This
also affects the complexity: instead of O(Qklog(G2E)) here, by applying Lemma 13,
we have O(Qklog(1/(ey min; g;/Gl))).

Observe that in this heuristic we effectively apply the constraint Z?Zl e; < @
instead of the less restrictive F; < (), which might yield suboptimal results. This can

be perceived as the price to pay for the shorter running times.

52 4.4. LIMITED NUMBER OF LINKS

Complexity of Algorithm 4.5. The first step runs in polynomial time, as it is a
(non-integer) linear program embedded in a binary search. The second step runs in
O(Qklog (1/(ey min f;))). Although this is only pseudo-polynomial in k and @), and
I have not established a lower bound on f;, for practical problem instances I found

Algorithm 4.5 to be much faster than Algorithm 4.4 [59].

Chapter 5
Peer-Global Optimization

[have briefly introduced Peer-Global Optimization at Section 2.3.4, and in this chapter
I describe it in detail.

The optimization task is the same as for Peer-Local Optimization: given a capaci-
tated network and a set of demands determine for each link a weight and the number
of parallel links that together minimize the maximal link utilization (see Fig. 5.1).
This time, however, we solve the problem concurrently for all the nodes in the net-

work so that we can reach a theoretically optimal virtual resource allocation.

5.1 VRA-PGO Problem Definition

Let us start with the formal definition of the Virtual Resource Allocation—Peer-Global
Optimization problem, using the notations of Table 5.1.

We are given a directed graph (V, F') representing a network, with capacities ¢; for
each link [and a set of demands, each given by its originating and destination nodes,
and the offered traffic volume: {Oy, Dy, Gd}fl):l- The mazimal number of virtual links

that can be applied at a node (R) is given as well.

network +
. ™ demands
link capacities,

VRA-PGO

Figure 5.1: Virtual Resource Allocation—Peer-Global Optimization

23

o4 5.1. VRA-PGO PROBLEM DEFINITION

Notation Description

Vv set of vertices (nodes) in the network

F set of edges (physical links) in the network

Sn set of (physical) links originating at node n € V
|Syl number of (physical) links originating at node n
qeQt capacity of link [€ F

w € QF weight of link [

hi >0 (h, € Q) total actual traffic volume on link !
e; >0 (e, € Z) number of parallel links (both physical and virtual)
at the place of link [

E, =5, & number of (physical and virtual) outgoing links at node n
D number of demands

O4€F originating node of demand d (1 < d < D)

Dy eF destination node of demand d

G, eQr traffic volume for demand d

R>0(Re€Z) maximal number of virtual links per node
BeQt maximal link utilization

Table 5.1: VRA-PGO notations

We are looking for link weights w; and parallel link number e; (including the
physical and virtual links) for each link /, which minimizes the mazimal link utilization
f = maxep hy /¢y, such that E, < |S,|+ R (Vn € V).

In the previous two chapters it was more convenient to use the Bounded Total
Resources model (see Sec. 2.2) requiring £ < @ and E; < Q. Nevertheless, for
Chapter 3 with a simple R =) — k substitution the Bounded Virtual Resources
model (E — k < R) could have been used, too. Likewise, most of my findings in
Chapter 4 are about the Unlimited Resources model, but the rest are also trivial to
transform to the Bounded Virtual Resources scenario. With regard to the numerical
evaluation (Chapter 6), however, using the Bounded Virtual Resources model is more
practical, as different nodes can have different number of outgoing physical links. For
this reason throughout this chapter, unless stated otherwise, I limit the number of
virtual resources (E, < |S,|+ R).

The problem can now be formulated as follows.

Problem 7, VRA-PGO. Given (V, F), {¢}, D, {O4, D4, G4}, and R, find {w;}
and {e;} that minimizes [3, such that E, < |S,|+ R (Vn € V).

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 95

5.2 Optimal Solution

VRA-PGO is computationally hard to solve, as I will show in Sec. 5.3. Yet, I first

show a way to find the optimal solution in the form of the following ILP.

LP 5.1 VRA Peer-Global ILP

indices: d =1...D, demands
[=1...L, links
n =1...N, nodes
constants: ¢ > 0, link capacity
r a small constant

ro 1o <1, a smaller constant
r3 rg < r, another smaller constant
M a large constant
G4 the traffic volume for demand d
O4 originating node of demand d
D, destination node of demand d
0qn, traffic source indicator: dg4, = { L it =04
0 otherwise

S, set of (physical) links originating at node n

|Sy,] number of (physical) links originating at node n

T, set of (physical) links arriving at node n

R > 0, max. number of usable virtual links per node
variables: ug, real: node potential for demand d, node n

w; >0, <1, real: link weight minus r (5.1)

oq binary: o4 = 1 iff [is on a shortest path between O4 and D,

[real, max. error

e > 1, integer: no. of parallel links

Oy > 0, real: traffic ratio of demand d that uses link [(5.2)

26 5.2. OPTIMAL SOLUTION

Yank Vd,n : {|Sn] > 0,n# Dy}, k=0...|S,| + R, binary:
Yane = L iff Y oge =k

leSn

Zim m=1...R+1, binary: z;,, = 1l iff e, =m

objective: minimize 3 + r3 Z Z Oq + 13 Z e (5.3)
d l
constraints: ugo, =0 Vd (5.4)
wl+7’—udj+udi Z (1—0’0”)7’2 Vi = (Z,j), Vd (55)
wl+r—udj+udi S (1—0’dl)M \V/l = (’L,j), \V/d (56)
Z Gdl - Z Hdl = 5dn Vd,n n # Dd (57)
leSh leTy
D
Z Hled S 501 Vi (58)
d=1
(> bap + 5dn) m < Oqk + M (3 = Yank — Zim — Oar) (5.9)
:BETn
(Z O + 5dn) m > Oqk — M (3 = Yink — Zim — Oar) (5.10)
:BETn
R+1
> =1 VI (5.11)
m=1
R+1
Z Zimm = ¢,V (5.12)
m=1
|Sn|+R
Z Ydnk = 1 Vd,n : ‘Sn| > 0, n 7£ Dy, (513)
k=0
|Sn|+R
Z ydnkk S Z e + M (Z (1 — O'dl) —+ Z Udl) (514)
k=0 Lyg=1 Lyg=1 L:ivq1=0
[Sn|+R
Z ydnkk Z Z e — M (Z (1 - Udl) + Z Udl) (515)
k=0 l:’ydlzl l:’ydlzl l:ydlzo
le S aq Vd,l (516)
(90” Z oqr Vd,l (517)
e <|S)+R Vn:|S,]>0 (5.18)

leSn

CHAPTER 5. PEER-GLOBAL OPTIMIZATION o7

Notes:

(5.2): the formal definition is: 84 = hg /G4, where hg is the actual traffic volume for
demand d on link [. Certainly, 0 < 654 < 1, but 85 < 1 follows from the constraints
of the ILP.

(5.9)—(5.10): Vd,l, k=1...|S,|+ R,m=1...R+1, m <k, n# Dy, where n is the
source of [.

(5.14)—(5.15): ¥d,n : |S,| > 0, n # Dy and for all combinations of 4 € {0,1}, 1 € S,,.
In other words, these constraints are repeated 2/°»! times for each d, n (where |S,| >
0, n # Dy), and in each one a different element of {0, 1}/*»! is assigned to {v4 : [€
Sn}.

Let us see how this ILP works. The first three constraints come from the dual
formulation of the multi-commodity flow problem. The node potentials of the demand
origins are zero (5.4). If a link is on a shortest path of a demand (o4 = 1), then the
difference of potentials of its adjacent nodes equals the link weight (w; 4+ r). On the
other hand, if [is not part of a shortest path of d (g4 = 0), then the weight is larger
than the difference (5.5), (5.6). w; < 1 (5.1) will guarantee that the weights and
therefore the node potentials remain finite. The rest of the constraints assure that for
each demand there are a set of links connecting the source and destination for which
oq = 1, which will cause some of the node potentials to be nonzero, as expected. This
first part provides the required link weights as outputs of the ILP.

The rest of the constraints ((5.7) and below) originate from the primal formulation
of a multi-commodity flow problem, augmented by the VRA flow split behavior, i.e.,
splitting proportionally to the number of parallel links. This second part provides
the number of parallel links (e;) as output. The connection between the two parts is
realized exclusively by variables oy;.

Equation (5.7) is the usual Kirchhoff junction rule. Eq. (5.8) is the link capacity
constraint, where § is to be minimized in the objective. Constraints (5.9)-(5.15) to-
gether represent the ECMP equal-split rule applied to the virtual link scenario, which

could be summarized as:

ZmeSn €x0dx

Oy = (Z 0o + 5dn> _—) (5.19)
{L’GTn

where n is the source of [, Vd, [: o4 = 1. Unfortunately (5.19) is not linear, so I have

o8 5.2. OPTIMAL SOLUTION

introduced a set of auxiliary variables, and multiplied and modified the constraints
to make it fit the ILP.
Constraints (5.9) and (5.10) basically assert

Ouk = (Z 04 + 5dn) m , (520)

:BETn

where m = ¢; and k =)", cq €,04,. For a brief explanation first observe that eq. (5.9)
and (5.10) cover a multitude of inequalities for different values of indexes d, [, k, m,
and n as described in the second note under the ILP. Most of these, however, are not
“live” constraints as M (3 —Yanr — 2im —0q) > M make them automatically true. These
are “real” constraints only when M (3 —yagnr — 2im —0ar) = 0, 1.€., Yank = 2im = oqr = 1.
For these cases m = ¢; and k = Y cg, €;04, are enforced, as described below.

m = ¢; is achieved by the simple set of constraints (5.11) and (5.12). Note that
the upper bound of the sums is R + 1, since using R virtual links the maximum of ¢;
is R+ 1.

Constraints (5.13)—(5.15) are to ensure k = Y g, €,04,. Observe that these con-
straints allow & = 0...]S,| + R. The upper limit comes from the definition of R,
while £ = 0 is allowed, since if no traffic of demand d goes through node n, then
> oses, €z0dz = 0. Equation (5.14) is repeated for all the possible 21571 combinations
of va, but only one of them is a hard constraint (i.e., the right-hand side inside the
parenthesis is zero): when v4 = o4 VI. The same applies to (5.15), providing together
the required k = Y, cg, €,04, for (5.20). Note that in these equations the conditions
|S,| > 0 and n # Dy are theoretically not necessary, they are only included to reduce
the number of variables and the related constraints.

Equations (5.16) and (5.17) ensure that there is flow from a demand on a link if
and only if the corresponding oy equals one. The last constraint, (5.18), limits the
number of virtual links per node to R.

The objective function (5.3) minimizes the MLU (/). It also keeps the Y 04 low
to avoid loops and minimizes) e; to prevent installing unnecessary virtual links.

Finally, a few words about constants M, r, ry, and r3. Theoretically their value can
be arbitrary as long as M is “large”, r is “small”, and 7y and r3 are “even smaller”.
In practice, however, these values should be set fairly accurately. For example, M

should be large enough to make each equation, where it is not multiplied by zero, an

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 99

ineffective constraint. Theoretically, if we can find such an M, a larger one is always
acceptable as well. Yet in practice having numerical values spanning too many orders
of magnitudes is not favored by the ILP solvers, and so they may come up with
erroneous results. Consequently, M should be kept relatively small, but large enough
to fulfill its original purpose. Similar considerations apply for the small constants
r, r9, and r3. In the simulation, after some theoretical calculations and practical
experimenting, I found the following values appropriate: M = 100, r = 1072, r, =

r3 = 10—,

5.3 Computational Complexity

In the previous subsection I have given a slow, but optimal solution to the VRA-
PGO problem. The algorithms given for Peer-Local Optimization can be considered
as quicker, but suboptimal heuristics for the same problem. Now I show that finding a
fast and even near-optimal solution is impossible, as the problem is computationally
hard by its nature.

This subsection consists of two parts: the first one lists the NP-completeness the-
orems along with their proofs, while the second one carries the inapproximability

results. I will use the notations introduced in Sec. 5.1.

5.3.1 NP-Completeness of VRA-PGO

First I slightly reformulate the Virtual Resource Allocation—Peer-Global Optimization
problem to be a decision problem. Furthermore, in this first formulation I take the

link weights as input parameters.

Problem 8, Virtual Resource Allocation—Peer-Global Optimization with
Given Weights (VRA-PGO-GW).

INSTANCE. A directed graph (V, F) representing a network with capacities ¢; € QT
and link weights w; € Qt for each link | € F. A set of demands {O; € F, D, € F,
Gq € Q},. The maximal number of virtual links that can be applied at a node:
ReZ (R >0). The maximal link utilization: 8 € Q.

QUESTION. Is there a VRA assigning e, > 0 (e; € Z) number of links to each
physical link | € F, such that E, < |S,|+ R (Vn € V) and max; h/c; < 57

60 5.3. COMPUTATIONAL COMPLEXITY

Algorithm 5.1 Calculating h; (sketch)
Input: (V. F), {e}, {w}
Output: {h}
Hgp, < 0 Vd,n {traffic volume of demand d entering node n}
ha < 0 Vd, [{traffic volume of demand d on link {}
ford«+ 1,D do
Run Dijkstra’s alg.: x,4 < shortest distance between n and Dy (¥n)
Determine {04}y from {z,4} and {w;} in O(|F|)
Let (V' F") C(V, F) for which | € F' iff o4 = 1. (V', F') is a DAG.
Topologically sort n € V' in O(|V'| + |F"|)
for all n € V' in the topological order do
if n = O, then
Hy, + Gy
else
Han < Yier, har {har # 0 due to the topological ordering}
end if
for alll € S,, do
hai < Haner/ Yses, €20dz
end for
end for
end for
for [+ 1,L do
hi < S0 ha
end for

In the Question above |S,| can be calculated from (V,F); E, and h; can be
calculated from (V. F), {e;}1cr, {w; }ier and from the set of demands. The only non-
trivial point is the calculation of h;, but it also can be done in polynomial time: see
Algorithm 5.1.

This definition can be changed in several ways to obtain different versions of the
problem, including the following:

e VRA-PGO: In this case setting the link weights, and this way defining the
routing of the demands, is part of the problem, too. This variant is similar to
VRA-PGO-GW, only the link weights are moved from the Instance to the Ques-
tion. This problem has been examined in the previous parts of the dissertation.

e VRA-PGO-GW-SD (SINGLE DEMAND): In this alternative we have only one
origin—destination—traffic volume triplet (D = 1).

¢ VRA-PGO-GW-Q: The definition of VRA-PGO-GW utilizes the Bounded

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 61

Virtual Resources constraint (E, — [S,| < R). In this version the Bounded
Total Resources (£, < @) limit is used instead.
e VRA-PGO-GW-ABS (ABSOLUTE ERROR): Here instead of the relative error

(utilization) (8, we have an absolute error, §, requiring max;(h; — ¢;) < 9.

By combining the definitions given above, several other equally valid variants of
the VRA-PGO problem could be created. Fortunately, the following proofs about
computational complexity can be generalized relatively easily to many of these new
cases.

I start the list of the results with an important finding:
Theorem 22. VRA-PGO-GW is NP-complete.

Proof. This proof is inspired by an NP-completeness proof presented in [9)].

First I show that VRA-PGO-GW is in NP, i.e., for a set {e;} it can be checked
in polynomial time whether the conditions hold. The first set of conditions (E, <
|Sn| + R, Vn € V) is trivial to check in polynomial time. For the second condition
(max; hy/¢; <), hys have to be calculated. For this, for each demand the shortest
path routes have to be calculated first, which can be done in polynomial time. Then
the nodes on the shortest paths (which now together define a DAG) have to be
topologically sorted, for which the complexity is NC? C P. Then computing k; and
ultimately max; h;/¢; can also be done in polynomial time. (See Alg. 5.1 for details.)

Now I prove that VRA-PGO-GW is NP-hard. I will reduce 3SAT to VRA-PGO-
GW. 3SAT is a famous NP-complete problem, and is formulated as follows.

Problem 9, Satisfiability of Boolean Expressions in 3CNF (3SAT).

INSTANCE. A Boolean expression F in conjunctive normal form with no more than

three variables per clause (3CNF). F' contains n variables x1, s, . . ., T,, and consists
of m clauses Cy, Cy, ..., Cy,, such that each clause is a disjunction of exactly three
literals.!

QUESTION. [s F' satisfiable?

A simple example 3SAT problem is:

F=(z1V-z3Vay) A(mxaVasVay) (5.21)

1Some sources use “at most three literals” instead of “exactly three literals”. These definitions
are practically equivalent.

