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Abstract

Communication networks are increasingly, and by now almost completely based on the

Internet Protocol. These networks are continuously being enhanced, posing challenges

to protocol designers, device vendors and network operators. One of the problems they

have to face is related to traffic splitting.

Splitting traffic flows to different data paths can serve as the basis for load bal-

ancing at several places of an end-to-end connection. Unfortunately, by allowing only

equal division amongst the parallel resources, existing technologies often cannot real-

ize the optimal traffic splitting, which can have serious negative consequences on the

network performance.

In this dissertation I present a flexible and efficient traffic splitting method that is

incrementally deployable and fully compatible with practically all existing protocols

and data planes. My proposal is called Virtual Resource Allocation (VRA) and, as

the name implies, it is based on setting up virtual resources alongside existing ones,

as for example virtual links parallel to the physical links. This way one can trick the

legacy equal traffic splitting technology into realizing the required non-equal division

over the physical media.

In my dissertation I propose several VRA schemes, give theoretical bounds on

their performance, and also show that the full-fledged VRA problem is NP-complete

in general. I also provide algorithms, both optimal methods and quick heuristics, that

solve the different VRA problems. I use IP Traffic Engineering with OSPF routing

as an example application of the concept. My simulations show that VRA has huge

practical potential as it allows approaching an ideal traffic split using only a very

limited set of virtual resources.
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Kivonat

A kommunikációs hálózatok napjainkra szinte teljesen az Internet Protokollt használ-

ják. E hálózatokat folyamatosan fejlesztik, amely során a protokollok tervezőinek, a

hálózati eszközök gyártóinak és a szolgáltatóknak egyre újabb feladatokat kell megol-

daniuk. Az egyik ilyen probléma a hálózati forgalom szétosztásával kapcsolatos.

A forgalom különböző adatutak közötti megosztása a terheléskiegyenlítés alapjául

szolgálhat egy végponttól végpontig tartó kapcsolat különböző részein is. A jelenlegi

technológiák azonban gyakran nem képesek az optimális szétosztás megvalósítására,

mivel csak egyenletesen tudják a forgalmat a párhuzamos erőforrások között szétosz-

tani, ez pedig nagyon hátrányosan befolyásolhatja a hálózatok teljesítményét.

Disszertációmban bemutatok egy rugalmas és hatékony forgalomszétosztó mód-

szert, amely fokozatosan is bevezethető és teljesen kompatibilis gyakorlatilag az összes

meglévő protokollal és csomagtovábbítási rendszerrel. Javaslatomat virtuális erőforrás-

foglalásnak (Virtual Resource Allocation) neveztem el, és, ahogy a neve is mutatja, a

meglévő valódi erőforrások melletti virtuális erőforrások létrehozásán alapul: például

virtuális útvonalakat hozhatunk létre a valódiakkal párhuzamosan. Ezzel a megoldás-

sal rábírhatjuk a meglévő, egyenletesen szétosztó rendszereket arra, hogy a megkívánt,

nem egyenlő arányban osszák el a forgalmat a valódi eszközök között.

Értekezésemben több különböző virtuális erőforrás-foglalási sémát javaslok, elmé-

leti korlátokat adok a teljesítményükre, és azt is megmutatom, hogy a teljes feladat

általánosságban NP-teljes. A problémákhoz optimális megoldási algoritmusokat va-

lamint gyors heurisztikákat is adok. A javaslatom bemutatására példaként az OSPF

útvonalválasztással megvalósított IP forgalomelvezetés (Traffic Engineering) téma-

körét választottam. A bemutatott szimulációm eredményei alátámasztják a javasolt

módszer létjogosultságát, megmutatva, hogy az ideális osztásarány nagyon jól meg-

közelíthető már kisszámú virtuális erőforrás alkalmazásával is.
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Chapter 1

Introduction

Unity is strength. Treating separate network resources as one and sharing it among

users is a technique inherent to the Internet. This scheme, often called the Resource

Pooling Principle [1], can be observed at several aspects of today’s networks. Exam-

ples of this principle include multipath routing, multihoming, Ethernet Link Aggrega-

tion Groups [2], load balancing between application level servers (such as web-servers

or database servers), load balancing in Traffic Engineering. Content Delivery Net-

works [3] are also a form of resource pooling, just as cloud storage and cloud com-

puting [4]. To realize these services, data centers are being installed rapidly, often

utilizing parallel paths, which are, in many of the cases, asymmetric in capacity [5].

Furthermore, several new concepts, such as network virtualization and Software De-

fined Networking (SDN) [6] appeared in the recent years, which also take advantage

of the pooling principle in order to optimally exploit the network resources.

This list is far from being comprehensive, yet it shows the versatility of scenarios

where resources are pooled. There are several reasons to do so. First, its inherent

redundancy increases the robustness against component failures. Second, by dynami-

cally allocating more resources for a temporal peak usage higher level services can be

offered on the same infrastructure, utilizing statistical multiplexing. Third, having a

greater freedom to couple demands and resources more efficient network utilization

can be achieved along with a more scalable service.
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Figure 1.1: Resource pooling example

A simple example of resource pooling is shown in Fig. 1.11. If the links and the

demands are coupled in a one-to-one fashion (Fig. 1.1(b)) then lossless transmission is

not possible. With pooled resource usage (Fig. 1.1(c)), however, both demands can be

forwarded without data loss. The latter scenario is also more robust against failures:

if one link goes down, without pooling the service is completely denied for the related

demand. Shared usage of the links, however, guarantees some level of service for both

demands in case of a single link failure.

The implementation of resource pooling, however, is challenging as the load bal-

ancers can often split the incoming demands only roughly equally amongst the re-

sources (because it is simple and scalable this way). As an illustration, a load balancer

between two web-servers typically splits the incoming requests in half, which heavily

hinders the overall performance if one of the back-end servers are for instance twice

as powerful as the other. Likewise, in routing protocols such as OSPF [7] or IS-IS [8]

Equal-Cost Multipath (ECMP) is used to distribute the traffic over the shortest paths

with the same cost. ECMP, however, is only able to split traffic between these paths

uniformly, even if they have different capacities, which poses a giant barrier when

aspiring to an optimal Traffic Engineering [5, 9, 10, 11].

As a solution, I introduce a technique called Virtual Resource Allocation (VRA)

to realize optimal resource pooling over legacy equal-split load balancing schemes.

The basic idea of VRA is to virtually multiply the available parallel resources so

that the load balancing system sees a greater number than what actually exists. The

virtual resources are then grouped and assigned to the physical ones, thereby tricking

1This figure is based on Fig. 2 of paper [1].
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the legacy equal splitting technology into approximating the required non-equal load

division over the existing media.

To continue the previous example, one can install two virtual machines on the

more powerful web-server and present them, along with the unmodified less powerful

server, to the load balancer. It then sees three servers, and by realizing equal split

between them the higher capacity one will eventually end up with 2/3 part of the total

load, as desired. In a similar fashion, installing virtual links or paths alongside the

physical ones (which, in practice, can be carried out via some administrative settings),

ECMP’s equal-split limitation can be amended. If, for example a 25% − 75% traffic

proportion is desired on two, equal cost shortest paths A and B, then by installing

two virtual paths parallel to B, and presenting these four to ECMP, it will happily

realize the expected traffic split rate.