62 5.3. COMPUTATIONAL COMPLEXITY

Figure 5.2: Network for the 3SAT reduction

This instance contains two clauses and it is satisfiable with for example z; = x5 =
T3 = T4 = TRUE.

For any 3SAT instance F', I create a corresponding instance of VRA-PGO-GW.
Figure 5.2 sketches the network: node k; corresponds to clause C;. For each variable
x, a set of nodes are defined: s,, T, T, and a balanced binary tree between them,
and likewise F,, F and a balanced binary tree between them. There are two global
nodes, t and u. The number of the leaves of both trees directly downstream T, and
F, is |z| for each tree, which denotes the least power of 2 bounding both the number
of negative and the number of positive occurrences of x in F' (|x| > 1). For a positive
occurrence of x in a clause C;, there is an arc from a leaf under F, to node k;. For a
negative occurrence of x in a clause Cj, there is an arc form a leaf under T, to k; (just
like in the figure). Each leaf can only be used for at most one occurrence of z in the
clauses. Fach leaf that is not connected to a node representing a clause is connected
to the global node w.

The link capacities are shown in the figure. The link weights are 1 for each link,

except for links s,t, for which ws , = max(log, |z|, 1) 4+ 3. The demands are as follows:

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 63

o

@

m

/J \:
- -
;

-

[F

o
&
k

@

G /
[

Figure 5.3: Example for F'= (21 V =23 V x4) A (029 V 23 V T4)

for each variable x: s, — ¢ : 4|z|, T, — 1. : |z|, F, — F : |z|. Furthermore, R = 1,
£ = 1. This reduction is clearly polynomial.

As an example I show the VRA-PGO-GW instance for the 3SAT expression pre-
sented in (5.21). The graph with link capacities is plot in Fig. 5.3. The link weights
are 1 for all the links, except for the four s,,¢, for which the weights are 4. The de-
mands are: s,;, —t:4, T, =T, :1, F,, = F, :1fori=1,2 3and s, —1:8,
T, —T,, :2,F,, —F, 2 R=13=1

I now prove that if the F' 3SAT instance is satisfiable, then there is a suitable
virtual link allocation for the VRA-PGO-GW problem. Let us consider a set of logical
constants that satisfy F' and use them for z, y, z, etc. Let ¢, = 1 for all the links,
except for one set of links: if x is true, then ey, 7, = 2 and ey, p, = 1, otherwise, if

if false, then es 1, = 1 and es p, = 2. Easily, £, < |S,| + R holds for all the nodes.

64 5.3. COMPUTATIONAL COMPLEXITY

For almost all the links h;/¢; < 1 is trivially true, it is nontrivial only for the k;t type
links, where the capacity is 5.

I now show that even for these links h;/c; < 1 holds. Each of the three incoming
links of k; has a demand originated at an s,-like node, where x corresponds to a
variable. If the literal in C; corresponding to z is not satisfied (i.e., is in positive
form and x is false, or x is in negative form and x is true), then 2 units of traffic arrive
to node k;. If, however, the literal is satisfied, then 1 unit of traffic arrives due to the
traffic split at node s,. We know that [is satisfied, i.e., at most two of the literals
in C; are unsatisfied, meaning that at most 5 units of traffic can arrive to node k;.

Now follows the opposite direction: if there is a suitable virtual link allocation for
VRA-PGO-GW, then the 3SAT instance F' is satisfiable. First consider the binary
tree under 7. As it has |z| leaves, each connected to 7, with a link with capacity of 1,
and as there is a demand T, — T : |z|, and as R = 1, it follows that ¢; = 1 for all the
links between T, and 7T, for any suitable virtual link allocation for VRA-PGO-GW.
By symmetry, this statement also holds for the links between F, and F.. It is also easy
to see that e, = 1 and either (e;, 7, = 1 and e,,p, = 2) or (es,7, =2 and €5, p, = 1):
if it were not so (i.e., es,;, = es,p, = 1 and either e, ; = 1 or es; = 2), then the
capacity limit would be violated on s,t. There are no other nodes in the network
where traffic split occurs.

Observe the following: if the literal in C; containing x is unsatisfied then 2 units of
traffic arrive to k; from s,, otherwise 1 unit, as we have equal split throughout both
balanced binary trees. Now, let each variable x be true, if e; 7, = 2, and let it be
false if e, = 2. This variable substitution will satisfy F'. The reason is simple: for
each clause C; in F, there is a node k;, and as hy,;/cr,t = h,e/5 < 1, there is at most
5 units of traffic arriving to k;. This means that for each clause there is at most two

unsatisfied literals in F'. O

This proof can be easily modified to prove the NP-completeness of different ver-

sions of the problem.
Theorem 23. VRA-PGO-GW-Q is NP-complete.

Proof. Same as the previous proof, except for using () = 4 instead of R = 1. Although

in the binary trees it is possible to have e¢; = 2 simultaneously for a pair of links

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 65

originated at a common node, as this still results in equal traffic split, this causes no

problem. O
This also proves the following:

Theorem 24. VRA-PGO-GW-Q is NP-complete if Q) = 4 is a given constant.

The strength of this theorem is that there is a constant (), for which the problem
is NP-complete, i.e., in this case @) is not an input parameter. To show an analogy,
deciding if there is a k-vertex clique in a graph is NP-complete if k£ is an input

parameter, but for any given k the problem can be solved in polynomial time.
Theorem 25. VRA-PGO-GW-ABS is NP-complete.
Proof. Same as the proof of Thm. 22, but by using = 0 instead of g = 1. O

I have developed another proof of Theorem 22, along with some related theorems
and proofs. However, to maintain the easy readability of this chapter those have been
placed to Appendix C.3. Yet, those proofs are significant not only because they tackle
the same problem family differently, but also because they target different variants
of VRA-PGO. For example, Theorem 39 claims the NP-completeness of VRA-PGO
itself.

The proof of the next theorem will be needed for the inapproximability results.
Theorem 26. VRA-PGO-GW-SD is NP-complete.

Proof. This proof is based on the proof of Theorem 22. This time, however, let |z| = 2
if there is no more than one negative and no more than one positive occurrence of x
in /. VRA-PGO-GW-SD is in NP, for the same reasons as VRA-PGO-GW is in NP.

The network is modified, and is shown in Fig. 5.4. The first difference between

Figs. 5.2 and 5.4 is the binary tree rooted at node s. It has ¢ leaves, where
— i OF . -)
q—r]?el%lQ .q>12i:21|xl| .

Most of these leaves are connected to the nodes s,, Ty, Fy, s,, T,, F,, ... (each
triplet representing a variable in the related 3SAT instance), as shown in the figure.

The number of leaves connected to a single node is shown underlined. The rest of the

66 5.3. COMPUTATIONAL COMPLEXITY

Figure 5.4: Network for VRA-PGO-GW-SD

leaves, not connected to any of the s, T, F, type nodes, are connected to t. Their

number is ¢ — 12 Y |z;|, which, by the definition of ¢, is at most ¢/2.

The leaves of the trees rooted at T, and F, are named T, 1, T}, ..., T} 5 and
Fo1, Fypo, ..., Fy g, respectively. They are connected to some k; or to u, as described
previously.

The link capacities are shown next to each link. Let
p = max log, |z -

All the link weights are 1 by default, except for the links where it is shown by the
numbers in an ellipse. Let the single demand be s — t : ¢. R = 1. § = 1. This
reduction is polynomial.

First I prove the 3SAT = VRA-PGO-GW-SD direction. Let x, y, z, etc. be the
logical constants that satisfy F'. Let ¢; = 1 for all the links, except the following. If

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 67

x is true, then let e;,r, = 2 and e, p, = 1; if x is false, let e;,p, = 2 and eg 7, = 1.
These kind of link allocations will be called canonical allocations below.

First note that all possible directed paths between s and ¢ are also a minimum total
weight (i.e., shortest) path: the total length of these shortest paths are log, ¢+ p + 5.

Easily, £, <|S,|+ R holds for all the nodes. For almost all the links it is easy to
see that h;/c¢; <1 is true. For the k;u type links (with capacity of 17 units), however,
some explanation is needed. The reason why these links are not overutilized is the
same as described at the proof of Theorem 22: 6 units of traffic arrives at k; from
the variables corresponding to a not satisfied literal and 5 units from the variables
representing a satisfied literal. As at least one literal is satisfied in each clause, links
k;u are not overutilized.

Link wut is not overfilled either: the total traffic arriving to T, F,, T,, F,, ...
is 123 |z;|, and this is the traffic that will eventually traverse on wut, resulting in
P / Cut = 1.

Now I prove the VRA-PGO-GW-SD =- 3SAT direction: if there is a suitable
virtual link allocation for VRA-PGO-GW-SD, then the corresponding 3SAT instance
is satisfiable.

I will first prove that any suitable virtual link allocation must be canonical.

First consider the tree rooted at s. It has ¢ leaves and each one is part of a
minimum total weight path from s to t. As ¢ amount of traffic arrives at s, and as
each one of the ¢ leaves has a single outgoing link with one unit capacity and as
B = 1, there must be one unit of traffic on each link leaving the leaves. This means
that ¢; = 1 for all the links within the tree under s.

Each link that is a single outgoing link at any node can have ¢, = 1 or ¢; = 2, but
as in practice these result in identical behavior I will assume e; = 1 for these links.
This is the case for the links originated at the leaves of the tree under s, as well.

4|x| amount of traffic arrives at s,, and again, all three of its outgoing links are
on shortest paths towards ¢ (with total weight from s, to ¢ of log, |z| 4+ 4). Easily,
es,w = 1 and either (es, 7, =1 and e5, , = 2) or (e5,7, = 2 and eg g, = 1), otherwise
the capacity limit would be violated on the link s,u.

Let us now focus on the binary tree under 7). Note that all the nodes and all the
links within the tree are still on a shortest path. Depending on e, 7, and e, g, either

5|z| or 6|z| amount of traffic arrives at T,. I prove that in both cases ¢, = 1 for all

68 5.3. COMPUTATIONAL COMPLEXITY

the links in the binary tree. First note that if e, = 1 for all the links and 5|x| arrives
at T,, then 5 units of traffic will reach each leaf, 10 units each node above the leaves,
20 each node above them, etc. Likewise, if 6|z| arrives at T}, then 6 will arrive at
each leaf, 12 at the next level, etc. Next, suppose the opposite of the statement to be
proven: for some links within the tree e; = 2. This means that there is at least one
leaf, say T, ;, where the incoming traffic is at least 10 -2/3 = 20/3, if 5|x| arrives at
T.. (If there is only one link with ¢; = 2 in the tree, and that is right above a leaf,
then 10-2/3 = 20/3 units of traffic will arrive to exactly one leaf. If this link is higher
up in the tree then there will be more than one leaves with 20/3 units of traffic. If
there are several links with ¢; = 2 then the arrival traffic of some leaves could be even
higher.) Similarly, if 6|x| arrives at 7}, then there is at least one leaf, say T} ;, where
the incoming traffic is at least 12-2/3 = 8. As both of these values (20/3 and 8) are
greater than 6, our assumption leads to a contradiction violating h;/¢; < 1 on the link
leaving T, ;, which proves that for all the links in the binary tree e; = 1. The previous
reasoning also yields that Az, ,, = 6 or hr, &, = 6 (whichever exists) if e, 7, = 2.
Likewise, if e,,r, = 1, then hg, ., =5 or hr, x;, = 5.

Certainly, the same proof applies to the links under F,. As there are no more
nodes in this network where traffic split may occur, we can safely suppose ¢; = 1 for
the rest of the links. At this point I have shown that § = 1 can happen only if the
link allocation is canonical.

As links k;u are not overutilized by assumption, the related variable substitution

(i.e., x is true if and only if es, 7, = 2) will satisfy the 3SAT expression F. O

5.3.2 Inapproximability of VRA-PGO

To examine the approximability of a problem the first step is to formulate it as an
NP optimization (NPO) problem [60]. Again, several problem definition versions could
have been listed here, but for simplicity I only list those two, which are crucial for

the main inapproximability results:

Problem 10, Minimal Error Virtual Resource Allocation—Peer-Global Op-

timization with Given Weights (MIN-VRA-PGO-GW, shortly MVPG).
INSTANCE. A directed graph (V, F) representing a network with capacities ¢; € QF

and link weights w; € Qt for each link | € F. A set of demands {O; € F, D, € F,

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 69

Gq € QT}2,. The maximal number of virtual links that can be applied at a node:
ReZ".

SOLUTION. A wvirtual resource allocation assigning e, > 0 (e; € Z) number of links
to each physical link | € F, such that E,, < |S,|+ R (VneV).

MEASURE. The maximal link utilization 8 = max; h;/¢;.

GoAL. Minimize the measure.

Note that |S,| can be calculated from (V| F'); E, can be calculated from (V| F)
and from {e;};cr; hy can be calculated from (V, F), {e;}1er, {w; }ier, and from the set

of demands, as explained at Alg. 5.1.
Next I show that MVPG is indeed an NPO:

1. The set of the instances of MVPG is recognizable in polynomial time. This
means that if ¥ is the input alphabet and Z C »* is the set of input instances
then x € 7 for an z € ¥* can be verified within polynomial time of |z|. For
MVPG it is clearly the case.

2. The size of the solution is indeed a polynomial function of the size of the in-
stance.

3. Deciding if a solution candidate is a solution or not can be done in polynomial
time, as computing FE, is fast.

4. The measure can be calculated in polynomial time of the size of the solution.

This statement is not trivial, but its proof is essentially the same as the proof
of VRA-PGO-GW is in NP, presented in the proof of Theorem 22.

The following version of the previous problem will also be important for the ap-

proximability results.

Problem 11, Minimal Error VRA-PGO with Given Weights for a Single
Demand (MIN-VRA-PGO-GW-SD, shortly MVPGS).
This is essentially the same as MVPG, but has only exactly one demand.

MVPGS is an NPO problem as well, because the reasons listed for MVPG are all
valid for this problem version, too.
The proof of Theorem 22 can be extended to show that generally the optimal

solution cannot even be approximated efficiently:

70 5.3. COMPUTATIONAL COMPLEXITY

Theorem 27. No polynomial time algorithm exists that approximates the optimum
of MVPG better than a factor of 6/5 (unless P= NP).

Proof. This proof uses ideas from a similar reasoning presented in [9]. Also, it heavily
relies on the proof of Theorem 22, using the same VRA-PGO-GW instance bound to
a 3SAT problem (see Fig. 5.2). Finding an optimal resource allocation, which yields
£ =1, is proven there to be NP-hard. I will now show that for the same instance any
virtual resource allocation that results in § > 1 also results in 5 > 6/5.

In fact I prove an equivalent statement: for the given VRA-PGO-GW instance if
a virtual resource allocation results in 5 < 6/5 then it also results in § = 1. Because
of R =1, for each link [, either ¢, = 1 or ¢, = 2. Consider first the links within the
binary trees. If e; were 2 for any of them, then there would be an ingress link of 77,
or F!, for which h;/c¢; > 4/3, which is against our assumptions.

Next, consider the outgoing arcs of s,. If for all the three arcs ¢, = 1, then
hs,i/cs,c = 4/3, again a contradiction. e,,; = 2 would result in hy ¢/cs s = 2, which is
not possible either. Thus either e, 7, = 2 or e, = 2. As no more splitting occurs,
we can suppose €; = 1 for the rest of the links.

Now it is easy to see that for almost for all the links h;/¢; < 1: the only critical
links are the k;t type ones. Based on the previous observations, for a node k; each
incoming link carries either 1 or 2 units of traffic. Consequently, if hy,./ck.: < 6/5
then hy,/cr,e < 1. O

A corollary of this theorem is that MVPG is not part of the PTAS (Polynomial
Time Approximation Scheme) class, as it is not possible to efficiently approximate
the optimal solution within every constant ratio. I show now the same for the single
demand version of the problem, which will also be used later, in the proof of a stronger

statement:

Theorem 28. No polynomial time algorithm exists that approrimates the optimum

of MVPGS better than a factor of 18/17 (unless P = NP).

Proof. This proof relies on the proofs of Theorems 26 and 27. I will use the same
VRA-PGO-GW-SD instance as the proof of Theorem 26 (see Fig. 5.4). As finding the
optimal resource allocation for this instance is already proven to be NP-hard, I will
show, just as at the proof of Theorem 27, that if for the given VRA-PGO-GW-SD

instance a virtual resource allocation results in § < 18/17 then it also results in 5 = 1.