The engineering problem to solve in VRA is then to come up with an optimal

setting of virtual resources so that a predefined non-equal traffic split ratio is ap-

proximated sufficiently with limited resource usage. Furthermore, placing VRA in a

broader scope, other, network-wide goals can be targeted as well.

One advantage of my VRA proposition is that it is incrementally deployable,

since it is perfectly fine to set up virtual resources only at a subset of the network

nodes. Moreover, unlike most other proposals, VRA is fully compatible with existing

hardware or software components in the network. Finally, VRA is extremely efficient,

as my numerical results indicate that by adding only a small set of virtual resources

the ideal traffic split ratio can be very well approximated, resulting in substantial

performance gain.

Later on in this dissertation Traffic Engineering (TE) in IP networks will be used

to introduce the VRA proposal. The idea is to set up virtual links alongside the

existing ones and present them to OSPF, as described above. This way near-optimal

TE can be achieved without any hardware or software modification on the network

infrastructure. Let me emphasize, however, that TE is just a descriptive example

application of the VRA concept, and its possible fields of usage are much broader. To

name one other use case, in certain SDN-based scenarios VRA can be used for rule

table optimization.



4 1.1. RELATED WORK

1.1 Related Work

In this section I briefly overview the most relevant publications.

Achieving near-optimal traffic engineering solutions for current OSPF/IS-IS net-

works [12] targets the same problem as I do in my TE example: overcoming the equal

split limitation of the OSPF/IS-IS routing protocols. Their basic idea is to modify

the forwarding table and this way controlling the set of shortest paths assigned to

different routing prefix entries. If this is done properly, the ideal traffic split ratio can

be approximated without changing the routing protocols or the forwarding mecha-

nism of the routers. However, unlike at VRA, in this proposal the control path of the

routers are affected by the modified way of the forwarding table maintenance.

Penalizing Exponential Flow-spliTting (PEFT [13]) is a proposal for a provably

optimal traffic engineering using link state protocols and hop-by-hop forwarding. Dis-

similarly from VRA, here the traditional operation of the routing protocols is modified:

not only the shortest paths are used but all of them, and the amount of traffic on

a path depends on the total path length. PEFT provides quick and optimal traffic

engineering, but at the expense of modifying the routing basics and using unlimited

number of next hops.

Weighted Cost Multipath (WCMP [5]) targets unequal traffic splits at data centers.

It assumes SDN-capable switches, yet the installed rules are based on longest prefix

matching, just like in the case of a traditional routing protocol. The WCMP proposal

assigns weights to each egress port in a multipath group, and realizes traffic split

proportional to the weights by essentially adding several duplicated entries to the

multipath forwarding table. The total number of table entries is constrained, as in

the VRA case. On the other hand, using SDN rules enables the designers to treat

each demand separately, avoiding the unfortunate coupling of independent demands,

which happens in my VRA-1N-mD problem presented in Section 4.1.

WCMP is therefore similar to my work both in terms of the goal and the applied

technology (longest prefix match-based forwarding). The similarities continue if we

look at the WCMP problem formulation. Their fundamental mathematical problem

is perfectly identical to my VRA-1N-1D case (see Sec. 3.1): find a set of integers that

sums to a low number and their relative quotients approximate a given ratio. Even
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the error function is essentially the same across the two papers: the maximum of

ratios of the actual and the intended traffic per output ports.

While paper [5] proposes heuristic solutions only, my algorithms, which can di-

rectly be applied to the WCMP problems, provide optimal solutions for this case and

not just approximations. Furthermore, my proposals can achieve this with comparable

or even smaller computational complexity.

Fibbing [14] is a fresh proposal aiming to compound the advantages of traditional

routing protocols (primarily: scalability and robustness) and the ones of SDN-based

routing (easy manageability and flexibility). The basic idea of Fibbing is to inject

fake nodes and links through standard routing protocol messages, thereby effectively

“lying” to other participants of the routing. The applicability of Fibbing for per desti-

nation load balancing with uneven splitting ratios has recently been demonstrated [15].

If a routing has a single shortest path for a destination and two parallel paths are to

be used with equal traffic share, advertisements of a fake node and a fake link has

to be injected to the network. Likewise, if for example 33%–67% traffic ratio is to be

achieved in an unequal load sharing case then two fake nodes and links have to be

advertised. My VRA-1N-1D algorithm (Sec. 3.1) can be used with Fibbing to find the

best approximation of an arbitrary split ratio using bounded number of fake entities.

Nevertheless, it is yet unknown if the operators will favor the advantages provided by

Fibbing over the extra abstraction level it requires.

Niagara [10] is another SDN-based proposal, which provides flexible traffic split-

ting between load balancers. Its goal is inherently the same as mine: to divide the

incoming traffic (towards different servers in this case) according to a given ratio.

This is achieved by a set of rules for selecting the next hop, taking into account the

destination IP address and some of the least significant bits of its source IP address,

too. The goal is to approximate the given split ratio with a small number of rules.

The underlying mathematical problem is similar to mine: try to approximate

a given ratio by the sum of fractions of small integers. In VRA I will mostly use

fractions with common denominator, Niagara uses sums of 1/2i. I will aim for a small

denominator, in the Niagara case the number of terms in the sum should be kept low.

With some clever enhancements to Niagara negative terms can be allowed in the sum

as well (e.g., 1/4+1/16−1/64) and by sharing rules among different traffic aggregates
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the number of rules can be further lowered. This latter case is somewhat similar to

my VRA-1N-mD (see Sec. 4.1) problem.

Niagara, just like WCMP, can treat different demands independently of each other,

and by using the source address as well for rule creation it can achieve a more concise

rule table than WCMP. As shown in Sec. 5.1 of [10], NIAGARA utilizes a greedy algo-

rithm to minimize the total number of rules for multiple aggregates. I have adopted

this idea in Alg. 3.4 (p. 28), and proven to be optimal in Sec. 3.4. Niagara seems

to be a promising and powerful tool. On the other hand, VRA poses much lower

requirements on the network, and is therefore more easily deployable.

COYOTE [16] is recent proposal applying the VRA concept. It is designed to be a

readily deployable TE scheme for robust and efficient network utilization. COYOTE

takes as input a capacitated network, and a set of traffic demands with a source

and destination node and a traffic volume range (so-called “uncertainty bounds”),

within which the traffic amount can change arbitrary. It then calculates static traffic

splitting ratios that are optimized with respect to all scenarios within the uncertainty

bounds. These ratios are then realized in the network by combining the Fibbing way

of injecting fake protocol messages and some of my algorithms to optimize the number

of the fake entities.

Data centers are a special and nowadays very important field of application of

load balancing. In a data center high speed interconnections are required between

the nodes, which are typically realized by parallel data paths [17]. These paths, on

the other hand, are often asymmetric in capacity [5], demanding an adequate load

balancing technique. There are several techniques and proposals for this purpose and

I highlight some of the most important ones below.