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 71

[first show that a resource allocation with $ < 18/17 must be canonical (for the
definition see the proof of Theorem 26). Because of R = 1, for each link [, either
e; = 1 or ¢ = 2. Just as before, we may safely suppose e¢; = 1 for the links that are
single outgoing links from a node.

Consider first the links within the binary tree under s. If ¢; were 2 for any of
them, then there would be an egress link of at least one of the leaf nodes, for which
hi/c; > 4/3, which is against our assumptions.

Next, consider the outgoing arcs of s,. If for all the three arcs ¢; were 1, then
hsyu/Cs,u = 4/3, again a contradiction. e, ,, = 2 would result in hg,,/cs,, = 2, which
is not possible either. Thus either e, 1 = 2 or e, g, = 2.

Let us now focus on the binary trees under T,,. At the proof of Theorem 26 I have
shown that if for some links within the tree ¢, = 2, then there is at least one leaf,
say T;, where the minimum amount of traffic on its outgoing link is at least 20/3.
As for this link h;/¢; > (20/3)/6 = 20/18 > 18/17, this would violate our § < 18/17
assumption. Certainly, the same proof applies to the binary tree under F.

As no more splitting occurs, we can suppose ¢; = 1 for the rest of the links. Thus
I have shown that a resource allocation with 5 < 18/17 is indeed canonical.

Now it is easy to see that if 5 < 18/17 then for almost all the links h;/¢; < 1: the
only critical links are the k;u type ones. Based on the previous observations, for a
node k; each incoming link carries either 5 or 6 units of traffic. Consequently, either
hi, < 17, meaning hy,, /cr < 1, or hy, = 18, yielding hy,,/cr, = 18/17, which is
against our assumptions.

This means that if for this VRA-PGO-GW-SD instance a virtual resource alloca-
tion results in § < 18/17 then it also results in 5 = 1. O

From the previous theorem it follows that MVPGS is not part of the PTAS class,

either. The next statement is the strongest in this section.

Theorem 29. No polynomial time algorithm exists that could approximate the opti-
mal solution of MVPGS to any given constant ratio (unless P = NP).

In other words this means that MVPGS is not part of the APX class.

The proof of Theorem 29 applies the inapprozimability gap amplification technique,
which has recently been introduced in [43] to prove a similar inapproximability for
the OSPF ECMP link weight configuration problem.

72

5.3. COMPUTATIONAL COMPLEXITY

7
%. ZAC NUCD WCD

T >

C4Ci
\ Yeo

4
CiC\ C4Co
4 4 °
c4c
v C4Ch
o—>0cyc, CDc\ z
C, AU, %Ca Ve —> e<cD
A AC XCDC4C ﬁ b
xu e w YBD Ceny,
CiC AB z
o=ty o CiCi W csc, BD
BD
C1Cq C e\.YAB PoXon
C(C e 3
c c c
VAB.\ &‘ h 3Cp, dc 7
CiCc Z o———)o 3
_). AB yy CsCa Vg

(C) Ia®Ig

Figure 5.5: MVPGS compounding

Just like at the inapproximability proof in [43], I first introduce the ® (compound)
operator for MVPGS instances. From two instances I, and Ip a new instance I =

I, ® Ig can be crated by compounding if both of the following conditions hold:

1. the traffic volume of the demand to be transmitted in Ip is 1,

2. the allowed maximum number of virtual links (R) is identical in /4 and Ip.

An example of compounding is shown in Fig. 5.5. The capacities are shown next
to the links and each link weight is one unit. In /4 the demand is A — D : 1, in Ip
itisU — Z:1. R=1 in all these instances.

The formal definition of I, ® I is the following (see Fig. 5.6). Take the 4 network
and replace each link in it with the following subnetwork. Let the original link in 4
be ab with capacity ¢ and weight w, and the demand in Iz be s — t. Let the total
minimum weight of s — ¢ (i.e., the length of the shortest path between s and t) be

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 73

a c b s t
) - e X

a c Sap Xab C.C Yab tab © b
—_— Ty —_—
Wo

w/2

Figure 5.6: ® definition

wy. In 14 ® I create a link as,, with capacity ¢ and weight w/4. Also create a link
teb with infinite capacity and weight w/4. Between sy, and t,, insert the network
of Ig: s replaced by s, t becoming t.,, turning to z,, etc. For each link zy in
Ip with capacity c,, and weight w,, create a link x,yq of capacity c,,c and weight
Wyyw/(2w,). This way the total minimum weight of the ab subnetwork in /4 ® 5 will
remain w, and also the shortest paths between s, and t,, will stay as it were between
s and t. Let the demand of the new 4 ® [g instance be equal to the demand of I,4,
and R in the new instance be as it was in [4 and Ip.

For an MVPGS instance I let OPT(I) denote the measure for the optimal solution,

i.e., the minimal §. Furthermore, let us use the notation

In=7T =1
L=RT=1IxI
L=xT=1I2@1=Ix(IxI)

I, =@ =1 ® (@)
Note that in general (I @ I) @I #1® (I ®1).
Now the following lemma can be presented and proven:

Lemma 30. Let I be an instance of MV PGS with OPT(I) > 1. Then OPT(®*I) =
(OPT(1))**! for any k € Z, k > 0.

74 5.3. COMPUTATIONAL COMPLEXITY

Proof. The proof is by induction. For k = 0 we have OPT(®°T) = OPT(I)", which
is clearly true. Now suppose the lemma is true for k, i.e. OPT(I;) = OPT(I)**!, and
I prove it for k£ + 1.

First I prove that OPT (I,1) < OPT(I)**2 by giving a link allocation setting in
;.41 with MLU OPT(I)*+2. Let €? denote the number of parallel links at link / in o,
which results in the optimal allocation. Furthermore, let ef be the number of parallel
links at link [for the optimal allocation in [} (for which OPT(I) = OPT(I)*+1).

Likewise, let ey denote the number of links at [in ;. This new link allocation is:

k+1 _ 0 k+1 __ k+1 _ k
easab = Cabs 6tabb - 17

TabYab Ty -

Let B = h;/c; be the utilization of link [in I, with the optimal link setting.
Similarly, let 8F be the link overload in I; using optimal allocation. The link utilization
in Iy is:

65;1 = 2bv Z—:bl =0, Bi::;/ab - Bgy 217)
We used a link allocation for which max; 3 = OPT(I), which is supposed to be at
least one, and we assumed that max; Bf = OPT(I)**!. These yield max; 3" will

not take place at an as,, or t,b type link. Instead,

max G = max B3] = max 55,85, = OPT(1)**1 - OPT(I) = OPT(1)*+* .

Next I prove that OPT(I,1) > OPT(I)**2. The proof is by contradiction. Sup-
pose the opposite, i.e. for a suitable link allocation in Iy, ,: OPT (I,) < OPT(I)**2.
Thus, using the previous notations, we suppose that for this link setting for each link I:
BETY < OPT(I)F+2.

Let us focus on a subnetwork in [i, which corresponds to a link ab in I. Let
55; 1 = 0. There are two possibilities:

In the first case for all links ab in Iy: 0,y < OPT(I) in I, 1. This would mean,
however, that using), = e} ¥! in Iy would result in 5° < OPT(I), which contradicts
to the definition of OPT'(I).

In the second case there is at least one link ab in Iy such that d,, > OPT(I) in
I}.1. Consider now the corresponding s,, — tq subnetwork in I;,; with unaltered

link allocation. Suppose it had one unit of incoming traffic and let us denote the

CHAPTER 5. PEER-GLOBAL OPTIMIZATION 75

utilization for link x4y in this case with ~;,,_,,.,. We know that ﬁf;t;ab = OabVzapyas

and we supposed for all the links that Blk“ < OPT(I)**2. This means for all zy that

OPT(‘[)k+2 > Bk+1 = 5ab’y$abyab Z OPT(I)’yxabyab

TabYab

that is
’yxabyab < OPT(‘[)k+1)

which means that the I instance could be solved with MLU less than OPT(I)k+1,

which is again a contradiction. O
Now we are ready to prove that MVPGS is not part of the APX class:

Proof of Theorem 29. According to the theorem, for any constant factor a > 1 there
is no polynomial time algorithm that can find a solution to each MVPGS instance [
with MLU less than o - OPT'(I). To show this, for each o I will create one MVPGS
instance and show that it is not possible to quickly approximate the optimum within
a factor of « for that instance.

First take the instance described at proof of Theorem 26, with the network plot
in Fig. 5.4. Divide each link capacity by ¢ and let the demand be s — ¢ : 1. The other
parts of the instance (e.g. the link weights) are unaltered. I will call this instance Ij.

From the proof of Theorem 28 it follows that either OPT'(ly) = 1 or OPT'(Iy) >
18/17 (depending on the solubility of the 3SAT problem behind it), and deciding
between these two possibilities is NP-hard.

Let k be the smallest positive integer such that (18/17)% > a. Now let us create
MVPGS instance I;,_; = ®*~'1,. First note that the size of I;,_; can be upper bounded
by a polynomial function of the size of Iy; consequently it can also be upper bounded
by a polynomial function of the size of the 3SAT problem behind it. Next, according
to Lemma 30 OPT(Iy_1) = OPT(Iy)*. This means that either OPT(I;_;) = 1 or
OPT(I;,_1) > (18/17)F > « and it is NP-hard to decide which case holds. The latter
is true as if we could decide in polynomial time between these options then by this
we could also solve [y quickly.

This means that if OPT (I_1) = 1 then it cannot be approximated in polynomial

time better than a factor of «. O

Chapter 6
Numerical Evaluation

The complexity-related results of the previous chapter state the hardness of Peer-
Global Optimization in general. They, however, do not necessarily mean that in prac-
tical networks no effective solution can exist. To see how the different algorithms
perform in realistic environments I have implemented a simulation framework, which
is based on my descriptive use case, OSPF ECMP Traffic Engineering.

The simulator takes a capacitated network and a set of demands as inputs and
solves the Virtual Resource Allocation problem using several different algorithms. I
have implemented the framework and the optimization algorithms in C++ using the
powerful LEMON Graph Library [58]. T have solved the embedded linear programs
using the IBM ILOG CPLEX Optimizer [61].

Note that unlike my analytical results, this numerical evaluation could hardly be
conclusive. Yet, my results show the potential of the proposed techniques on a set
of typical inputs. Furthermore, the presented simulation framework provides a quick
way to test the performance of different algorithms on any given network and demand

set.

6.1 Examined Algorithms

I have included the following seven optimization approaches in my simulator:

1. Overlay Optimization, as described in Chapter 3.
2. Overlay Optimization with Path Exclusion, see Sec. 2.3.2 and Chapter 3.
3. Peer-Local Optimization using ILP, described in Section 4.4.1 (Alg. 4.4).

76

CHAPTER 6. NUMERICAL EVALUATION 77

network +
. L demands
link capacities

multi-commodity
flow problem LP

primal solution
per link
per demand
traffic

Figure 6.1: Global Optimization

Heuristic Peer-Local Optimization, as shown in Section 4.4.3 (Alg. 4.5).
Peer-Global Optimization using the ILP presented in Sec. 5.2.

Global Optimization, described in Sec. 6.1.1 below.

OSPF Weight Optimization, as introduced in Sec. 2.3.1, and detailed in Sec 6.1.2

NS gt

below.

6.1.1 Global Optimization

Taking the capacitated network and the demands and solving the related multi-
commodity flow LP results in the optimal per link per demand traffic (see Fig. 6.1).
This serves as the first step of the Overlay Optimization and Peer-Local Optimiza-
tion mechanisms, as described earlier. If, by using an adequately sophisticated TE
mechanism, the demands could be routed perfectly according to the solution of this
LP then the theoretical minimal MLU could be reached.

Accordingly, I have included a simple algorithm in my simulation platform that
treats the outputs of this multi-commodity LP as actual traffic values. These results
will then serve as reference values, since no algorithm (neither Peer-, nor Overlay-
based) can perform better than this one. Furthermore, I will actually divide the
MLU’s of the different algorithms by this optimal MLU to have a normalized value,
which is independent of the actual link bandwidths and traffic volumes.

The result of this optimization will be denoted in the charts as Global Optimum.
Certainly, when displaying MLU values, Global Optimum will be constant 1.0 due to

the normalization.

78 6.1. EXAMINED ALGORITHMS

network +
. - demands
link capacities

| OSPF weight optimization |

Figure 6.2: OSPF Weight Optimization

6.1.2 OSPF Weight Optimization

The OSPF Weight Optimization problem is simple to define: set the link weights so
that running OSPF with ECMP on top of this network will generate the best result,
which is the minimal MLU in our case (see Fig. 6.2). This is actually OSPF-TE. Note
that in this case we are not applying virtual resources at all.

The OSPF Weight Optimization problem is proven to be NP-hard [9]. In the same
paper a link weight local search heuristic is proposed, which have been implemented in
an open source toolbox, called TOTEM (TOolbox for Traffic Engineering Methods [62,
63]). TOTEM itself is a Java-based graphical, modular toolkit, and the algorithm
described in [9] has been implemented in a C language module called IGPWO (Interior
Gateway Protocol Weight Optimizer [64]). Nevertheless, in the rest of this dissertation
I will simply refer to this algorithm as the “TOTEM” method.

I have taken the source code of the IGPWO module out of the TOTEM (ver. 3.2.1)
framework and (after fixing some bugs) included in my simulations to serve as a best-
practice solution of the OSPF Weight Optimization problem. To do so, the error
function of TOTEM has been modified. The original implementation contained a
convex, piecewise linear cost function of the link load, which were summed over all the
links, whereas I simply used the maximal link utilization as the error to be minimized.
During the simulations I have used the following settings: iteration number: 50 000,
max link weight: 5, random initial weights, minimum sampling rate: 0.001, maximum

sampling rate: 0.04, initial sampling rate: 0.02.

6.1.3 Implementation Aspects

Previously, in Chapters 3 and 4 on Overlay and Peer-Local Optimization the Bounded
Total Resources model (see Sec. 2.2) has been used (requiring £ < @ and E; < Q)

for easier presentation. Yet, as described in Sec. 5.1, these considerations can easily

CHAPTER 6. NUMERICAL EVALUATION 79

be transformed to the Bounded Virtual Resources scenario. This latter model is also
used at the Peer-Global Optimization discussions in Chapter 5. In the simulation
the Bounded Virtual Resources constraint has been implemented as well. The actual
requirement is £ — |S,| < R, where F is the total number of links/paths used at
a node, |S,| is the number of physical outgoing links/paths of a node and R is the
maximal number of virtual links/paths that can be installed per node. The reason for
this choice is that it makes it easier to compare the algorithms running at different
nodes with different number of outgoing physical links. Also, in this case for the Peer-
Local and Peer-Global Optimization scenarios R = 0 reverts to the classical OSPF-TE
optimization problem without virtual links, providing a meaningful comparison.
Practical problems arose when the path decomposition module in the Overlay
Optimization algorithms (see Fig. 3.1(b)) returned a path with very little traffic on
it. In this case the VRA-IN-1D algorithm tried not to overutilize this path, which
certainly provided the local optimum for the VRA-1N-1D problem, but it was proven
to be highly suboptimal regarding the global MLU. To overcome this issue, if a path
was found with traffic less than 5% of the total demand then it was deleted and its
traffic was distributed over the rest of the paths, resulting in considerably lower MLU.
Similarly, to avoid the same problem for the Peer-Local Optimization algorithms,
the case when a link is on a shortest path of a demand (o;; = 1), but it has very little
traffic on it (g;; < 1077 or ;; < 0.05) is treated exceptionally. In this situation the
traffic proportion of the demand on the given link (;;) has been risen at the expense

of the other outgoing links on the shortest paths.

6.2 Simulation Scenarios

I have used three realistic network topologies for the simulations. The first one is
the well known North American Abilene network topology, shown in Fig. 6.3(a) (see
also Table 6.1). The second examined network is shown in Fig. 6.3(b): it is a simpli-
fied Pan-European optical core network, which have been proposed in [65]. In both
networks uniform link bandwidths of 100 units have been used. The third network
(AS3967) was taken from the inferred ISP data maps of the Rocketfuel dataset [66].
Approximate POP-level maps has been obtained by collapsing the topologies so that

nodes correspond to cities and leaf nodes have been eliminated. This network comes

80 6.2. SIMULATION SCENARIOS

% P

o F1 £,

(a) Abilene network (b) Pan-European network

Figure 6.3: Network topologies

Network No. of nodes No. of unidirectional links Link capacities [units]
Abilene 12 30 100
Pan-European 16 46 100

AS3967 21 72 44-1000

Table 6.1: Network characteristics

with inferred link capacities between 44 and 1000 units, with an average of 345 units.
The resulting graph for this network contained 21 nodes over three continents and 72
capacitated unidirectional edges.

I had 5 demands in each simulation session for the Abilene and the Pan-European
networks, and 16 for the larger AS3967 topology. In each case the source and desti-
nation nodes were selected randomly. The traffic volumes have also been picked at
random for each demand with uniform distribution on the [5, 30] units interval. The
maximal number of virtual links or paths (R) was varied between 0 and 8, inclusive.

Due to the complexity of the ILP applied in Peer-Global Optimization, it took up
to several hours, or even days to run a single instance of simulation (consisting of 9
runs with R = 0...8) on the smaller Abilene and Pan-European topologies with only
5 demands. Yet, these scenarios have been simulated 300 times (with all the seven

algorithms) on a high-performance computer to decrease the variance of the results.

CHAPTER 6. NUMERICAL EVALUATION 81

The AS3967 topology was too complex to run Peer-Global Optimization on it, but

on the other hand it allowed me to run the rest of the algorithms 3000 times.

6.3 Simulation Results

The results are shown in Fig. 6.4. The first three charts show the MLU as a function
of R for the examined scenarios.

For the Abilene network TOTEM performed almost as good as Peer-Global Opti-
mization for the no virtual link case, which is its theoretical lower bound. For R = 0
Peer-Local and Overlay Optimizations performed clearly worse than TOTEM, which
is no surprise: running a VRA algorithm without virtual resources does not make
much sense. However, allowing only two virtual links per node the performance of
Overlay Optimization became as good as TOTEM’s, and as R grows, Overlay Op-
timization clearly overperformed TOTEM, getting as close as a few percents to the
Global Optimum. The Peer-Local ILP and Peer-Local Heuristic algorithms performed
the worst, only reaching the MLU of TOTEM at R = 8. Note, however, that these
are quick heuristics only for the VRA-PGO problem. The Peer-Global Optimization’s
MLU is well below TOTEM’s even for R = 1 and it keeps decreasing as R increases,
almost reaching the Global Optimum for only R = 4. This shows that the Peer-Global
Optimization approach does have a high potential, but the currently applied heuris-
tics are not taking full advantage of this, leaving space for future research for better
ones.

For the Pan-European scenario the results are similar. Note that here TOTEM
performed significantly worse comparing to its theoretical limit. This is not surprising
though, as TOTEM itself is just a heuristic optimization algorithm for an NP-hard
problem. Here Peer-Local Optimizations performed somewhat worse, yet Peer-Global
Optimization shows, that the theoretical Global Optimum is very closely approachable
using VRA.

For the AS3967 case the Peer-Local approaches perform even weaker, but Overlay
Optimization is still better than TOTEM at R = 3 already. Here the “Peer-Global
Optimum” curve is missing, as the related ILP was practically unsolvable for this

larger network.

82

6.3. SIMULATION RESULTS

@ Normalized Maximum Link Utilization
S~—

Normalized Maximum Link Utilization

(¢) Normalized MLU for the AS3967 topology

1.3

1.25

Normalized MLU for the Abilene topology

Peer-Local Heur. ---#---
Peer-Local ILP —v—
TOTEM —+—

Overlay -4

Overlay w/ Path Excl. —a—
Peer-Global ---e--
Global Optimum —»—

-

-
4

R

Peer-Local Heur. ---#---
Peer-Local ILP —v—
TOTEM —+—

Overlay -4

Overlay w/ Path Excl. —a—
Global Optimum —*—

1.9

Peer-Local Heur. ----#&---
Peer-Local ILP —v»—
TOTEM —+—

Overlay -----

Overlay w/ Path Excl. —a—
Peer-Global ---e--

Global Optimum —»—

Normalized Maximum Link Utilization

(b) Normalized MLU for the Pan-European

topology

0.36 . . . : : : :
P Peer-Local Heur. ----#---
e 0.355 L. T g oo PogwOCEIMP - —eyes®
S F4 TOTEM —+—
g 0.35 Overlay -4 |
= Overlay w/ Path Excl. —a—
5 0345 Peer-Global ----
x Global Optimum —»—
3 0.34 H . : : : 9
° + + + + +
& 0.335
]
2 0.33 ¥
°
S 0325
= .
E 0.32 1
S “e....
Z 0315 T g ot — 4
031 L L L L L L L
0 1 2 3 4 5 6 7 8
R

(d) Normalized Average LU for the

Pan-European topology

(e) VRA-IN-1D Algorithm Error (U) for Overlay

VRA-1N-1D Algorithm Error

Pan-European —6—

Abilene —8&—

Pan-European (w/ Path Excl.) ---©--
Abilene (w/ Path Excl.) ---E---

1.8
17
16
1.5
14

1.3

1 . I T
0 1 2 3

2
4
R

Optimization

Figure 6.4: Simulation results

CHAPTER 6. NUMERICAL EVALUATION 83

Fig. 6.4(d) shows the average link utilizations for the Pan-European network, again
normalized by the optimal Maximal Link Utilization, which is why all the results are
well below one. As all the presented algorithms aim to minimize a different metric,
the MLU, the average link utilization chart is considerably different than the MLU
charts. Here, Peer-Global Optimization performs the worst and the best ones are the
Overlay methods, but note that all the measured values are within 5% of the optimal
MLU.

Regarding the Peer-Local algorithms it might be somewhat surprising that the ILP
is not always better than the heuristic approach. The reason is simple: locally the ILP
version is better, certainly, but a worse local solution can actually result in a better
global MLU, as the graphs shows. Nonetheless, in all the cases their performance is
very close to each other and mostly the ILP-based version performs better.

Similarly, sometimes Overlay Optimization with Path Exclusion seems to perform
worse than plain Overlay Optimization. This is again due to the fact that the (lo-
cal) optimization objective and the (global) measured metric is different. Note also
that Overlay Optimization can theoretically overperform Peer-Global Optimization,
although it did not happen in my practical evaluation.

Looking at the solution of the embedded VRA-IN-1D problem (Fig. 6.4(e)), Op-
timization with Path Exclusion always performs better, which is not surprising as it
has a higher degree of freedom. This figure shows also clearly that the convergence
to the optimum is quick as R increases. For R = 6 the solution is within 10% of the

optimum, which indicates the strength of Alg. 3.3 and the whole VRA concept.

6.3.1 Resource Consumption

The simulations has been carried out on the High Performance Computing Cluster
of the Budapest University of Technology and Economics (called “superman”). Each
optimization session was run on a single core of an Intel Xeon Processor X5660 (but
several sessions were run in parallel). The average running times and memory con-
sumption of the different algorithms are summarized in Table 6.2.

The first row (“5 algorithms”) shows the total resource usage of the two Over-
lay Optimizations, the two Peer-Local Optimizations and Global Optimization. The

second row represents the TOTEM optimization alone, while the third row reveals

84 6.3. SIMULATION RESULTS

Algorithms Average running time Average memory usage

run

Abilene Pan-Eu AS3967 Abilene Pan-Eu AS3967

5 algorithms 0.35 s 0.74 s 1.82s 7 MB 9MB 10 MB
TOTEM 5.98 s 18.1s 74.7s 4 MB 4 MB 4 MB
7 algorithms 9m 37s 9h49 m - 46 MB 1.5 GB -

Table 6.2: Resource consumption of the different algorithms

the results for all the seven algorithms altogether (i.e., it includes TOTEM and Peer-
Global Optimization as well). All the displayed results represent average values gained
over 300 simulation runs.

The results show very short (& second, sub-second) running times for Overlay,
Peer and Global Optimizations. No further performance-profiling has been carried
out here, but the results suggest that these algorithms are likely to be suitable when
short response times are needed, like real-time TE optimization. For TOTEM, the
calculations took several tens of seconds, even exceeding a minute, which is consider-
ably higher than the previous ones, but still can be practical for non-realtime tasks.
The memory usage was modest, only 4-10 MB in these cases. Note that the variance
of the results discussed so far were very low.

When Peer-Global Optimization was included the average running times increased
up to several hours. In this case the variance was much higher as well: the running
times for a single session ranged from a couple of seconds to several days. The memory
usage also varied from a few MB to almost 30 GB. This means that the proposed Peer-
Global Optimization algorithm may not be a viable option in many of the practical

cases.

Chapter 7

Conclusions

7.1 Summary

In this dissertation I have studied the possibility of enhancing load balancing schemes
by unequal traffic splitting when the underlying technology only offers roughly uni-
form data distribution among the resources. For this, I have proposed the Virtual
Resource Allocation (VRA) framework, which tricks a legacy load balancer into an
almost arbitrary traffic split ratio. As an example of this flexibility, if used in an
OSPF-TE environment, this simple proposal can significantly enhance the network
performance without any hardware or software modification of today’s routers. In-
stead, VRA can be applied right away only by changing a few administrative settings
in the management plane.

I have examined the theoretical limits of the formalized problem, and, where it
was theoretically possible, have given fast and optimal algorithms to determine where
and how much virtual resources to provision. I have shown, however, that finding the
optimal allocation for some important scenarios is computationally intractable. For
these cases I have proposed quick heuristic algorithms along with a necessarily slow,
but optimal one.

I have implemented a simulation evaluation framework for a possible VRA applica-
tion: IP Traffic Engineering. My simulation results underpin that the VRA approach
has a huge practical potential. In the examined networks, the VRA Peer-Global Opti-

mization algorithm achieved much better network performance than the “traditional”

85

86 7.1. SUMMARY

Computational Practical Network Requirements
complexity running time performance beyond OSPF
ECMP
VRA Overlay pseudo- very fast good, with few end-to-end
Optimization polynomial virtual links tunnels for each

shortest path;
virtual paths

VRA Peer-Local unknown in very fast slightly worse virtual links
Optimization general, than the others

pseudo-poly. for

the heuristic

VRA NP-complete very slow very good virtual links

Peer-Global

Optimization

OSPF Weight undefined moderate moderate none

Optimization (iterative) for

(TOTEM as the heuristic,

heuristic) NP-complete in

general

Global polynomial very fast best (optimal) explicit path

Optimization setup with
arbitrary split
ratios

Table 7.1: High level summary of different techniques

(TOTEM) method. Moreover, according to the results, the theoretical best perfor-
mance could be approximated up to 1-2% by allowing as few as 3-4 virtual links per
node. Another VRA implementation, Overlay Optimization, is also proven to be a
very effective tool. Although it requires a more sophisticated network infrastructure,
the proposed algorithms performed outstandingly in the simulations. They ran very
fast with minimal memory usage, and overperformed TOTEM by using only two or
three virtual paths.

For quick comparison Table 7.1 contains a high-level summary of the presented
techniques; the numerical details can be found in Chapter 6. A short note on the
requirements for Global Optimization (last row, last column in the table): explicit
path setup with arbitrary split ratios can be achieved in several ways, including the
MPLS-TE implementation of most of today’s routers.

Finally, for the list of my theses please refer to Appendix A, and for a comparative

list of the problem definitions given in this work see Appendix B.

CHAPTER 7. CONCLUSIONS 87

7.2 Possible Future Work

In this dissertation several findings have been presented concerning different variants
of the Virtual Resource Allocation problem. These cover the theoretical basics of
VRA, as well as algorithms that can be used in communication networks right away.
Yet, certainly there are several possible ways to enhance or extend my findings, which
are beyond the limits of a single dissertation. I list a collection of such open questions

below.

Global Overlay Optimization. In Chapter 3 I have given a method for Overlay
Optimization that first finds the optimal multipath routing of the demands and then
allocates virtual paths, as shown in Fig. 3.1(b). Theoretically, better results could be
achieved if the routing of the demands and the virtual resource allocation are opti-
mized jointly. Certainly this approach is much harder. Paper [35] discusses a similar
problem, but with a different optimization objective: network utility maximization

instead of maximum link usage minimization.

Heuristic for VRA-PGO. I have shown that the VRA-PGO problem is NP-
complete, and it cannot even be approximated efficiently. I have also provided a
slow ILP that finds an optimal solution. Moreover, VRA Peer-Local Optimization
itself can be considered as a quick heuristic to VRA-PGO. Despite the fact that in
general no good approximation is possible, for realistic networks heuristics better
than Peer-Local Optimization could exist. To find one is a task remaining for further

research.

NP-completeness of VRA-1N-1D/mD. My complexity-related results on VRA-
PGO practically mean that it is generally computationally hard to find optimal (and,
actually, near-optimal) solutions to the Virtual Resource Allocation problem for sev-
eral nodes and several demands simultaneously. I presume that for a single node
(VRA-1N-mD) the problem is also NP-complete, and what is more, it is NP-complete
for one node and one demand (VRA-1N-1D), too. Proving (or disproving) these is
also left for future research.

Certainly, if the NP-completeness of VRA-1N-1D could be proven, it would imply
the same property for VRA-1N-mD, being the former special case of the latter. Note,

88 7.2. POSSIBLE FUTURE WORK

however, that although Algorithm 3.3 (presented in Sec. 3.3) to solve the VRA-1N-1D
problem is not polynomial, it runs very fast for (s in the range of thousands or even
millions, which is well above the foreseeable useful domain. Likewise, the Algorithms

presented in Sec. 4.4 perform well in practical situations.

NP-completeness of GSA-W. 1[I have proven the NP-completeness of different
versions of the VRA-PGO problem. A related open question, as detailed in Ap-
pendix C.3.2, is whether the “Good Simultaneous (Diophantine) Approximation in
a Weaker Sense” problem is NP-complete. My conjecture is that it is indeed NP-
complete, but it seems to be fairly hard to prove this and it is also out of the scope

of this dissertation.

Topology virtualization. Several techniques have been proposed in the literature
and used in practice for creating a virtual network over a physical one. There are a
variety of reasons to do so, one of them is to have a simpler network than the original
one, as suggested in [67] recently. My Overlay Optimization method, presented in
Chapter 3, is also such a technique. Its main advantage is the decomposition of a large
problem into independent, smaller subproblems (one for each demand) what results
in a fast and very efficient operation. On the other hand, its path decomposition step
may end up with too many end-to-end shortest paths, which can result in suboptimal
splitting if the number of applicable virtual paths is not too high. Using end-to-end
tunnels (Overlay Optimization) is one extreme, the other is not using overlaying at
all. In between them there are several possibilities, including the ones proposed in [67].
Using shorter (non end-to-end) tunnels, may be a beneficial trade-off that results in
good decomposability yet smaller number of shortest paths, therefore resulting in
better network performance. This topic, however, is left for future work.

Another form of topology virtualization could be introducing virtual nodes along-
side the existing ones. As an example, for the capacitated network shown in Fig. 7.1(a)
the demands A — F : 100, B — G : 100 cannot be delivered without error using

virtual links only. This is because matrix G of node C'is

80 20
G = ,
20 80

CHAPTER 7. CONCLUSIONS 89

A B A B
o ([J o ([
10(\‘ / 00 10(\ / 00
ce ce
VAN
De ce (D@ @D,) (E@ OF;
20 29 X S -
80 80 20\ 20
\SCF AR
[J [J (J (J
F G F G
(a) Original topology (b) Virtual topology
with link capacities with link capacities

Figure 7.1: Introducing virtual nodes. Demands: A — F': 100, B — G : 100

which is clearly inconsistent. If, however, we could virtually duplicate nodes D, E

and their incoming links (see Fig. 7.1(b)), then this matrix would be

G:

80 0 20 0
0 20 0 80|

which is now consistent. This means that with six virtual links! (e = [4 11 4}) the
demands can be routed without any error. As this simple example shows, achieving
better resource utilization by node virtualization is another promising future research
topic. As a theoretical problem, the best virtualization strategy should be found,
and concurrently, practical means for node virtualization in real networks should be

experimented with.

Deciding consistency in linear time. The complexity of Algorithm 4.1, which
decides the consistency of a matrix G, is O(d?k). This is polynomial-time and is fast
enough in all practical cases, but theoretically it could be interesting to examine

whether there is an algorithm solving the same problem in O(dk).

1Six virtual links compared to the topology shown in Fig. 7.1(b), which certainly means eight
virtual links compared to the original topology depicted in Fig. 7.1(a).