ECMP [18] and the flowlet-based Flare [19] are traditional choices in data cen-

ters to realize multipathing. They, however, can only split the traffic evenly and not

proportionally to the available resources if the parallel paths are asymmetric in ca-

pacity. One possible workaround is to handle the large “elephant” flows separately,

like Hedera [20] does. WCMP is also intended to be used in data centers, just like

Presto [21], which realizes load balancing in the soft network edge (virtual switches)

and DRB [22], which is a per-packet routing algorithm for data centers. FlowBen-

der [23] tackles the issue at the flow level, by taking advantage of the congestion

notifications. CONGA [24] and HULA [25] operate with flowlets, handling the traffic
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at a finer granularity. Both use an explicit feedback mechanism. For CONGA it is

signaled leaf-to-leaf, while HULA uses periodic probes with a distance vector style

distribution of the network utilization information. DRILL [26] slightly modifies the

data plane to be able to handle very short term congestions. Finally, LetFlow [27]

takes advantage of the realization that the size of the flowlets changes automatically

with the traffic conditions on their path. Using this elastic property LetFlow can reach

nearly as good performance as the ones that use information on the global traffic con-

ditions of the data center, like CONGA, but by making very simple decisions based

on local information only.

The actual realization in the data plane of a predefined (equal or non-equal) split-

ting rate is out of the scope of my dissertation, but such a functionality is naturally

required for the traffic splitting. This subproblem is not straightforward, either. A

packet-based solution can very accurately achieve the required splitting ratio, but it

may cause reordering of datagrams of a single flow, which could cause disturbances

in the higher network layers [19]. Using network flows as the unit of splitting, on the

other hand, may be a less exact solution [28]. Accordingly, an intermediate approach,

the so-called flowlet-based splitting has been proposed [19] and it is now available

in commercial routers and servers [29]. Another—in a sense packet based—option

is the increasingly popular Multipath TCP (MPTCP, [30]), which has recently been

incorporated into the flowlet-aware HULA in the MP-HULA proposal [31].

The packet-to-interface mapping is usually realized via hashing. In its simpler form

hashing only supports equal split, but a table-based hashing can be used to implement

unequal split ratios [32]. Algorithm 3.1 (see p. 25) could actually be used to compute

the optimal thresholds or indexes in such algorithms (see Sec. IV.B in [32]), but if

the number of bins is much larger than the number of outgoing links then simpler

approximation algorithms would suffice as well.

Some related work focus on the utility of splitting. Papers [33] and [34] examine

the performance gap between a splitting and a non-splitting scenario under various

assumptions. If traffic splitting is allowed it is often constrained, just like in my work.

In [35] the number of paths available for a demand is limited, which is similar to my

Overlay Optimization problem discussed in Chapter 3. However, there the authors

aim for network utility maximization, which means to maximize the aggregate utility

of each source-destination pair, where the utility function is a concave, increasing,
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Topic Papers referenced Related contribution

Optimal Traffic
Engineering

Achieving near-optimal. . . [12],
PEFT [13], COYOTE [16]

Thesis Groups 1, 2, 3 in
Chapters 3, 4, 5

Flexible traffic
splitting

Achieving near-optimal. . . [12],
WCMP [5], Niagara [10],
Fibbing [14] (partially),
COYOTE [16] (partially),
Utility of splitting: [33], [34], [35], [36]

Thesis Group 1 in
Chapter 3

Multipath
support in
data centers

WCMP [5], Flare [19], Hedera [20],
Presto [21], DRB [22], Flowbender [23],
CONGA [24], HULA [25], DRILL [26],
LetFlow [27], MP-HULA [31]

Thesis Group 1 in
Chapter 3

Realization in the
data plane

Summary: [28], Hashing
performance: [32]

Not in the immediate
scope of this work

Table 1.1: Summary of Related Papers

continuous function of the throughput. I have, on the other hand, worked with fixed

demands for the source-destination pairs, where transferring less is unsatisfactory

and transferring more is superfluous. This corresponds to a non-continuous utility

function. Accordingly, I have aimed for maximum link load minimization, which is a

fundamentally different objective from network utility maximization. Finding the op-

timal traffic values for the sources and the best routing simultaneously while obeying

the path cardinality constraint is practically intractable so the authors had to revert

to heuristic solutions.

A follow-up of this work is presented in [36], where instead of the number of paths

the split ratio granularity is constrained. This is again similar to my Overlay Opti-

mization, however in [36] the demands are split into exactly p parts whereas in my

work it is at most p (E < Q with my notations). Furthermore, their objective is

still the network utility maximization while mine is the maximal link load minimiza-

tion.2 Due to these dissimilarities the results, while being similar, are not directly

comparable; nevertheless, they complement each other in the field of unequal traffic

splitting.

Table 1.1 shows a short summary for this Related Work section indicating the

association between the references and the different parts of this dissertation.

2Note that [36] also refers our paper [37], and points out this difference.
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1.2 Organization

This dissertation consists of seven main chapters and an appendix. After this Intro-

duction, Chapter 2 introduces the VRA concept with some simple examples. It also

covers the different possible constraint types and the potential optimization strategies.

Chapters 3, 4 and 5 carry my main theoretical results about different versions of the

original problem: Overlay Optimization, Peer-Local and Peer-Global Optimizations,

respectively. The numerical evaluation, which includes my algorithms as well as the

existing best-practice solution, is presented in Chapter 6. Chapter 7 concludes this

dissertation, also incorporating a section on possible future work.

After the Bibliography and the Index, in Appendix A the list of my theses is

presented. Appendix B lists the problem definitions given throughout this work. Ap-

pendix C contains proofs that were too long to fit into the main text without disturb-

ing its readability. Finally, Appendix D lists my scientific publications.



Chapter 2

Virtual Resource Allocation

Overview

In this section I present an overview of the Virtual Resource Allocation concept, using

Traffic Engineering as a descriptive example.

The idea behind VRA is fairly simple and is best explained by a small sample

problem. Consider the triangular network shown in Fig. 2.1(a). Suppose we would like

to transfer 30 units of traffic from A to C without overutilizing any of the links. Using

stock OSPF would allow us to set the link weights1, thereby we could easily create

two equal cost shortest paths (i.e. paths with minimal total cost/weight): A−B−C

and A−C, by using for example the weights shown in Fig. 2.1(b). On the other hand,

OSPF ECMP only allows splitting the traffic equally between the shortest paths

implying a 150% load on links A−B and B − C.

If, however, we could set up a virtual link on top of the existing link A − C

and expose it to OSPF (see Fig. 2.1(c)), it would happily split the traffic in three,

sending one third on path A−B−C and the rest on physical link A−C (Fig. 2.1(d)).

Naturally, installing a virtual link over physical link A−C does not change its capacity,

it only enables OSPF ECMP to use its full potential. The link weights would also

remain unchanged, and the new virtual link would have the same weight as the

respective physical one. By this simple administrative intervention we can route the

traffic through this network without exceeding the link capacities.

1Link weights are also often called link costs, link metrics or SPF (Shortest Path First) metrics.
I will use these terms interchangeably.

10
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(c) Adding a virtual
link
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(d) Link weights and
shortest paths

Figure 2.1: A triangular network. Demand: A→ C : 30

There are several possible ways to set up a virtual link parallel to an existing

one. These options include Ethernet Virtual LANs (VLANs), IP-IP tunnels, Generic

Routing Encapsulation (GRE) tunnels, etc. The exact method of setting up this

Layer 2 connection is out of the scope of this dissertation, I only focus on the effect

of the virtual links on the network performance.

2.1 Traffic Engineering, OSPF-TE

Traffic Engineering (TE) [38] is the scientific area of performance management in

operational communication networks. Several methods exist for assigning traffic flows

to data paths and thereby approximating optimal network utilization, perhaps the

most well-known being MPLS [39] with RSVP-TE [40] (MPLS-TE [38]). However, for

a network with N nodes and a full traffic matrix it requires N2 label switched paths.

Either for this or for other reasons some operators are reluctant to deploy MPLS-TE

in their network.

A less demanding alternative is OSPF Traffic Engineering (OSPF-TE). Its basic

idea is to adjust the administrative link costs so that the shortest paths calculated

by OSPF will map exactly to the ones chosen by the administrator. These paths may

be a result of an adequate linear program or some related heuristics [41]. The link

costs can be inferred from the dual of a similar linear program [42]. There is, however,

a fundamental problem with this solution. It may result in several parallel equal

cost shortest paths, with different amount of traffic to be transmitted over them. On
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the other hand OSPF ECMP provides only even split2 and consequently for certain

networks the quality of OSPF-TE can become arbitrarily poor compared to optimal

TE [9].

Finding the best link weight configuration for a network with OSPF ECMP (a

process called “OSPF weight optimization”) is not straightforward, either. It is well

known to be NP-hard [9], and as a recent study revealed even approximating it by a

computationally efficient algorithm within any constant ratio is infeasible [43]. Still,

there are proposed weight optimization heuristics that perform well in real-life sce-

narios [44, 45].

2.2 Resource Bounds

We shall see that generally a network using VRA performs better as the number of

applicable virtual links grows. In practice, however, the number of next hops one can

provision for a particular destination entry in the routing table is typically limited

by the OSPF implementation, in line with Section 16.8 of the OSPF RFC [7]. For

example, in many Cisco, Ericsson and Juniper routers this limit is adjustable, but

the maximum allowed setting is 16 [46, 47, 48]. Similar limits exist for other routing

protocol implementations, like EIGRP, IS-IS, RIP [46].

In other use cases similar bounds may exist. For example in SDN the number of

rules to be installed have got a maximal value, too. For WCMP and Niagara this limit

is in the order of several hundreds to several thousands. This is much larger than the

number of allowed next hops in OSPF ECMP, but the important point is that there

exists an upper bound.

On that ground, I shall also study the form of VRA, when an upper limit is given

on the applicable resources. I will examine the following three models, which are

important from theoretical and/or practical point of view:

1. Unlimited Resources. In this simple case we pose no upper bound on the maximum

usable resources. Certainly, this approach is not directly applicable in real life

2The rationale for OSPF ECMP supporting equal-splitting only is out of the scope of this work.
Nevertheless, two likely reasons are: (1) the link metrics do not contain the necessary information
about the required split ratio, and (2) allows simpler hardware implementation in the data plane [32].
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settings, but in some scenarios solving this simpler problem will lead to the

solution of the more complicated ones.

2. Bounded Total Resources. In this model the total number of resources, including

the real and virtual ones, are limited. For example in Sec. 3.1 the total number

of outgoing links used for a demand is bounded by a constant Q. In this case, as

Q is fixed, the higher the number of used physical links, the smaller the number

of allowed virtual links.

3. Bounded Virtual Resources. Here the number of virtual resources is limited by a

constant R, which is independent of the number of existing physical resources.

2.3 Overview of VRA Optimization Strategies

As shown above, installing virtual resources (virtual links in this particular case) in

a pure OSPF ECMP environment can reduce the congestion in a network. It is not

straightforward, however, where and how many virtual links to install in order to

attain the ideal TE scenario. I propose several virtual resource allocation strategies,

each aiming to answer these questions.

Unless otherwise stated, throughout this dissertation the applied metric of TE

optimality is the widely adopted Maximal Link Utilization (MLU). The link utilization

is defined as the link traffic volume divided by the link capacity, and the MLU is the

maximum of this measure over all the links of the network. The goal is of course to

minimize the MLU.

The different VRA approaches are introduced using the example network shown

in Fig. 2.2. The only demand to route is from A to D, with a volume of 35 units

of traffic. Clearly, the optimal solution fully utilizes all the links, resulting in MLU

of 1.0. On the other hand, achieving this in an OSPF routing environment is not a

trivial task. Let us limit the number of allocated virtual links per node to R = 4 (cf.

Bounded Virtual Resources in the previous section); or the total number of usable

next hops for a destination to Q = 6 (Bounded Total Resources model), which are

identical in this case.

This example is used in the following subsections to enumerate different TE strate-

gies, which are discussed in depth in the upcoming chapters.
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28 
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5 7 2 

Figure 2.2: A capacitated example network. Demand: A→ D : 35

2.3.1 OSPF Weight Optimization

In this simplest scenario we are not utilizing any kind of virtual resources. Conse-

quently, our degree of freedom is limited to setting the link weights, so that running

OSPF ECMP over the shortest paths will generate optimal result (realizing OSPF-

TE). I will use this case as one of the reference points in my evaluation.

In the current example the best we can do is having one minimum cost path,

A−D, by setting for example all link weights to 1. This causes MLU of 35/28 = 1.25.

(See Table 2.1 for the MLUs of this example.)

2.3.2 Overlay Optimization

In this important scenario I suppose that a set of source–destination tunnels are al-

ready set up; yet, splitting the traffic between these tunnels have to be done somehow.

Having MPLS-TE with a Path Computation Element (PCE) or some other kind of

advanced means at our disposal, this problem can be tackled relatively easily. As

another example, Cisco Express Forwarding (CEF) allows traffic splitting roughly

proportionally to the MPLS tunnel bandwidth [49].3 In many cases, however, no such

tool is at hand, only the pre-allocated tunnels are present, and OSPF has to be used to

transfer the traffic through this overlay network. In this scenario we can still achieve

a near-optimal traffic distribution, by presenting virtual resources, in this case virtual

paths (i.e., virtually multiplicated tunnels), to OSPF.

To examine this scenario, suppose we have three paths (tunnels) already set up, as

shown in Fig. 2.3. If proportional load sharing was not implemented and these paths

3Note that even this implementation uses fractions of small integers to approximate the desired
split ratio, just as I propose in this dissertation. In CEF the Bounded Total Resources model is used
with Q = 16.
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Figure 2.3: Paths for Overlay Optimization

were exposed to OSPF, it would split the traffic in three equal portions, resulting in

a utilization factor of (35/3)/2 ≈ 5.833 on link B −D.

Nevertheless, we could apply virtual paths to optimize the traffic. We would put

the maximum allowed 4 virtual paths to the one hop path A − D, resulting in an

5 : 1 : 1 traffic split ratio. In this case the MLU (still on B − D) would drop to

(35/7)/2 = 2.5.

We are even better off if we allow not to utilize some of the paths at all. In this case

we could disregard path A−B−D, and use the 4 virtual links to A−D, splitting the

traffic in 5 : 1. Now the maximal link utilization is on link B − C: (35/6)/5 ≈ 1.167.

In this scenario traffic splitting occurs within an overlay network of pre-allocated

tunnels, implying the name Overlay Optimization. I will refer to the latter case, where

not all the paths are used, as Overlay Optimization with Path Exclusion.

2.3.3 Peer-Local Optimization

In this scenario there is no overlay network and traffic optimization takes place directly

on the physical infrastructure. During the optimization the link weights are adjusted,

and virtual links are set up.