90 7.2. POSSIBLE FUTURE WORK

Unique optimal solution for VRA-1N-mD-Unlimited. I suspect the unique-
ness of the optimal solution for the VRA-1N-mD-Unlimited problem on some condi-
tions.
Before continuing, let me include here a few simple definitions:
e A submatriz B of matrix A is a matrix that is obtained by deleting an arbitrary
(non empty) set of rows and/or columns from matrix A.
e An independent submatriz B of matrix A is a submatrix, for which the following
holds: if we highlight in A the rows and columns corresponding to B, then other
than B itself, only 0 valued elements are highlighted.

e An undividable matriz is a matrix that contains no independent submatrices.

For example in

(12010 1]
ol 161 131 [0 I8 [6
L_ |00 8030
10020 1
ol 161 131 [0 I8 [6
10010 2
the boldfaced
3 3 3
B=13 3 3
3 3 3

submatrix is an independent submatrix. Here A is not undividable, B is undividable.

My first conjecture is that there is a unique optimal {f;} solution of a VRA-1N-
mD-Unlimited problem, if the corresponding matriz G is undividable.

My second conjecture is that if matrix G of a VRA-1N-mD-Unlimited problem
contains independent submatrices, then the solution of the problem is unique to its
independent, undividable submatrices.

Let me explain this second conjecture. Let G, G, ..., GG, be the independent,
undividable submatrices of G. (It should also be proven that such a division into sub-
matrices is unique.) I suspect that the solution for each G; is unique (first conjecture).

Let me denote the sum of f;s belonging to the columns of G; with fg,. I suspect that

CHAPTER 7. CONCLUSIONS 91

there are infinite number of optimal solutions to the original problem, as any set of
{fc,}s can be sufficient, as long as fg, > 0 (Vi) and Y1 fo, = 1.

As an example, suppose that G consists of three independent, undividable subma-
trices, Gy, G5 and Gj3. Suppose further that fi, fo and f3 belongs to Gy, f, and f5
to Gg, and fg and f; to GG3. Then, solving the 3 different subproblems, there will be
unique solutions in forms of { f;} such that fi+ fo+f3 =1, fu+fs = land fe+ fr = 1.
Now, for the original problem af1, afs, afs, bfy, bfs, cfs, cfr (a+b+c =1, a,b,c > 0)
is an optimal solution. (Using the previous notations, F, = a, Fg, = b, Fg, = c.)
Moreover, a, b, c can be arbitrary as long as a+b+c =1 and a,b,c > 0, so there are
infinite number of solutions to the original problem.

As these considerations are a bit out of the scope of my dissertation, and I have
proven my theorems without them, I have left them for possible future work. Nev-
ertheless, proving these conjectures, which are interesting on their own, too, would

largely simplify the proofs presented in Appendices C.1 and C.2.

Proof-of-concept deployment. VRA is a general concept for augmenting legacy
equal-split load balancing systems. Nevertheless, for a given application, like the pre-
sented OSPF-TE, a proof-of-concept deployment would be interesting. This would
not require hardware or software modifications in the routers, just some control plane
settings when installing the virtual links. The results are expected to be similar to

those gained by simulations.

Bibliography

1]

2]

3]

[4]

D. Wischik, M. Handley, and M. B. Braun, “The resource pooling principle,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 5, pp. 47-52,
2008.

“IEEE standard for local and metropolitan area networks—link aggregation,”
IEEE Std 802.1AX-2008, pp. 1-163, Nov 2008.

A. Vakali and G. Pallis, “Content delivery networks: status and trends,” IFEE
Internet Computing, vol. 7, no. 6, pp. 68-74, Nov 2003.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”
Commun. ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and A. Vah-
dat, “WCMP: Weighted cost multipathing for improved fairness in data centers,”

in Proceedings of the Ninth European Conference on Computer Systems, ser. Eu-
roSys, Apr. 2014, pp. 5:1-5:14.

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceed-
ings of the IEFE, vol. 103, no. 1, pp. 14-76, Jan 2015.

J. T. Moy, “OSPF Version 2,” RFC 2328, Mar. 2013.

International Organization for Standardization, “Intermediate System to Inter-
mediate System intra-domain routeing information exchange protocol for use
in conjunction with the protocol for providing the connectionless-mode network
service (ISO 8473),” ISO/IEC 10589:2002, November 2002.

92

BIBLIOGRAPHY 93

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Fortz and M. Thorup, “Increasing internet capacity using local search,” Com-

putational Optimization and Applications, vol. 29, pp. 13-48, 2004.

N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient traffic
splitting on commodity switches,” in Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, ser. CONEXT ’15, Dec.
2015, pp. 6:1-6:13.

A. Maghbouleh, “Metric-based traffic engineering: Panacea or snake oil? A

b

real-world study,” in 27th North American Network Operators Group Meeting

(NANOG27), Feb 2003.

A. Sridharan, R. Guérin, and C. Diot, “Achieving near-optimal traffic engineering
solutions for current OSPF /IS-IS networks,” in IEEE INFOCOM 2003, vol. 2,
March 2003, pp. 1167-1177.

D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop forward-
ing can achieve optimal traffic engineering,” IEEE/ACM Trans. Netw., vol. 19,
no. 6, pp. 1717-1730, 2011.

S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central Control Over
Distributed Routing,” in ACM SIGCOMM, August 2015, pp. 43-56.

O. Tilmans, S. Vissicchio, L. Vanbever, and J. Rexford, “Fibbing in action: On-
demand load-balancing for better video delivery,” in ACM SIGCOMM, 2016, pp.
619-620.

M. Chiesa, G. Rétvari, and M. Schapira, “Lying your way to better traffic en-
gineering,” in Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies, ser. CONEXT 16, 2016, pp. 391-398.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center
network architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication, ser. SIGCOMM 08, 2008, pp. 63-74.

C. Hopps and D. Thaler, “Multipath issues in unicast and multicast next-hop
selection,” RFC 2991, Nov. 2000.

94

BIBLIOGRAPHY

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balancing with-
out packet reordering,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 2, pp.
51-62, Mar. 2007.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hed-
era: Dynamic flow scheduling for data center networks,” in Proceedings of the
7th USENIX Conference on Networked Systems Design and Implementation, ser.
NSDI'10, 2010.

K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, “Presto:
Edge-based load balancing for fast datacenter networks,” in Proceedings of the

2015 ACM Conference on Special Interest Group on Data Communication, ser.
SIGCOMM 15, 2015, pp. 465-478.

J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu, Y. Xiong, and
D. Maltz, “Per-packet load-balanced, low-latency routing for Clos-based data
center networks,” in Proceedings of the Ninth ACM Conference on Emerging
Networking Exzperiments and Technologies, ser. CONEXT 13, 2013, pp. 49-60.

A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-level
adaptive routing for improved latency and throughput in datacenter networks,”
in Proceedings of the 10th ACM International on Conference on Emerging Net-
working Ezrperiments and Technologies, ser. CONEXT 14, 2014, pp. 149-160.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fin-
gerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese, “CONGA:

Distributed congestion-aware load balancing for datacenters,” in Proceedings of
the 2014 ACM Conference on SIGCOMM, 2014, pp. 503-514.

N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA: Scalable load
balancing using programmable data planes,” in Proceedings of the Symposium on
SDN Research, ser. SOSR 16, 2016, pp. 10:1-10:12.

S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian, “DRILL:
Micro load balancing for low-latency data center networks,” in Proceedings of

the Conference of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17, 2017, pp. 225-238.

BIBLIOGRAPHY 95

[27]

[30]

[31]

32]

[35]

[36]

E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow: Resilient
asymmetric load balancing with flowlet switching,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’17), 2017, pp. 407—
420.

K. Németh and G. Rétvari, “Traffic splitting algorithms in multipath networks:
Is the present practice good enough?” in 15th International Telecommunications

Network Strategy and Planning Symposium (Networks), Oct 2012, pp. 1-6.

[. Pepelnjak, “Improving ECMP Load Balancing with Flowlets,” Jan. 2015,
retrieved Nov. 2018. [Online]. Available: http://blog.ipspace.net/2015/01/

improving-ecmp-load-balancing-with.html

A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure, “TCP Extensions for
Multipath Operation with Multiple Addresses,” RFC 6824, Jan. 2013.

C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “MP-HULA: Multi-
path Transport Aware Load Balancing Using Programmable Data Planes,” in
Proceedings of the 2018 Morning Workshop on In-Network Computing, ser. Net-
Compute 18, 2018, pp. 7-13.

Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based schemes for
Internet load balancing,” in IEEE INFOCOM 2000, vol. 1, March 2000, pp. 332—
341.

M. Wang, C. W. Tan, W. Xu, and A. Tang, “Cost of not splitting in routing: Char-
acterization and estimation,” IEEE/ACM Transactions on Networking, vol. 19,
no. 6, pp. 1849-1859, Dec 2011.

X. Liu, S. Mohanraj, M. Piéro, and D. Medhi, “Multipath routing from a traffic
engineering perspective: How beneficial is it?” in 2014 IEEFE 22nd International
Conference on Network Protocols (ICNP), Oct 2014, pp. 143-154.

Y. Bi, C. W. Tan, and A. Tang, “Network utility maximization with path cardi-
nality constraints,” in IEEE INFOCOM 2016, April 2016, pp. 1-9.

Y. Bi and A. Tang, “Cost of not arbitrarily splitting in routing,” in 2017 IEEE
25th International Conference on Network Protocols (ICNP), Oct 2017, pp. 1-10.

96

BIBLIOGRAPHY

[37] K. Németh, A. Kérosi, and G. Rétvari, “Optimal OSPF traffic engineering using

legacy Equal Cost Multipath load balancing,” in 2013 IFIP Networking Confer-
ence, May 2013, pp. 1-9.

[38] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and prin-

[39]

[40]

[44]

[45]

[46]

ciples of Internet traffic engineering,” RFC 3272, May 2002.

E. C. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching
Architecture,” RFC 3031, Jan. 2001.

D. Awduche, L. Berger, D.-H. Gan, T. Li, V. Srinivasan, and G. Swallow, “RSVP-
TE: Extensions to RSVP for LSP Tunnels,” RFC 3209, Dec. 2001.

Y. Wang and Z. Wang, “Explicit routing algorithms for internet traffic engi-
neering,” in Computer Communications and Networks, 1999. Proceedings. Eight

International Conference on, 1999, pp. 582-588.

Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without full-mesh
overlaying,” in IEEE INFOCOM 2001, vol. 1, April 2001, pp. 565-571.

M. Chiesa, G. Kindler, and M. Schapira, “Traffic Engineering with Equal-Cost-
MultiPath: An Algorithmic Perspective,” in IEEE INFOCOM 2014, April 2014,
pp. 1590-1598.

B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF
weights,” in IEEE INFOCOM 2000, vol. 2, 2000, pp. 519-528 vol.2.

M. Pi6ro, A. Szentesi, J. Harmatos, A. Jiittner, P. Gajowniczek, and S.
Kozdrowski, “On open shortest path first related network optimisation prob-
lems,” Performance Fvaluation, vol. 48, no. 1-4, pp. 201 — 223, 2002, Performance
Modelling and Evaluation of ATM & IP Networks.

Cisco Systems, Inc, “Cisco Nexus 7000 Series NX-OS Unicast Routing Com-
mand Reference,” June 2016, Chapter: M Commands, Section: maximum-paths
(EIGRP, IS-IS, RIP, OSPF, OSPFv3). Retrieved Nov. 2018. [Online]. Avail-
able: http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/

sw/unicast/command /reference/n7k__unicast__cmds/13__cmds_m.html

BIBLIOGRAPHY 97

[47]

[49]

[50]

[51]

[52]

Current Analysis, Inc., “Product Assessment: Fricsson - Smart-
Edge Series,” July 2009, retrieved Nov. 2018. [Online].
Available: http://archive.ericsson.net/service/internet/picov/get?’DocNo=13/
28701-FGB101647&Lang=EN&HighestFree=Y

Juniper Networks, Inc., “JunosE™Software for E Series™ Broadband
Services Routers, Command Reference A to M,” July 2013, Release 14.3.x,
Section: commands/maximum-paths. Retrieved Nov. 2018. [Online]. Available:
https://www.juniper.net/techpubs/en_ US/junosel4.3/information-products/

topic-collections/command-reference-a-m/sw-cmd-ref-a-m.pdf

[. Pepelnjak, “Unequal cost load-sharing,” Feb. 2007, retrieved Nov. 2018.
[Online]. Available: http://blog.ipspace.net/2007/02/unequal-cost-load-sharing.
html

M. Piéro and D. Medhi, Routing, Flow, and Capacity Design in Communica-
tion and Computer Networks. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2004.

V. S. Mirrokni, M. Thottan, H. Uzunalioglu, and S. Paul, “A simple polynomial
time framework for reduced-path decomposition in multipath routing,” in IEEFE
INFOCOM 2004, vol. 1, March 2004, pp. 739-749.

B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey, “Simple bounds and
greedy algorithms for decomposing a flow into a minimal set of paths,” Furopean
Journal of Operational Research, vol. 185, no. 3, pp. 1390-1401, 2008.

T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov, “How to split a
flow?” in IEFE INFOCOM 2012, March 2012, pp. 828-836.

G. Rétvari, J. J. Bir6, and T. Cinkler, “On Shortest Path Representation,”
IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp. 1293-1306, Dec.
2007.

“Maple (mathematical software),” 2018, retrieved Nov. 2018. [Online|. Available:
http://www.maplesoft.com/products/Maple/

98

BIBLIOGRAPHY

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

R. Joseph, Galois Theory, ser. Universitext. Springer New York, 1998, second

edition.

“GNU Linear Programming Kit,” Jun. 2012, Retrieved Nov. 2018. [Online].
Available: https://www.gnu.org/software/glpk/

“LEMON Graph Library — Library for Efficient Modeling and Optimization in
Networks,” July 2014, Version 1.3.1. Retrieved Nov. 2018. [Online]. Available:
http://lemon.cs.elte.hu/

K. Németh, A. Kérosi, and G. Rétvari, “Enriching the poor man’s traffic engi-
neering: Virtual link provisioning for optimal OSPF TE,” in Telecommunications
Network Strategy and Planning Symposium (Networks), 16th International, Sept
2014, pp. 1-T7.

V. Kann, “On the Approximability of NP-complete Optimization Problems,”
Ph.D. dissertation, Department of Numerical Analysis and Computing Science,
Royal Institute of Technology, Stockholm, Sweden, May 1992.

“IBM ILOG CPLEX Optimizer,” Retrieved Nov. 2018. [Online]. Available:

https://www.ibm.com /analytics/cplex-optimizer

G. Leduc, H. Abrahamsson, S. Balon, S. Bessler, M. D’Arienzo, O. Del-
court, J. Domingo-Pascual, S. Cerav-Erbas, I. Gojmerac, X. Masip, A. Pescape,
B. Quoitin, S. P. Romano, E. Salvadori, F. Skivée, H. T. Tran, S. Uhlig, and
H. Umit, “An open source traffic engineering toolbox,” Comput. Commun.,
vol. 29, no. 5, pp. 593-610, Mar. 2006.

“TOTEM Project: TOolbox for Traffic Engineering Methods,” Latest version
(3.2.1) released at Nov. 2008. Retrieved Nov. 2018. [Online|. Available:
http://totem.run.montefiore.ulg.ac.be/

H. Umit, “Interior Gateway Protocol Weight Optimization Tool,” Feb. 2007,
retrieved Nov. 2018. [Online]. Available: http://www.poms.ucl.ac.be/totem/

BIBLIOGRAPHY 99

[65]

[66]

[67]

[68]

[69]

S. D. Maesschalck, D. Colle, I. Lievens, M. Pickavet, P. Demeester, C. Mauz,
M. Jaeger, R. Inkret, B. Mikac, and J. Derkacz, “Pan-european optical trans-
port networks: An availability-based comparison,” Photonic Network Communi-

cations, vol. 5, no. 3, pp. 203225, May 2003.

R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link weights
using end-to-end measurements,” in ACM Internet Measurement Workshop, 2002,
pp- 231-236.

S. I. Nikolenko, K. Kogan, and A. Fernandez Anta, “Network simplification pre-
serving bandwidth and routing capabilities,” in IEEE INFOCOM 2017, May
2017.

M. Piéro, A. Szentesi, J. Harmatos, A. Jittner, P. Gajowniczek, and
S. Kozdrowski, “On open shortest path first related network optimisation prob-

lems,” Perform. FEval., vol. 48, no. 1-4, pp. 201-223, May 2002.