We first compute the optimal routing, which is trivial in our example: fully utilize

each link. Next, the link weights have to be set accordingly, meaning in this case that

each of the three paths shown in Fig. 2.3 would be a shortest path. Fig. 2.4(a) shows

a sufficient weight allocation. Finally, for each node where traffic splitting occurs,

the desired split should be approximated by applying virtual links. This is done for

each node individually, independently on the other nodes, hence the name Peer-Local

Optimization.
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Figure 2.4: Peer-Local and Peer-Global Optimization

In our case at node A the 7 : 28 split can be achieved exactly by adding 3 virtual

links to A−D (see Fig. 2.4(b)). At node B, however, the 5 : 2 ratio cannot be perfectly

realized by using only 4 virtual links (5 would be enough, though). The best we can

do is allocating 2 virtual links to B − C. Thus the optimal virtual link allocation

results in (7 · 3/4)/5 = 1.05 utilization on links B−C and C −D, which is the MLU

in this case as well.

2.3.4 Peer-Global Optimization

There is a fundamental problem with the previous approach: as the errors of the

local optimizations propagate downstream with the data flows they encounter other

imperfect splitting points, whereby local errors can enlarge or weaken each other’s

effect. The unintended effects of this kind of cascade errors can be avoided by minimiz-

ing the errors concurrently, in a centralized manner. This is what I call Peer-Global

Optimization.

In this case we determine both the link weights and the number of applied virtual

links for each physical link simultaneously. Just as with the previous approaches, at

this point I do not detail how to do it, only describe its potential. In the example

network the optimal global solution uses the same link weights as Peer-Local Opti-

mization (see Fig. 2.4(a)) and the virtual link provisioning is plot in Fig. 2.4(c). With

this allocation the MLU will be on link A−D: (35 · 5/6)/28 ≈ 1.042.

Notice that this result is better than the one for Peer-Local Optimization. This

is because we sacrificed the otherwise realizable perfect split at node A in order to
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Optimization strategy MLU

OSPF Weight Optimization (no virtual links) 1.25
Overlay Optimization 2.5
Overlay Optimization with Path Exclusion 1.167
Peer-Local Optimization 1.05
Peer-Global Optimization 1.042
Optimal Solution 1

Table 2.1: Performance of the different optimization strategies

lower the error downstream, at node B. This trick would hardly be possible using

local considerations only.

2.3.5 Summary of the Optimization Strategies

The maximal link utilization of the different optimization strategies for our simple

rectangular example network are shown in Table 2.1.

Although the main purpose of this example was to give a quick insight into the

different TE approaches, the listed results also suggest that OSPF-TE enhanced by

VRA may result in considerably better network performance than pure OSPF-TE.

Actually, in this case Peer-Global Optimization approaches the theoretical optimum

by only 4%—without using any kind of advanced traffic engineering technology. More

realistic numerical studies are presented in Chapter 6.

2.4 Other Use Cases

It is important to emphasize again that the deployment of VRA algorithms are not

limited to Traffic Engineering. Several other use cases are possible, including SDN rule

optimization for WCMP or minimization of Fibbing virtual link and node numbers,

as discussed in Sec. 1.1. See also Sec. 3.4.1 for application of VRA for WCMP.

In the following chapters I explain in detail, formalize and analyze these VRA

optimization approaches. For the sake of simplicity in delivery I will continue to use

TE as the scenario for VRA, keeping in mind that most of my algorithms can be used

more generally.



Chapter 3

Overlay Optimization

This chapter is devoted to Overlay Optimization [37], which has been shortly intro-

duced in Sec. 2.3.2. The basic assumption is that end-to-end tunnels are already set

up, using MPLS-TE for example, and OSPF ECMP is deployed on top of this overlay.

A sample scenario is plot in Fig. 3.1(a). In this simple transit network there are

three edge routers A, B and C, and a full mesh MPLS overlay is realized between

them containing two paths per router pair. This MPLS overlay, in turn, is seen as an

IP topology deployed on top, which runs plain OSPF as a routing protocol. Easily, if

the ideal traffic splitting ratios are like the ones given in the figure then this traffic

allocation is impossible to implement with ECMP. With my proposed technique,

however, we can set up 4 virtual links1 (one between A−B and three between A−C)

to obtain exactly the required splitting.

The beauty of Overlay Optimization is that traffic splitting only occurs at the

source nodes, meaning that the demands can be treated separately from each other.

For example, adding virtual links between A and B does not affect the transmission

of the other demands in any way.

Overlay Optimization can also be used in the more general case, when only a

capacitated network and the demands are given, and we can assume the ability of

setting up (possible parallel) end-to-end tunnels. In this case we first have to calculate

a set of end-to-end tunnels, then use the VRA Overlay Optimization method over

these paths. The major steps of my proposed technique are shown in Fig. 3.1(b).

1The phrase “virtual path” could be more appropriate in this case, but for simplicity I continue
to call them virtual links.

18
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Figure 3.1: Overlay Optimization

The LP (Linear Program) for the multi-commodity flow problem, which allows

branching [50], can be solved in polynomial time and supplies the per link per demand

traffic volumes as the primal solution. The next step is to combine these per link traffic

volumes into end-to-end routes: generally there is more than one route for a demand,

each with a possibly different traffic share. This is called path decomposition (or

subflow decomposition), which can be done in several ways, resulting in higher or lower

total number of routes. There are polynomial time algorithms for the decomposition,

like SimPol proposed in [51], but finding the minimal number of routes is a strongly

NP-hard problem [52], which cannot even be efficiently approximated better than

some fixed constant [53].

The final, and for now the most important step is denoted by VRA-1N-1D in the

figure, which stands for “VRA for One Node, One Demand”. Indeed, as explained

above, here each demand can be treated separately, and splitting only occurs at their

sources. This means that the VRA problem can be decomposed into D independent

VRA-1N-1D problems, easing the underlying mathematical problem substantially.

Using the method summarized in Fig. 3.1(b) I will be able to compare Overlay

Optimization with the other techniques, as described in the Evaluation section.
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Notation Description

k number of outgoing links used
g1, g2, . . ., gk ∈ Z+ desired traffic volume per outgoing links
G0 =

∑k
i=1 gi total traffic volume

h1, h2, . . ., hk actual traffic volume per outgoing link
Ui = hi/gi error on the ith outgoing link
U = maxi Ui error of a virtual resource allocation
e1, e2, . . ., ek number of allocated links (physical and virtual together)
E =

∑k
i=1 ei total number of allocated links

Q ∈ Z+ upper bound on the total number of links

Table 3.1: VRA-1N-1D notations

The rest of this chapter is devoted to solving the VRA-1N-1D problem, which is

a crucial step of Overlay Optimization. I start with a precise problem definition.

3.1 VRA-1N-1D Problem Definition

We are given a single node, where the traffic of a single demand has to be split. It is

supposed to use k outgoing links (or paths/tunnels, but for simplicity I will use “link”

in the remainder of this section), each with g1, g2, . . ., gk desired traffic volume (see

Table 3.1 for a list of notations). We can safely suppose that gi ∈ Z+.2 Furthermore

let G0 =
∑k

i=1 gi.