J. C. Lagarias, “The computational complexity of simultaneous diophantine ap-

proximation problems,” SIAM J. Comput., vol. 14, no. 1, pp. 196-209, Feb. 1985.

Index

Page numbers in italics represent the definition or another important appearance of

the indexed term.

3SAT, 61, 61-68, 70, 75 Good Simultaneous (Diophantine)

Approximation, see GSA
Abel-Ruffini theorem, 119) i)
Good Simultaneous (Diophantine)

(Cisco, 12, 14 Approximation in a Weaker
CONGA, 6 Sense, see GSA-W
COYOTE, 6 GSA, 123

GSA-W, 88, 123, 123-125
data center, 1, 4, 6

DRB, 6 Hedera, 6
DRILL, 7 HULA, 6, 7
ECMP, 2, 6, 10, 12-14, 18, 20, 21, 31, IS-IS, 2, 4, 12
34, 57, 71, 76, 78, 86 .
Juniper, 12
EIGRP, 12
Ericsson, 12 LetFlow, 7

Exact Cover by 3-Sets, see X3C
Maple, 43, 119, 120

Fibbing, 5, 6, 17, 21 MP-HULA, 7
Flare, 6 MPLS-TE, 11, 14, 18, 86
FlowBender, 6 Multipath TCP, 7
flowlet, 6, 7, 7

Niagara, 5, 12, 28
Galois theory, 43, 120 NP-completeness, 59-68, 86-88,
Global Optimization, 77, 77, 81, 83, 86 120-125

100

INDEX

101

NP-hardness, 12, 19, 78, 81
NPO approximation, 12, 19, 68, 87
APX, 71,75
inapproximability gap
amplification, 71
PTAS, 70, 71

OSPF, 2, 4, 10, 1215, 18, 20, 21, 30,
31, 71, 86
-TE, 11,14, 17, 23, 28, 31, 76, 78,
79, 91
weight optimization, 12, 14, 77, 78,
86

PEFT, 4
Presto, 6

resource bounds, 12
Bounded Total Resources, 13, 13,
14, 21, 30, 34, 54, 61, 78
Bounded Virtual Resources, 13,
18,54, 61, 79
Unlimited Resources, 12, 37, 54
RIP, 12
RSVP-TE, 11

Satisfiability of Boolean Expressions
in 3CNF, see 3SAT
SDN, 1, 3-5, 12, 17, 21, 23

TOTEM, 78, 81, 83, 84, 86
Traffic Engineering (TE), 1-4, 6, 10,
11,13, 17, 77, 78, 84, 85

VRA, 2, 3, 10
Overlay Optimization, 14, 18,
7678, 81, 83, 86, 88
Peer-Global Optimization, 16, 17,
53, 77, 79-81, 83-88, 120-125
Peer-Local Optimization, 15, 30,
59, 76-78, 81, 83, 86, 87
VRA-IN-1D, 4, 5, 19, 20-21, 21-29,
51, 79, 83, 87
VRA-1IN-mD, 4, 6, 31, 32, 32-35,
3537, 47-52, 87
-Unlimited, %5, 35-47, 51, 90-91,
108-120

WCMP, /-5, 6, 12, 17, 21, 28, 29

X3C, 120, 120-123

Appendix A

List of Theses

In this chapter I list my theses with references to the related parts of this dissertation.

The citations refer to my publications listed in Appendix D.

Thesis Group 1. [C3, J1] I have studied the possibility of enhancing load balancing
schemes by unequal traffic splitting when the underlying technology only offers uniform
data distribution among the resources. For this I have proposed the Virtual Resource
Allocation technique that augments the load balancer to realize an almost arbitrary
traffic split ratio. For the OSPF Traffic Engineering application scenario I have intro-
duced and analyzed the Overlay Optimization method, which is a specialization of the

Virtual Resource Allocation, utilizing an overlay network.
Discussed in Chapters 2 and 3.

Thesis 1.1. [have proposed a solution, named Qverlay Optimization, to the Traffic
Engineering problem in communication networks that uses end-to-end tunnels with
parallel virtual paths and OSPF routing on top of this overlay network. As a part
of this solution, I have formalized the Virtual Resource Allocation problem for only
one network node and one demand as an optimization problem. I have shown via
an example that the performance of OSPF Traffic Engineering can be enhanced by

Qverlay Optimization.

See the introduction of Chapter 3 and Section 3.1. For the example see Fig. 2.1.

102

APPENDIX A. LIST OF THESES 103

Thesis 1.2. [have given bounds on the error of the VRA-IN-1D problem under

different constraints.
Discussed in Section 3.2.

Thesis 1.3. I have given an optimal solution with pseudo-polynomial running time to
the VRA-1N-1D problem. Furthermore, I have given an optimal, pseudo-polynomial
time algorithm for the problem variant of minimizing the link number under a con-
straint on the maximal error. I have also given optimal, pseudo-polynomial time al-
gorithms for variants of the previous two problems in which the error or link number
minimization have to be done simultaneously at several nodes, while having a common

constraint on the total link number or on the error, respectively.

See Sections 3.3 and 3.4.

Thesis Group 2. [C1, J1] I have proposed and examined in detail another Virtual
Resource Allocation scheme in the OSPF Traffic Engineering scenario that eliminates
the overlay network from the architecture, thereby facilitating the deployment. This
approach operates on the original network topology and makes decisions locally at the

network nodes, so I named it Peer-Local Optimization.
Presented in Chapter 4.

Thesis 2.1. I have proposed a new solution to the OSPF Traffic Engineering prob-
lem, named Peer-Local Optimization, which is not using overlays and relies solely on
decisions made locally at the network nodes. As part of this solution I have formal-
ized the Virtual Resource Allocation problem for one node and several demands as an

optimization problem.
Discussed at the introduction of Chapter 4 and in Section 4.1.

Thesis 2.2. [have shown that matrixz G, which forms the core of the VRA-1N-mD
and the VRA-1N-mD-Unlimited problems, can be almost arbitrary: any nonnegative
matrix with at least one non-zero element in each row and in each column can be

matriz G for a given node in a suitable network.

This corresponds to Theorem 11 in Section 4.2.1.

104

Thesis 2.3. [have given bounds on the error of the VRA-1N-mD and the VRA-1N-
mD-Unlimited problems along with a polynomial time algorithm that decides whether
the general lower bound can be reached for a particular problem instance with unlimited

number of links.
See Sections 4.2.2 and 4.3.1.

Thesis 2.4. [have proven that an optimal virtual link settings for VRA-1N-mD-

Unlimited cannot always be reached using finite number of links.
See Theorem 16 and Corollary 17 in Section 4.3.2.

Thesis 2.5. [have shown that no algorithm can give an optimal solution to the
VRA-1N-mD-Unlimited problem in finite number of steps; even if the number of steps

may depend on the actual problem.
See Theorem 18 and Corollary 19 in Section 4.3.2.

Thesis 2.6. [have given an approzimation algorithm that can find, in polynomial
time, a solution that is arbitrarily close to the optimal solution of the VRA-1N-mD-
Unlimited problem.

See Alg. 4.2 and the related discussion in Section 4.3.3.

Thesis 2.7. [have given two different, Integer Linear Program-based optimal solu-
tions to the VRA-1IN-mD problem. I have also given a pseudo-polynomial running

time heuristic to the same problem.

See the whole Section 4.4.

Thesis Group 3. [J1] I have proposed and comprehensively studied another solution
for OSPF Traffic Engineering, which I call Virtual Resource Allocation—Peer-Global
Optimization. I have proven that it is NP-complete and cannot be approrimated effi-
ciently. I have also given an Integer Linear Program that finds an optimal solution

and observed that Peer-Local Optimization can be used here as a faster heuristic.

Presented in Chapter 5.

APPENDIX A. LIST OF THESES 105

Thesis 3.1. [have identified and formally described the Peer-Global Optimization

problem, which can provide a near-optimal solution for OSPF Traffic Engineering.
See Section 5.1.

Thesis 3.2. I have given an Integer Linear Program that finds an optimal solution

to the Peer-Global Optimization problem.
See LP 5.1 presented in Section 5.2.

Thesis 3.3. [have proven the NP-completeness of the Peer-Global Optimization prob-

lem and several of its variants.
Discussed in Section 5.3.1.

Thesis 3.4. [have formulated two variants of Peer-Global Optimization as NP opti-
mization problems and have proven that it is impossible to computationally efficiently

approzimate their optimal solution within every constant ratio (unless P = NP).
See the first part of Section 5.3.2, including Theorems 27 and 28.

Thesis 3.5. [have shown that the optimal solution of the MVPGS problem (which
is a variant of Peer-Global Optimization) cannot be approximated with a polynomial

time algorithm within any constant ratio (unless P = NP).

See Theorem 29 in Section 5.3.2.

Appendix B

List of Problem Definitions

Table B.1 shorty summarizes the different problem definitions given throughout this

work for easier reference and comparison.

106

107

APPENDIX B. LIST OF PROBLEM DEFINITIONS

suonuygep weqold jo Arewrwng :1°g 9[qR],

1A T8 /T8 S | M /u — 6| Z2%utm

44 LME ou/sok ‘N>SM>T Gs ‘s ‘N PO tTD M-VSD T
1A C5/Ts S |u — 6 A | Z2%urwa

€c1 LME ou/sok ‘N>SM>T s ‘Is ‘Nf P16 VSO "€l
(b<u‘g=]|
X Jo sjosqns ‘XS0 {0 =0

0zT 10D ,0E ou/sok qurofstp asim-1red b Jo sISISU0D) ‘bg =d) {dx‘ Tz} = x 0eX 21

69 ¢ ‘urwu {2} (A3 up) Y +|4s| > v“a Yy ‘I 1g ‘1o {lm} {0} (1 A) SOJAN ‘11
g "o

89 ¢ unu {12} (A2up) gy +1%s| S va ‘Paq ‘Po} ‘@ {im} {Bb} (1°A) DJAN 0T

19 Jorqeysiyes S| ou/so (ANDE ur st) oA LVSE 6
0> (b — Iy)Ixew ¢y {"o

19 APYE ou/sok (Adup) Y +|4s| > T ‘Paq ‘Po} ‘@ {im} {1} (1°A) SAV-MD-ODd-VIA
g a4 {ro

09 APYE ou/sok g > b/lylxew (A D up) OS> Ve ‘Paq ‘Po} ‘@ {im} {1} (1°A) O-MD-0Dd-VIA

g S I/l Ixeu

09 APYE ou/soA ‘Adup) g +1vsl> g dy ™o g o {im} {B} (1A) dS-MD-0Dd-VHA
g > /1y Ixew g a4 {ro

69 APIE ou/sok (A3 up) Y +I4s| > g ‘Paq ‘Po} ‘@ {m} {1} (1°A) MD-ODJ-VIA 8

i g {la} ‘{Im} (A3 up) Y +|4s| > v“a 4y {Po ‘Pq ‘Po} ‘a {»} ‘(dA) ODd-VHA L

ag [uu {%} - D‘d "y poywu) -qUI-NT-VHA "9

cg N {%} @ 1=90>%w O‘D‘ay AW-NTI-VHA ¢

62 ugg “7 umm {rua} ity S ey Wiy {6} Uy WN-WT-AT-NT-VHA-PIEEd

8% Xeul) ‘urm {rva} o> O {rb} vy AT-NI-VHA-PIered ¢

1z A4 un {*o} iy >0 i {6} <y WN-UWT-JI-NT-VHA G

%4 N " {*} s O {6}y AT-NI-VHA ‘T

worur
-Jop jo 98eq uomnseny) / 2a10alqQ sindnQ SJUIRIISUO)) synduy we[qoid

Appendix C

Auxiliary Proofs

C.1 Proof of Theorem 16

This section is devoted to prove

Theorem 16 (revisited). There is at least one VRA-1N-mD-Unlimited problem,
where matriz G contains integers only but the single optimal solution contains only

irrational numbers as f;s.

Before the theorem itself I prove some lemmas first. For the notations and defini-

tions used below please refer to Sections 4.1 and 4.3.

Lemma 31. For a matriz G in the form

gin g1z 0
921 g22 G23

G —

] (911912921922923 # 0) (C.1)

and for any fi, fa, f3 (fj >0, X f; = 1), which minimizes U, both of the following

statements hold:

U=UyVU=Uy (C.2)
U - U12 V U - U22 (C3)

Proof. First I prove (C.2). The proof is by contradiction: suppose that for some G (in
the form of (C.1)) and {f;}, which minimizes U, (C.2) does not hold, i.e., Uy; < U

108

APPENDIX C. AUXILIARY PROOFS 109

and Uy < U. I will give an f], f3, f3 triplet (f; > 0, X f; = 1), such that the
corresponding error U’ < U.
Let

f{:afl+1_aa

féz()éfz,
f?l,:af37
O<a<l.

I will prove that there is a suitable « for which U’ < U.

Recall
fi f2
Un U 0 — (fi+f2)m (frt+fo)mz 0]:
f1 f2 f3
U Uz U23 L(fi+fo+f3)y2r (fitfo+fa)yee (fi+Sfe+f3)72s

il L2 L

L Y21 Y22 723

fl f2 O
— | (it (fitfe)mne

and that U = min U;; (ij € {11, 12, 21, 22, 23}). Observe

U/ fry fé fry af2 fry f2
P e (afi+tl—a4af)ne (A+fo—1+L)m]
U£2 = f_é = a—jéa
Y22 Y22
Ul = S _als
Y23 V23

These are all strictly increasing continuous functions of a € (0, 1]. Also note that

U/ _ f{ _ O[f1+1—(){
H (fi+f5)m (afi+l—a+af)ym’
/ f{ O‘f1+1_a
Upy=—=—""—""

V21 V21

are both continuous functions of a € (0, 1].
Because of the continuity and monotonicity and the fact that for a« = 1: Uj; =

Uy < U and U}, = Uy < U, for a sufficiently small € > 0 having a« = 1 — € we

110 C.1. PROOF OF THEOREM 16

will have U], < U and < Uj; < U. For this « also Uy < Usa, Ujy < Usa, Ul < Uss.
Therefore for the fi, f5, fi triplet with the given o we have U’ < U, which is a
contradiction.

Due to symmetry, the same reasoning can be applied to prove (C.3). O

Lemma 32. For a matriz G in the form given in (C.1) and for any fi1, fa, fs (f; >0,

> fi = 1) minimizing U, if Uy = Uy then matriz G is consistent.

Proof. U;; = Uyo means

ho b)

(fi+f)ym (i + fo)me

Substituting ;2 = 1 —11 into (C.4) we got v11 = f1/(f1 + f2). Substituting this back
to the definition of U;; we got U;; = 1, meaning also that Uy = Uy = 1.

According to Lemma 31 either U = Uy; = Ujs = 1 (meaning that matrix G is
consistent) or U = Uy = Uy > 1. Let us take a closer look on this latter case.
Uy = Usy means f1/921 = fa/7e2, but as Uy; = Uya, by the definition of Uy; and Uy,
we also have fi/v11 = fo/72, i.e. y11/72 = 721/722. Now because 711 + 712 = 1 we

have

Y1 = V21 S Y22
n=_——"Y2=_—"— ",

Y1 + Y22 Y1 + Y22
which means again that G is consistent with f; = 21, fo = Y22, f3 = Y03. U

Lemma 33. For a matriz G in the form given in (C.1) and for any fi1, fa, f5 (f; >0,
> fi = 1) minimizing U, if U = Uy = Usy = Usz then matriz G is consistent.

Proof. Uy = Uy = Us3 = U means

h_h_
Y21 Y22 Y23

=U .

ie.,

f1 :721U7
fa = 722U,
fa=73U .

Summing these equations and using f1+ fo+ f3 = Y21 +722+723 = L yields U = 1. O

APPENDIX C. AUXILIARY PROOFS 111

Lemma 34. For a matriz G in the form given in (C.1) and for any fi1, fa, fs (f; >0,
> f; = 1) minimizing U: U = Uss.

Proof. This proof is by contradiction, too. Suppose we have a G and an optimal {f;}
for which Uss < U. Nevertheless, according to the Lemma 31 (C.2) and (C.3) must
still hold. Let us divide this proof into four cases, according to how (C.2) and (C.3)

can be true:

Casel. U = Usy > Uyy and U = Usy > Uys.