Our objective is to share the traffic over the outgoing links using OSPF ECMP

such that the actually emerging h1, h2, . . ., hk subflow values are as close as possible

to the nominal g1, g2, . . ., gk subflow volumes. Here “closeness” between the ith

subflows is defined as the per link error Ui = hi/gi, and the ultimate error metric to

be minimized (U) is the maximum of the per link errors.3

Note that this time I compare the actual traffic to the desired traffic volume, not

to the link capacities (MLU). The reason for this is that VRA-1N-1D is just a part

2Using integers for the traffic volumes simplifies the analytical study of the problem. On the
other hand, it is not a real restriction, as any rational division ratio can be expressed this way. The
absolute values of the volumes can be varied by changing the unit, so this should not cause problem,
either. For example 1.5 Mbps is not an integer value, but 1500 kbps certainly is.

3Note that I refer to Ui and U as “errors”, but in fact they represent actual-to-required traffic
ratios. Usually zero or close-to-zero errors are preferred, but in this case U = 1 is the ideal condition.
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of Overlay Optimization, which only focuses on realizing the traffic split rate given

by {gi}. This approach also makes VRA-1N-1D reusable in other resource pooling

schemes, like WCMP (SDN) and Fibbing, as described in Sec. 1.1. Certainly the MLU

metric can be used for Overlay Optimization as a whole, as shown in Chapter 6.

To reach our objective, I apply virtual links parallel to the physical ones. Let ei

denote the total number of (virtual and physical) links in place of the ith physical

link, and E =
∑

i ei the total number of allocated links. To save space, I only examine

the case without link disabling possibilities (i.e., no “Path Exclusion”: ei > 0).

Applying the equal-split principle of OSPF ECMP we get:

hi = G0
ei

∑k
j=1 ej

=
G0ei

E
, i = 1 . . . k

and

U = max
i

hi

gi

= max
i

G0ei

Egi

.

As described in Sec. 2.2, the total number of outgoing links for a demand is

limited in the practical router implementations. Consequently, I use the Bounded

Total Resources model here, requiring E ≤ Q.

The following formal definition summarizes this section:4

Problem 1, VRA-1N-1D. Given k, {gi} and Q, find {ei} that minimizes U such

that
∑

i ei ≤ Q.

3.2 Bounds on the Error

Let us examine the theoretical bounds on the error of VRA-1N-1D, starting with a

lower limit:

Lemma 1. U ≥ 1.

Proof. By contradiction: U < 1 means ∀i : G0ei/(Egi) < 1, i.e., G0ei < Egi. Sum-

ming these over i yields: G0
∑

i ei < E
∑

i gi, i.e.: G0E < EG0.

Easily, if the number of links is unlimited, U = 1 can always be reached:

4For a comparative list of problem definitions see Appendix B.
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Lemma 2. If Q ≥ G0 then ∃{ei} for which U = 1.

Proof. Using ei = gi means E = G0 and Ui = G0ei/(Egi) = 1 ∀i.

Corollary 3. If Q =∞ then ∃{ei} for which U = 1.

There is a simple upper bound on the error, which will be useful later on:

Lemma 4. U ≤ G0.

Proof. Since gi ≥ 1 (as gi ∈ Z+) and ei ≤ E, ∀i: Ui = G0ei/(Egi) ≤ G0.

A stronger upper bound is:

Lemma 5. U ≤ G0

mini gi
.

Proof. Similarly to the previous proof, ∀i: Ui = G0ei/(Egi) ≤ G0/gi. Therefore U =

maxi Ui ≤ maxi G0/gi = G0/ mini gi.

This latter bound is also applicable if the desired traffic split ratio is given by real

numbers in the form of {γi}:
∑

i γi = 1. (γi = gi/G0 can be used if integer gis are

given.) In this case the bound is U ≤ 1/ mini γi.

The final remark on the error limits is about large G0s:

Lemma 6. If G0 is unbounded and E is bounded by a finite Q then U can be arbitrarily

high for any Q > 2.

Proof. Let k = 2, g1 = 1, g2 = x, so that x > Q (x ∈ Z). Then G0 = x + 1 and

the optimal allocation of links is e1 = 1, e2 = Q − 1. The link traffic volumes are

h1 = (x + 1)/Q, h2 = (x + 1)(Q − 1)/Q. The errors are U1 = (x + 1)/Q, U2 =

(x + 1)(Q − 1)/(Qx). Since (Q − 1)/x < 1, U2 < U1, meaning that U = U1, i.e.:

U = (x + 1)/Q, which can be arbitrary high, as Q is fixed and x is unbounded.

3.3 Optimal Solution of VRA-1N-1D

Now I answer the question: which virtual link allocation minimizes the error? As

there are only finite link allocations due to the constraint E ≤ Q, an exhaustive

search might be a possibility. To check its validity first let us cont the number of

possible allocations:
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Lemma 7. The number of possible VRA-1N-1D allocations is
(

Q
k

)

.

Proof. We have to dispense Q − k virtual links between k + 1 places: the first k

places are the k physical links, and the last one is a place for the unused virtual

links (allowing E < Q). This is a combination with repetitions with the number of

possibilities being:
(

(Q−k)+(k+1)−1
(k+1)−1

)

=
(

Q
k

)

.

For a given Q and for 1 ≤ k ≤ Q,
(

Q
k

)

is the largest for k = ⌊Q/2⌋. For example

the largest number of possible VRA-1N-1D allocations for Q = 30 is
(

30
15

)

≈ 1.55 · 108;

for Q = 50 it is
(

50
25

)

≈ 1.26 · 1014. A well-known lower bound on binomial coefficients

is:
(

Q
k

)k ≤
(

Q
k

)

. For the “worst case”, i.e., k = Q/2 this lower bound is 2Q/2 = (
√

2)Q,

an exponential function.

This means for small Q values (like Q ≤ 30 . . . 50) an exhaustive search may be

feasible, but not for much larger ones. For the given example of OSPF-TE Q ≤ 16

is probably enough in most practical cases, but VRA-1N-1D can be used in other

scenarios, where Q could be in the order of thousands as well (like SDN, where

Q represents the maximal rule number). Therefore a more computationally efficient

solution is necessary.

First I present an Integer Linear Program (see LP 3.1 on the following page),

which solves the problem. The idea is to minimize the error U , by requiring for each

link error:

Ui =
hi

gi

=
eiG

Egi

≤ α i = 1 . . . k (3.1)

and minimizing α. Variables yi help to find the optimal E: yi = 1 if E = i and

yi = 0 otherwise, which is enforced by constraints (3.3) and (3.4). The (3.5) system of

constraints is only effective if E = j, and then results in inequality (3.1). The second

term of the objective function (3.2) ensures that if there are several optimal solutions,

then the solver would choose the one with the smallest number of links altogether.

Although this would not be necessary as long as
∑

ei ≤ Q, it is somewhat nicer to

have it.

Due to the nature of the problem, LP 3.1 must contain integer variables. This, on

the other hand, means that it is not guaranteed to run in polynomial time. Therefore

I present an iterative algorithm that can solve the link allocation problem in pseudo-

polynomial running time.
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LP 3.1 VRA-1N-1D

variables: ei (ei ≥ 1, ei ∈ Z, i = 1 . . . k)

yj (yj ∈ {0, 1}, j = 1 . . . Q)

α (α ∈ R)

constants: Q (Q ∈ Z+)

gi (gi ∈ Z+, i = 1 . . . k)

G =
k

∑

i=1

gi

r (a small number, e.g., 10−5)

M (a large number, e.g., 105)

objective: min α + r
k

∑

i=1

ei (3.2)

constraints:
Q

∑

j=1

yj = 1 (3.3)

k
∑

i=1

ei =
Q

∑

j=1

jyj (3.4)

eiG

gi
≤ αj + M(1− yj), i = 1 . . . k, j = 1 . . . Q (3.5)

Let us start with Algorithm 3.1 on the next page that checks for a given α, k, {gi}
and E whether or not it is possible to assign the links with U ≤ α. If the assignment

is feasible then it also provides a solution and indicates if it is the only solution. I

prove that Algorithm 3.1 provides correct result:

Theorem 8. VRA-1N-1D-Fixed-E can be solved with U ≤ α if and only if
∑k

i=1 xi ≥
E, where xi =

⌊

αgiE
G0

⌋

.

Proof. For any correct solution {ei}, for all i = 1 . . . k:

α ≥ U = max
j=1...k

hj

gj

≥ hi

gi

=
G0ei

Egi

,

thus αgiE/G0 ≥ ei and since ei ∈ Z,

αgiE

G0

≥
⌊

αgiE

G0

⌋

= xi ≥ ei . (3.8)
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Algorithm 3.1 VRA-1N-1D-Fixed-E
Input: α, k, {gi}, E
Output: feasible, single_solution, {ei}

for i← 1 . . . k do

xi ←
⌊

αgiE

G0

⌋

(3.6)

end for
if

∑k
i=1 xi < E then

feasible← false

else if
∑k

i=1 xi = E then
feasible← true

single_solution← true

else
feasible← true

single_solution← false

end if
if feasible = true then

Solve the following set of equations to find an {ei}:
k

∑

i=1

ei = E; 1 ≤ ei ≤ xi (ei ∈ Z, i = 1 . . . k) (3.7)

end if

So if
∑

xi ≥ E, then we can find ei values such that (3.7) is satisfied, and then due

to (3.8) we will have a valid assignment, where U ≤ α.

On the other hand, if
∑

xi < E, then we cannot find eis such that (3.7) is satisfied,

and U ≤ α. To see this, suppose the opposite. Then (3.8) still must be true, and then

the supposed
∑k

i=1 xi < E contradicts
∑

ei = E in (3.7).

As calculating xis according to (3.6) is simple (i.e., O(1)) and solving (3.7) can

be done in O(k), Algorithm 3.1 has a complexity of O(k).

Next, I utilize a binary search framework to find the minimal α for which there is

a feasible solution of algorithm VRA-1N-1D-Fixed-E, given gis and E. To do so, we

need a lower and an upper bound on U . For this, I shall use 1 and G0, respectively,

as given by Lemmas 1 and 4. (Lemma 5 could have been used, too.) To stop the

iteration, we also need a lower bound on |U − U ′|, where U and U ′ belong to two

different link allocations, {ei} and {e′
i}. The following lemma helps:
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Algorithm 3.2 VRA-1N-1D-Bin-Search
Input: k, {gi}, E
Output: {ei}, U

lower ← 1.0
upper ← G0

while upper − lower ≥ 1/(G0E) do
α← (upper + lower)/2
if VRA-1N-1D-Fixed-E(α, {gi}, E) finds a solution then

upper ← α
else

lower ← α
end if

end while
{ei} ←VRA-1N-1D-Fixed-E(α, {gi}, E) {Lower limits are not valid settings,
upper limits are valid. We need a valid setting}
Calculate U from {gi} and {ei}

Lemma 9. Consider two different link allocations, {ei} and {e′
i}, both using a total

number of E links. For the the associated errors, U and U ′, if U 6= U ′ then |U−U ′| ≥
1/(G0E).

Proof. We can suppose U > U ′. Then

U − U ′ = max
1≤i≤k

Ui − max
1≤j≤k

U ′
j ≥ min

1≤i,j≤k, Ui>U ′

j

Ui − U ′
j =

= min
G0ei

Egi
− G0e′

j

Egj
= min

G0

E

eigj − e′
jgi

gigj
≥ G0

E

1
G2

0

=
1

G0E
,

since at the last inequality eigj − e′
jgi is a positive integer and gigj ≤ G2

0.

Note that it is indeed possible, that Ui = U ′
j. An example for this is the following:

k = 2, g1 = 1, g2 = 1, E = 3. One possible allocation is e1 = 2, e2 = 1, where U1 = 4/3;

another possible allocation is e′
1 = 1, e′

2 = 2, where U ′
2 = 4/3. This has no effect on

the lower limit given in Lemma 9: if these Us happen to be the optimal errors for two

different allocations, just like in our example, then finding the optimal α results in
∑

xi > E, meaning that there are more than one optimal solutions.

The binary search method is described in Algorithm 3.2. This algorithm runs in

log(G2
0E) steps, yielding an overall O(k log(G2

0E)) polynomial complexity.
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Algorithm 3.3 VRA-1N-1D
Input: k, {gi}, Q
Output: {ei}, U(E), U

best_U ← G0 + 1.0
for E ← k . . . Q do
{current_ei}, current_U ← VRA-1N-1D-Bin-Search({gi}, E)
if current_U < best_U then

best_U ← current_U
{best_ei} ← {ei}

end if
U(E)← best_U {used in Sec. 3.4}

end for
U ← best_U
{ei} ← {best_ei}

What remains is to find the value of E that yields the smallest error for the

given Q. This is done by the simple Algorithm 3.3. Note that this is theoretically

not a polynomial time algorithm as its complexity is O(Qk log(G2
0Q)), which is not

polynomial in the size of Q (i.e., log(Q)). Yet, this complexity is low enough, so the

algorithm is easily tractable for the practical use cases.

3.4 Other Problem Formulations

The algorithms for Problem VRA-1N-1D described above can be used with minor

modifications to answer a set of related questions. I list three such problems here

along with the proposed solutions.

Problem 2, VRA-1N-1D-Link-Min. Given k, {gi}, and Ulim ≥ 1, find {ei} that

minimizes the total number of links (E) such that U ≤ Ulim.

The solution is simple. Consider U(E) generated by Alg. 3.3. For the input Q

of Alg. 3.3 use G0. It is a weakly decreasing function, whose domain is a subset of

the positive integers. The solution of the problem is E, where U(E − 1) > Ulim and

U(E) ≤ Ulim, or k, if U(k) ≤ Ulim.

The number of loop cycles until this algorithm finds the suitable E depends on

Ulim and on the shape of U(E). Nevertheless, Lemma 2 guarantees that in the worst

case E = G0 is suitable, thus the complexity is O(G0k log(G3
0)).
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Algorithm 3.4 N-VRA-1N-1D
Input: {ki}, {gij}, Q
Output: {eij}, {Qi}, U

for i← 1 . . . N do {initialization}
Ui, Ui(E)← VRA-1N-1D(ki, {gij}, Q)
Qi ← ki

end for
while

∑

Qi < Q do {greedy algorithm}
i = arg max Ui {if there is more than one such i, select any of them}
Qi ← Qi + 1

end while
for i← 1 . . . N do
{eij} ← VRA-1N-1D(ki, {gij}, Qi)

end for

The next, somewhat harder problem is about solving several VRA-1N-1D prob-

lems concurrently, so that the total number of physical and virtual links of all the

nodes together is limited and the goal is to minimize the error over all the links of all

the nodes:

Problem 3, Parallel-VRA-1N-1D. Given kn (n = 1 . . . N), {gni}, and Q, find

{eni} that minimizes Umax = max Un such that
∑

n En =
∑

n

∑

i eni ≤ Q.