The proof for this case is similar to the proof of Lemma 31. Let

f{ = afla
fo=afs,
2o (C.5)
fé = Oéfg +1-— «,
O<a<l.
Now Ul = fi/721 = afi/791 is strictly increasing and continuous function of «

and so is Ujyy = f4/v22 = afa/va2. Also note that for a« = 1: U}, = Uy = U and
Uy = Usy = U. On the other hand Uy = /723 = (afs + 1 —) /723 is a continuous
function of o € (0, 1] with U}y = Uz < U for a = 1. Also notice that U}, = Uy < U
and U], = Upp < U.

This means, there is a suitable « (close to 1), for which U" > Uj,, U" > Uj,,
U =U <U, U =U), <Uand U > Uj,. This means that f], f5, fi with this «

result in an error U’ < U, which is a contradiction.

Case 2. U =U;; > Uy and U = Uyy > Uyps.

Let us use again {f/} as defined in (C.5). As shown in the previous case, Uj; and
Ui, is independent of a; Uj,, Ul, are continuous, increasing and Ujs is continuous
function of o € (0, 1]. Furthermore, for « = 1: U}, = Uy < U, U}, = Uyy = U and
Ujy = Uz < U.

This means that there is a suitable a, for which Uy, < U, U}, < U, Ui, < U,
Uy =Uipa < U and Uy, = Uy =U = U'. So {f!} is minimizing the error U’ = U just
as well as {f;} does, but this G, {f/} setting contradicts (C.3) of Lemma 31.

112 C.1. PROOF OF THEOREM 16

Case 3. U =Uy > U;; and U = Uy > Usyps.

This case, by symmetry, is essentially identical to Case 2.

Case 4. U =Uy; > Uy and U = Uy > Usps.
Uy = Ujs, so applying Lemma 32 shows that matrix G is consistent. Consequently,

according to Lemma 15, Uss = 1 = U, which contradicts our assumption. O

Lemma 35. For a matriz G in the form given in (C.1) and for any fi1, fa, f5 (f; >0,
> f; = 1) minimizing U both of the following statements hold:

1. Uy = Usy if and only if G is consistent,
2. Uyg = Usy if and only if G is consistent.

Proof. 1f G is consistent then, according to Lemma 15, Uy = Ujg = Uy = Uy =
Uz = U = 1, which proves the first direction of the statements.
For the other direction I start with the first statement. According to Lemma 31
U = Uy = Usy. Moreover, due to the same lemma U = Uy and/or U = Usy. Let us
split the proof into two cases accordingly:
If U = Ujs holds then U = Uy; = Uss, so, according to Lemma 32, G is consistent.
If U = Uy is true, then due to Lemma 34 Uys = U, ie., U = Uy = Usy = Uss.
Consequently, Lemma 33 can be applied, which proves the consistency of G.
Considering the symmetry, the same reasoning can be applied to prove the second

direction of the second statement. O
The last lemma in this section is the following:

Lemma 36. For an inconsistent matriz G in the form given in (C.1) and for any
fi, fo, f5 (f; > 0, X f; = 1) minimizing U: either U = Uy = Uy = Usz or

U = Uy = Uy = Uy is true. Both cases are possible.

Proof. G is inconsistent, so due to Lemma 35 Uy; # Uy and Ujs # Usy. According to

this and Lemmas 31 and 34, for a given G exactly one of the following statements is

APPENDIX C. AUXILIARY PROOFS 113

true:

U=Uy = U = Uy (C.6)
U =0 = Usp = Uy (C.7)
U =Usp = Uy = Usg (C.8)
U = Uy = Uy = Uy (C.9)

Statement (C.6), however, cannot be true for an inconsistent G, as it contradicts
Lemma 32. Similarly, equation (C.9) would contradict Lemma 33.

What remains is to show that both (C.7) and (C.8) is possible for different Gs.
Consider any inconsistent G in form given in (C.1). For an optimal {f;} setting either
(C.7) or (C.8) will be true. Now swap the first two columns of G to get G'. Due to
the symmetry f] = fa, fo5 = f1, fi = f5 is an optimal solution of G’. Consequently, if
(C.7) is true for G then (C.8) is true for G’ and vice versa. O

Now we are ready to put the pieces together:

Proof of Theorem 16. Consider the following matrices:

2 1
2 21

G is clearly inconsistent, so according Lemmas 35 and 36 we know that for any optimal
fla f27 f37 either

arllny wine

O] . (C.10)

gl Wi
U=

Ui = Usy = Usg and Uy < Uyq, Uy < Usy, or
U = Uig = Uss and Uy < Uy, Usy < Usa.

I show now that the latter case holds.

Supposing the opposite, we pay attention only to U;s < Usy. This means that

S

(L4 1)z 2

Rearranging this (using fo > 0) we got 6/5 < fi + fo, which contradicts f; + fo < 1.

114 C.2. PROOF OF THEOREM 18

At this point we know that for any optimal fi, fo, f3: Usy = Ujp = Usz. This

results in the following system of equations:

ho_h
(f1+f2)§ %’
Lk
(f1+f2)§ é’
it f+fi=1,

which can be reduced to:

5f2—28f1 +12=0,

h=1-2h,
=1t
Solving this using f; < 1 we got:
fi= (7 V3D,

fo = é(—16+3\/374),
f3 = %(7 - \/3_4))

which, due to the reasoning above, is the only optimal solution to the problem given

with (C.10). Consequently, for the single optimal solution f;, fa, f3 are irrational. O

C.2 Proof of Theorem 18

In this section I prove

Theorem 18 (revisited). There is at least one VRA-1N-mD-Unlimited problem,
whose only optimal solution contains at least one f; that cannot be written in a finite
form using integer constants and the usual +, —, -, / and the nth root (n € Z%)

operators only.

APPENDIX C. AUXILIARY PROOFS 115

A suitable example is enough to prove this theorem. Throughout the proof and
the related lemmas I will be using the VRA-1N-mD-Unlimited problem defined by

the following matrices:

1 000 0O 1 0 0 O 0 O
6 1 00 00 g % 0O 0 0 0
6 6 1 0 00 £ 6 L o9 0 0
G= =Y e Y (C.11)
6 6 61 00 % 19 19 19 0 0
6 6 6 6 1
6 6 6 6 10 % 2% 2% 2% 3% 0
6 6 6 6 6 1
6 6 6 6 6 1 _ﬁ ﬁ 3_1 3_1 3_1 ﬁ_
For an optimal solution fi, fo, ..., f¢ the error matrix is:
Uy 0 0 0 0 0]
Usy Uy 0 0 0 0
N I
Yo Un Up Usg Uy 00
Usi Usy Uss Usy Uss 0
U61 Usa Uss Uss Uss U66
1 0 0 0 0 0 |
_h __fa
(fi+/2)8 (fi+f2)% 0 0 0 0
fi f2 f3 0 0 0
(fitfotfs)S (Athtf)s (Atftf)s
fi f2 f3 fa 0 0
(it-tfa)gg (it tfa)gs (Aot (b +fa)1s
fi f2 f3 fa f5 0
(f1+~~~+f5)% (f1+---+f5)% (f1+---+f5)% (f1+~~~+f5)% (f1+---+f5)%
f1 f2 f3 fa f5 fe
(f1+"'+f6)3—61 (f1+"'+f6)3—61 (f1-|—----|—ft5)3—61 (fl+"'+f6)% (fl+"'+f6)% (f1+"'+f6)3—11

Furthermore, I will denote with U,,., the set consisting of the maximal elements
of U;; for the given optimal solution. Certainly the value of the maximal elements is
the per node error, U, as defined at Sec. 4.1.

Before the actual proof I present two lemmas.

Lemma 37. For any optimal solution of the VRA-1N-mD-Unlimited problem given
by the matriz (C.11), at least one element of the set {Usi,Us1, U1, Us1, Ug1 } is an

element of Uz

116 C.2. PROOF OF THEOREM 18

Proof. The proof is by contradiction. We suppose the opposite, yet give fi, f5,..., f¢,
for which U’ < U. Let:

f{:afl+1_aa

fo = af,
fy = afs,
fi=afs,
fs = afs,
fo = afs,
O<a<l.

Let us first examine U/} (i =2,...,6):

U — f{ _ afi+l—-o
YA e (it f) =)y

Ul is clearly a continuous function of « € (0, 1], with U/, = Uy for a = 1.

Now let us see Uj; (j > 1, Uj; > 0):

fj af; _ fi

Vi = -+ @i+ +f)+1—ayy (At +fiti—1y

Uj; is again a continuous function of a € (0,1}, with Uj; = Uy; for a = 1. It can also
be seen that Uj; is a strictly increasing function of o € (0, 1].

Because of the monotonicity and continuity described above, for a sufficiently
small € > 0 having @ = 1 — € we will have U}, < U (i = 2,...,6) (as we indirectly
supposed Uy < U and Uj; = Uy for a = 1) and Uj; < U (j > 1, Uj; > 0) (due to
the monotonicity and the limit value at « = 1). This, on the other hand, means that

U’ < U, which contradicts the optimality of the initial solution. O

Lemma 38. For any optimal solution of the VRA-1N-mD-Unlimited problem given
by the matriz (C.11), the largest elements of the 1st, 2nd, ..., 6th columns of matriz
Uij are U61, UQQ, U33, U44, U55, U66; respectz'vely.

Proof. First I prove that U < 6 for any optimal solution of the given problem. To
do so I show that U < 6 for fi = fo =--- = fo =1/6. If fi = fo = --- = fs, then

APPENDIX C. AUXILIARY PROOFS 117

clearly in each row of U;; the biggest element is the rightmost one. The value of these

elements are: Uyy = 5, Usz = 13—3, Uy = %, Uss = %, Uss = 2, and these are all less

7
2 6
than 6. This means that for any optimal solution, which certainly cannot be worse
than this particular one, U < 6.
Let us now consider the first row of matrix U;;. I first show that Uy, < Us;. Suppose

the opposite:

Ao h
(i +f2)$ T (it fo +f3)% ’
which can be rearranged to:
fs
6 < =Us;z .
B (f1+f2+f3)1—13 %

This means that U > Uss > 6, which contradicts the optimality according to our first
statement (U < 6).

Using the very same steps, Us; < Uy, Uy < Usy, Usy < Ugy can be shown:
supposing the opposite would yield Uyy > 6, Uss > 6, Ugg > 6, respectively.

With this we have shown that Us; is the largest element in the first column. Let
us now move on to the second one.

First I show that Usy > Uss:

o h
(f1+f2)% (f1+f2+f3)1% 7

which can be rewritten as

B3(fi+ fo) <42(fi + fa+ f3)

which is true as by our assumption fi,..., fg > 0.

In a similar way it can be shown that Usy > Uya, Usg > Usg, Uz > Usy (concluding
the second column), Uss > Uy, Uss > Uss, Usg > Usz (third column), Uyy > Usy,
Uy > Ugy (fourth column), Uss > Ugs (sixth column). O

Using these results we can return to the main problem of this section:

Proof of Theorem 18. First I prove that Uyax = {Ug1, Uaz2, Uss, Uss, Uss, Ugs} for any
optimal solution of the VRA-1IN-mD-Unlimited problem given by the matrix (C.11).

118 C.2. PROOF OF THEOREM 18

From Lemma 37 and Lemma 38 follows that Ug; € Uyax. From Lemma 38 follows
also that the only possible other members of U, are Uss, Uss, Uy, Uss, Usg.
Now I show that Uss € Upax. Suppose the opposite, that we have an optimal set

of f;s, where Uy, < U. Let as define a new set of f;s as:

fo=afy+1—aq,
fi=af; (=1,3,4,5,6)
O<a<l.

In the same fashion as shown at the proof of Lemma 37, it can be shown that Uj, is
a continuous function of a € (0, 1], with U}, = Usy for a = 1. It can also be shown
similarly that Ugy, Usz, Uy, Uss, Ugs, which are the possible elements of Uy, are
continuous and strictly increasing function of a € (0, 1]. Because of this monotonicity
and continuity, for a sufficiently small € > 0 having o = 1 — € we will have U, < U
and Uj; < U; < U (ij = 61,33,44,55,66), which contradicts the optimality of the
initial solution.

Next, I show in two steps that Uss € Upax. Similarly to the previous paragraph,
let us suppose the opposite, namely for an optimal f; setting Usz < U.
Step 1. Let us have

f?::af3+]-_a7
fi=af;, (j=1,24,56)
O<a<l.

For a sufficiently small ¢ > 0 having o = 1 — e: Uiy < U and U, < Usgy, Uy, < Uy,
UE;E) < U55, U(/S6 < U667 but UéQ = Uss.
Step 2. Let

{I:ﬂf{+1_6a
[=081, (1=2,34,56)
0<p<1.

APPENDIX C. AUXILIARY PROOFS 119

According to similar considerations as above, for a § that is sufficiently close to 1:
Ugy, < Usy, Uyy < Usy = Upa, Ujy < Uiy < U, Uy < Uy < Upg, Uy < Ul < Uss,
Uls < Ugs < Usg. According to Lemma 38 these are the possible candidate elements
of Upax, so U” < U, which is a contradiction again.

The idea of the proof in the last paragraph can be easily reused to prove that
Uss € Unax, Uss € Unax and Usg € Uppax.

[have just proven that for any optimal solution of the problem given by (C.11):
U =Usg = Uy = Usg = Uyy = Uss = Ugg. Using this we can set up the following

system of equations:

J2 B f3
(it f)r (it fot f3)og
fo fa
(At f)r (it ot fs+ fO)5s
/2 B s
(fi+) (A+fatfs+fatfo)s
i _ Jo
(it f)r (it ot fa+fatfs+fo)
f2 fi

(Lt f)E (hthtftfitf+fog
Il=f+fh+fstfatfs+fe.

From these equations fo, f3, f1, f5, f6, can be eliminated, and what remains is a

polynomial of fi:

923521 f7 — 16980870 f; + 118 664 280 f7 —
— 3905776802 + 934673904 f, — 336117600 =0 (C.12)

[used the mathematical software Maple [55] to show that this polynomial equation
has got a single real root only (and four complex ones).

Now a little algebra follows [56]. According to the Abel-Ruffini theorem, there is
no general algebraic solution to polynomial equations of degree five or higher. This

does not mean, however, that no polynomial equation of degree five or more can be

120 C.3. ADDENDUM ON COMPUTATION COMPLEXITY

solved by radicals!: 2% = 1 for example is pretty easy to solve. On the other hand,
there are polynomials that cannot be solved, such as 2% — 2 + 1 = 0. According to
Galois theory, a polynomial equation can be solved by radicals if and only if its Galois
group is a solvable group.

Using Maple I found that the Galois group of the polynomial given in (C.12) is
the symmetric group Ss. This group, consisting of 120 elements, is not solvable ([56],

p. 125), meaning that (C.12) cannot be solved by radicals, proving Theorem 18. [

C.3 Addendum on Computation Complexity

In this section I present alternative proofs and their corollaries about the computa-
tional complexity of the VRA-PGO related problems. They not only represent differ-
ent approaches, but also tackle different variants of the same problem family. As an
example, Theorem 39 states the NP-completeness of the original VRA-PGO problem
itself.

C.3.1 X3C Reduction
Theorem 22 (revisited). VRA-PGO-GW is NP-complete.

Proof 2 of Theorem 22. This proof is partially based on the idea presented in [68].

I will not prove again that VRA-PGO-GW is in NP, only the more interesting
part, namely that VRA-PGO-GW is NP-hard. I will reduce the X3C (Exact Cover
by 3-Sets) problem to VRA-PGO-GW. X3C is NP-complete, and is defined as follows:

Problem 12, Exact Cover by 3-Sets (X3C).

INSTANCE. Set X = {x1,...,2,} of p = 3¢ elements and a family C of n 3-subsets
of X C={Cy,...,C.},C;CX,|Cy| =3,i=1,...,n),n>q.

QUESTION. Does C contain a subfamily C' C C, consisting of q pair-wise disjoint
subsets of X (|IC'| =q)?

For an arbitrary instance of X3C I create an instance of VRA-PGO-GW corre-

sponding to it. The network is shown in Figure C.1: the nodes in the second and

li.e., having a solution that can be written in a finite form using integer constants and the +, —,

-, / and the nth root (n € Z") operators only

APPENDIX C. AUXILIARY PROOFS 121

l\\

1. Xz. X;@ X4. 50 X @

Figure C.1: Network for the X3C reduction

fourth row correspond to the 3-subsets of X in the X3C problem and the nodes in
the third row correspond to the elements of X. The link capacities are shown in the
figure, which are 3 for all links C;.X; and are 1 for all links X;D;. For links X;B the
link capacity equals to the number of edges arriving to node X; plus one. The link
weights are one unit for all of the links but link AB, for which wag = 3. The demands
are the following: A — B : 3(n+q+1), C; — D, : 3,i = 1...n. The mazimal number
of virtual links is R = q. The MLU is [= 1. This reduction is polynomial.

I now prove that if the X3C instance contains a suitable C' subfamily, then there
is a suitable virtual link allocation for the VRA-PGO-GW problem. Let Cf,...,C}
be the members of C'. Let us assign ¢; = 1 for all the links, except links ACY, for
which ey = 2. Constraints E,, < |Sy| + R are trivially not violated.

The max; hy/c; < B = 1 is not violated either. For node A the total traffic is
3(n 4 g+ 1), which is split onto exactly n + ¢ + 1 links, resulting in 3 units of traffic
per link. As eac, <2, hac,/cac, < 1. For C; — X; — D, there is an extra one unit
of traffic from the C; — D; demand. This means that for C; € C' h¢,x,/co,x;, = 1,
and for C; ¢ C' he,x;/cc,x; = 2/3. It can easily be seen that for the rest of the links
hifc, = 1.

Let us now see the opposite direction: if there is a suitable virtual link allocation for
the VRA-PGO-GW problem, then the X3C instance contains a suitable C’' subfamily.
First observe the demands C; — D; : 3. Suppose C; is connected to X, X; and

X,». Note that the demand, in order to be routed without violating the constraint

122 C.3. ADDENDUM ON COMPUTATION COMPLEXITY

max; by /e < =1 at links Xy D;, X;D;, and X,,D;, must be split equally at nodes
C;, ie., ec,x, = ec;x, = €c;x,,- Next, note that no traffic split occurs at nodes X;
due to the different destinations of the demands.

The most interesting traffic split occurs at node A. Observe that the volume of
demand A — B : 3(n + ¢ + 1) equals the total capacity of the incoming links to B.
This means that all the links arriving to node B must be fully filled. This is true for
link AB as well, meaning that the traffic volume arriving to node A (i.e. 3(n+q+1))
must be split onto n + ¢ + 1 links to have 3 units of traffic on AB. Consequently, a
link AC; carries 3eaq, traffic. Thus eqe, > 2 would result a h;/¢; > 1 on the given
link, so it is not possible. Hence there must be ¢ virtual links distributed over (real)
links AC; (i.e., eac, = 2 for ¢ links, and e4¢, = 1 for n —). To avoid the overloading
of links X, B, the AC;s, for which esc, = 2, are selected in a way that actually solves
the corresponding X3C problem: C; € C’ in the X3C problem if and only if e4¢, = 2
in VRA-PGO-GW. O

This proof can easily be extended to different variants of the problem as follows.
The first one is especially interesting as it states the NP-completeness of the original

version of the problem.
Theorem 39. VRA-PGO is NP-complete.

Note that for R = 0 the problem is reduced to a weight-searching problem, which
has been proven to be NP-complete in [9]. For R > 0, however, the statement is yet

to be proven.

Proof. VRA-PGO is in NP, for the same reason as VRA-PGO-GW is. I use the same
reduction as in Proof 2 of Theorem 22. If the X3C instance contains a suitable C’
subfamily, then VRA-PGO is solvable: the solution is the same as above, with link
weights being one unit for all of the links but link AB, for which wap = 3.

The opposite direction is pretty easy, too: notice that in order to fully transfer
all the demands without exceeding the link capacities on the links incoming to nodes
D, and B, all the links of the network must be utilized. This can be achieved with
essentially the same weight setting as above: VI w; = ¢, except for wap = 3¢ for any

¢ > 0. After this the proof is the same as Proof 2 of Theorem 22. O

APPENDIX C. AUXILIARY PROOFS 123

Theorem 25 (VRA-PGO-GW-ABS is NP-complete) can be proven here, too. The
proof is essentially the same as the above proof of Thm. 22, but using § = 0 in place
of § =1.

Likewise, Theorem 23 (VRA-PGO-GW-Q is NP-complete) can be proven here,
too: using) = n + g + 1 instead of R = ¢, the proof is almost the same as above.
Only in the first part of the proof “Constraints F, < |S,| + R are trivially not
violated” should be replaced by the following: “Constraints Eg, < () are not violated:
it is trivial for node A, and also for nodes C; (as n,q > 1). For nodes X;: E;x, =
|Sx,| = |Tx,| +1 < n+1 < Q" Note, however, that the @ used here can be fairly

large.

C.3.2 Good Simultaneous Approximation Reduction

In this section VRA-PGO-GW-ABS is examined again, but with § > 0. My conjecture
is that this case is NP-complete, too, but I will only prove a weaker statement. For
this I first show the definition of the Good Simultaneous Diophantine Approximation

problem (from [69], but with slightly modified notations):

Problem 13, Good Simultaneous (Diophantine) Approximation (GSA).
INSTANCE. A finite vector of rationals g1, ..., gq and positive integers N, s1, S.
(QUESTION. Is there an integer W with 1 < W < N such that

. S1 .
min |[Wg;, —n| < — Vi ?
ne”L S9o

The NP-completeness of the GSA is proven by J. C. Lagarias in [69]. T will use

another problem for the proof, which is a variation of GSA:

Problem 14, Good Simultaneous (Diophantine) Approximation in a Weaker
Sense (GSA-W).
INSTANCE. A finite vector of rationals gy, ..., gq and positive integers N, sy, So.
QUESTION. Is there an integer W with 1 < W < N such that

n S1 .
— | < — Vi ?
W‘_SQ

mip |g: —

As far as [know, the NP-completeness of GSA-W is not proven, but my conjecture

is that it is true. Consequently, the theorem I prove is:

124 C.3. ADDENDUM ON COMPUTATION COMPLEXITY

Figure C.2: Network for the GSA-W Reduction

Theorem 40. VRA-PGO-GW-ABS with 6 > 0 is NP-complete if GSA-W is NP-

complete.

Proof. VRA-PGO-GW-ABS is in NP, and the proof is essentially the same as at
Theorem 22. Next I prove by Karp reduction that VRA-PGO-GW-ABS is NP-hard if
GSA-W is NP-complete. Suppose we have a GSA-W instance. We can safely suppose
that for all 7 g; < 1.

Consider the network in Fig. C.2 with the link capacities shown, where M = dN.
Let w; = 1 be the weights for all the links and the demands be:

X =Y :dM

Let the maz. absolute error be § = s1/sy and the resource bound: R = (N — 2)d (or
Q) = Nd). (Note that R or () can be pretty large here.) The reduction is polynomial.

I first show that if GSA-W is solvable then the given VRA-PGO-GW-ABS instance
can be solved as well. Let the solution of the GSA-W be W. For i = 1,...,d let
fi = argmin, ., |g; — n/W|. Let exa, = fi and exp, = W — f; for i = 1...d and for
the rest of the links let ¢; = 1.

The condition E,, < |S,|+ R (or Eg4, < Q) is only interesting at node X. There
Ex = Wd, and as |S,| + R = 2d + (N — 2)d and as W < N, the constraint is not

APPENDIX C. AUXILIARY PROOFS 125

violated. (Similarly, for d : X — Y, n = X: Ey, = Wd < Nd = Q. For the other
demands and/or nodes the inequality is trivial.)

The next question is whether max;(h; —¢;) < §. Certainly we only have to consider
edges with ¢; < oo. For edges | = D;Y: hy—¢;= M — M =0 < 6. For edges | = A;C;:
hy—c¢; < ¢ is to be proven, where hy = f; /W, ¢, = g;. If hy—¢; = f;/W — g; is negative,
then it is clearly less than 4. If not, we can use f;/W — g; = | fi/W — g;|, which is less
than or equal to d by the initial conditions. The reasoning for the B;C; edges is very
similar.

I show now that a solution of VRA-PGO-GW-ABS solves GSA-W, too. For § > 1
the solution is trivial, so let us consider § < 1. First observe that for all i, j € {1,...,d}
exa;, T exp, = €xa; + exs;, which is required for hp,y — cp,y = 0. I show this by

contradiction, supposing the opposite, i.e., the difference is positive for at least one i:

dM (exa, + exn,)
Ex

= d(exa, +exp,) > Ex = d(exa, +exp,) > Ex+1 .

-—M>0=

hD,'Y — Cp,y > 0=

Using this we got:

dM (exa, + exn;) > M(
Ex -

M M M
 Ex ~|Sx|+R Nd

E 1
hp,y — cp,y = X2 1)

X

1.

This would then mean a higher link error than ¢, a contradiction, so exa, + exp, =
exA; T €xs, is proven.

Let us now consider links A;C; and B;C;. Supposing that VRA-PGO-GW-ABS is
solvable, the error on the links is at most 6. Let W = E,/d = exa, + exp,, which

exists, according to the previous paragraph. This means:

hac, — Cac = o — g,
1 1 W (2]
W — €XxA;
hp,c, — cicy = T - (1 - gi) = _(hAiCi - CAiCi) .
Consequently, |ha,c;, — ca,c;| = |hp,c; — cB,c;| < 6, therefore W is a solution of

GSA-W. O

Appendix D

Publications

International journals

[J1]

[J4]

Krisztian Németh, Attila Korosi, Gabor Rétvari. “Optimal Resource Pooling
over Legacy Equal-Split Load Balancing Schemes”, Computer Networks, 127,
Nov. 2017, pp. 243-265.

Nikolett Bereczky, Amalia Duch, KrisztiAn Németh, Salvador Roura. “Quad-
kd trees: A general framework for kd trees and quad trees”, Theoretical Com-

puter Science, 616, Feb. 2016, pp. 126-140.

Péter Fiizesi, Krisztian Németh, Niklas Borg, Rikard Holmberg, Istvan
Cselényi. “Provisioning of QoS enabled inter-domain services”, Computer Com-
munications, 26 (10), Jun. 2003, pp. 1070-1082.

Géabor Fehér, Krisztian Németh, Istvan Cselényi. “Performance Evaluation
Framework for IP Resource Reservation Signaling”, Performance Evaluation,
48 (1-4), May 2002, pp. 131-156.

Hungarian journals

[J5]

Németh Krisztidn. “Hivdsengedélyezés garantdlt mindségii halézatokban (&t-
tekintés)”, Hiraddstechnika, ISSN: 0018-2028, LVII, 2002/9, pp. 2-4.

126

APPENDIX D. PUBLICATIONS 127

Cselényi Istvan, Filizesi Péter, Németh Krisztian. “Az internet szolgalat-
minéség fejlédése”, Magyar Tavkozlés, ISSN: 0865-9648, 2000/2, pp. 26-31.

Krisztian Németh. “IP Multicasting over ATM”, Magyar Tdvkozlés, Selected
Papers, ISSN 0865-9648, 1999, pp. 11-15.

Németh Krisztian. “IP multicast ATM felett”, Magyar Tdvkézlés, ISSN:
0865-9648, 1998/7, pp. 3-6.

International conferences

[C1]

[C2]

[C4]

[C6]

Krisztian Németh, Attila Kérosi, Gabor Rétvari. “Enriching the poor man’s
traffic engineering: Virtual link provisioning for optimal OSPF TE”, Networks
2014, Funchal, Madeira Island, Portugal, September 2014.

Nikolett Bereczky, Amalia Duch, KrisztiAn Németh, Salvador Roura. “Quad-
K-d Trees” Latin American Theoretical INformatics (LATIN 2014), Montev-
ideo, Uruguay, March 31 - April 4, 2014, Proc. LNCS 8392, pp. 743-754.

Krisztian Németh, Attila Kérosi, Gabor Rétvari. “Optimal OSPF Traffic
Engineering using Legacy Equal Cost Multipath Load Balancing”, IFIP Net-
working 2013, Brooklyn, New York, USA, May 2013

Tibor Cinkler, Réka Kosznai, Péter Baldzs Soproni, Krisztian Németh. “GSP,
the Generalised Shared Protection” 9th International Conference on Design of
Reliable Communication Networks (DRCN 2013), Budapest, Hungary, March
2013.

Krisztian Németh, Gabor Rétvari. “Traffic Splitting Algorithms in Multi-
path Networks: Is the Present Practice Good Enough?”, Networks 2012, Rome,
Italy, October 2012.

Zsolt Kovacshazi, Gabor Papp, Krisztian Németh. “A Hybrid Multicast
Video Distribution Method: a Technology for E-Entertainment”, 2005 Net-
working and Electronic Commerce Research Conference (NAEC 2005), Riva
del Garda, Italy, October 2005, pp. 1-11.

128

[C7]

[C8]

[C10]

[C11]

[C12]

(C13]

[C14]

Niklas Borg, Rikard Holmberg, Péter Fiizesi, KrisztiAn Németh. “NAIS
— Network Architecture for Inter-Domain Services”, Networks 2002, Munich,

Germany, June 2002. Proceedings ISBN: 3-8007-2711-0

Krisztian Németh, Péter Fiizesi. “An Analysis of IP Resource Reservation
Protocols”, Networks 2002, Munich, Germany, June 2002. Proceedings ISBN:
3-8007-2711-0, pp. 213-220

Istvan Moldovan, Krisztian Németh. “Quality of Service Architectures Us-
ing MPLS Networks”, 9th IFIP Working Conference on Performance Modelling
and Evaluation of ATM and IP Networks, Budapest, Hungary, June 2001. Pro-
ceedings ISBN 963 420 694 8

Istvan Moldovan, KrisztiAn Németh, Tibor Cinkler. “Merging in MPLS
Networks”, IEEFE ICT 2001, Bucharest, Romania, June 2001

Csaba Simon, Krisztian Németh, Sandor Székely. “Point-to-Multipoint ATM
Signalling Performance Measurements”, Sth IFIP Workshop on Performance
Modelling and Evaluation of ATM and IP Networks, llkley, UK, July 2000.
Proceedings: Networks UK, D. D. Kouvatsos (Ed.) ISBN 0-9540151-1-8

KrisztiAn Németh, Gabor Fehér, Istvan Cselényi. “Simulation Study for 1P
Resource Reservation”, &th IFIP Workshop on Performance Modelling and
Fvaluation of ATM and IP Networks, llkley, UK, July 2000. Proceedings: Net-
works UK, D. D. Kouvatsos (Ed.) ISBN 0-9540151-1-8

Gabor Fehér, Krisztian Németh, Istvan Cselényi. “Router Benchmarking
Framework for QoS Signaling”, 8th IFIP Workshop on Performance Modelling
and FEvaluation of ATM and IP Networks, llkley, UK, July 2000. Proceedings:
Networks UK, D. D. Kouvatsos (Ed.) ISBN 0-9540151-1-8

Istvan Cselényi, Gabor Fehér, KrisztiAn Németh. “Benchmarking of Sig-
naling Based Resource Reservation in the Internet”, Networking 2000, TFIP-
TC6, Paris, France, May 2000. Proceedings: LNCS 1815; Networking 2000:
Broadband Communications, High Performance Networking and Performance
of Communication Networks; ed. Guy Pujolle et al., ISSN 0302-9743, ISBN
3-540-67506-X

APPENDIX D. PUBLICATIONS 129

[C15] Krisztidn Németh, Krzysztof Szarkowicz. “IP Multicasting over ATM”, 7th
IFIP Workshop on Performance Modelling and FEvaluation of ATM and IP
Networks, IFIP WG 6.3, 6.4, Antwerp, Belgium, June 28-30, 1999

[C16] Gabor Fehér, Krisztidn Németh, Markosz Maliosz, Istvan Cselényi, Joakim
Bergkvist, David Ahlard, Tomas Engborg. “Boomerang — A Simple Protocol
for Resource Reservation in IP Networks”, IFEE Workshop on QoS Support
for Real Time Internet Applications in conjunction with Real-Time Technology

and Applications Symposium (RTAS), Vancouver, Canada, June 2-4, 1999

Hungarian conferences

[C17] Németh Krisztian. “Hivasengedélyezés garantalt mindségli csomagkapcsolt
halézatokban”, PKI Tudomdnyos Napok 111, Budapest, November 2002.

Other publications

[O1] Attila Korosi, KrisztiAan Németh. “Methods and packet network devices
for forwarding packet data traffic”, International Patent Application, Int. Ap-
plication No.: PCT/EP2013/060404, International Filing Date: 21 May, 2013,
Publication No.: WO /2014 /187475, Publication Date: 27 Nov., 2014

[02] Gabor Fehér, Krisztidn Németh, Andras Korn, Istvan Cselényi. “Benchmark-
ing Terminology for Resource Reservation Capable Routers”, IETF RF(C' 4883,
July 2007