Although in my OSPF-TE example this problem is not directly addressed, in

other use cases, just like WCMP, where the total rule number is constrained, this is

indeed a valid an important question. A simple greedy algorithm (similar to the one

mentioned for Niagara in Sec. 5.1 of [10]) provides an optimal solution, as shown in

Algorithm 3.4. We use Q1, Q2, . . . QN links for each problem, such that
∑

Qi = Q.

Theorem 10. Algorithm 3.4 finds an optimal solution to Problem 3.

Proof. I prove by contradiction. Suppose Alg. 3.4 results in {Qi} and U , and yet there

is {Ri} with U ′ < U , such that
∑

Ri ≤
∑

Qi = Q. Because of the last condition, and

because ∃i : Ri 6= Qi there is at least one j, such that Rj < Qj. Due to the nature of

the algorithm and the nonincreasing property of Uj : Uj(Qj − 1) ≥ U ≥ Uj(Qj). On

the other hand U ′ ≥ Uj(Rj) ≥ Uj(Qj − 1) ≥ U , which contradicts U ′ < U .

The complexity of Algorithm 3.4 is O(NQk log(G2
0Q) + Q), where k = max ki,

G0 = max G0i. Note that the algorithm could be implemented more efficiently by
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calculating Ui(E) only when it is needed for the computation of arg max, resulting in

a complexity of O((Q + N)k log(G2
0Q)).

Finally, here is another variant of Parallel-VRA-1N-1D, minimizing the total num-

ber of links over several nodes with a given error limit:

Problem 4, Parallel-VRA-1N-1D-Link-Min. Given kn (n = 1 . . . N), {gni}, and

Ulim, find {eni} that minimizes
∑

n En =
∑

n

∑

i eni such that Umax = max Un ≤ Ulim.

This problem can trivially be decomposed into N independent VRA-1N-1D-Link-

Min problems, which can be solved as described above at Problem 2.

3.4.1 Application for WCMP

The concept of Virtual Resource Allocation and the related algorithms presented in

this dissertation has high application potential in several parts of communication net-

works. An example is the enhancement of Weighted Cost Multipathing (WCMP, [5]).

Sections 3.2.1–3.2.3 of paper [5] propose heuristic solutions. My algorithms de-

scribed in Sec. 3.3 and 3.4 (especially Alg. 3.3 and 3.4) could directly be applied

to the WCMP problems as well and they always provide optimal solutions, not just

approximations. The computational complexity of these algorithms are:

• Find a solution with minimal error if the maximal number of links/rules is

given (Problem 1). WCMP (with our notation): O(k2 + k(G0 − Q)), VRA:

O(Qk log(G2
0Q)).

• Find a solution with minimal links/rules if the maximal error is given (Prob-

lem 2). WCMP: O(k(G0 − k)), VRA: O(kG0 log(G3
0)).

• Simultaneously minimize the error for N problems using maximum a total num-

ber of Q links/rules (Problem 3). WCMP: O((
∑

N G0i − Q) ·∑N ki(G0i − ki)),

VRA (using k = maxi ki, G0 = maxi G0i): O((Q + N)k log(G2
0Q)).

Although these numbers are not directly comparable, if G0 ≫ Q, k, which is

a very possible scenario, my algorithms run either similarly to, or faster than, the

ones proposed for WCMP, and unlike those mine are guaranteed to provide optimal

solutions.



Chapter 4

Peer-Local Optimization

Peer-Local Optimization has been briefly introduced in Sec. 2.3.3 and is described in

full detail in this chapter. In this scenario we are given a capacitated network and

a set of demands (see Fig. 4.1). The optimization task is to determine for each link

a weight and the number of parallel virtual links, which, if fed together to OSPF,

will result in minimal MLU (Maximal Link Utilization). In other words, Peer-Local

Optimization provides input for OSPF-TE (see Section 2.1) enhanced by VRA.

Just as before, here we have a limit on the number of usable links per node as

well, using the Bounded Total Resources model, described in Sec. 2.2. In this scenario,

however, the limit exists per node per demand, in line with the router constraint that a

single traffic flow cannot be split onto too many outgoing links. As an example consider

the capacitated network in Fig. 4.2(a) with two demands: A → E : 30, A → F : 40.

Clearly, for optimal routing all the links have to be fully utilized, requiring a traffic

split of 2 : 1 and 1 : 3 for the demands at node A. Suppose we are allowed to use at

most Q = 4 outgoing links per node per demand. We can reach an optimal solution

by setting up virtual links as shown in Fig. 4.2(b). Although this way six links are

leaving node A, none of the demands are split onto more than four, obeying the limit.

network + 

link capacities 
demands 

VRA-PLO 

{e} weights 

Figure 4.1: Virtual Resource Allocation–Peer-Local Optimization

30
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A 

B D C 

F E 

20 20 30 

10 10 20 30 

(a) A network with link
capacities

A 

B D C 

F E 

(b) Installed virtual links

Figure 4.2: Multi-demand constraint example. Demands: A→ E : 30, A→ F : 40

weights 

dual solution 

network + 

link capacities 
demands 

multi-commodity 

flow problem LP 

per link  

per demand 

traffic 

primal solution 

VRA-1N-mD  

{e} 

(a) Peer-Local Optimization
operation

A 

B C 

3 2 

D E 

1 1 

1 2 

A D : 3 

A E : 2 

(b) VRA-1N-mD
example

Figure 4.3: Peer-Local Optimization

As introduced in Sec. 2.3.3, Peer-Local Optimization works at the node level. The

overview of its operation is shown in Figure 4.3(a). The first step is the same as for

Overlay Optimization: solving a multi-commodity LP with splittable flows, which can

be done in polynomial time. The primal solution provides the per link per demand

traffic volumes, just as before, but in this case I also extract the dual solution. These

contain the link weights (minus a constant r) [42], necessary for OSPF-TE. The

next and final step is to solve the VRA-1N-mD problem for each node independently.

VRA-1N-mD stands for “Virtual Resource Allocation for One Node and multiple

Demands” and provides locally optimal virtual link settings, as detailed later in this

chapter.

It has to be noted, however, that the link weights gained this way are not always

ready to use by OSPF ECMP. The good news is that according to these weights each
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link that has nonzero traffic from a demand will be part of a shortest path between

the corresponding source and destination nodes. The bad news, however, is that the

opposite direction is not true: there can be links belonging to a shortest path of a

demand that have zero traffic from that demand. It has been proven in [54] that

by carefully changing the link weights (without modifying the primal solution) this

effect can be minimized (which the authors call minimal shortest path representation),

but the ideal case, where all links of each shortest path have nonzero traffic for the

corresponding demand (called perfect shortest path representation), is not achievable

in general.

Unfortunately, VRA-1N-mD cannot handle a non-perfect shortest path represen-

tation, where a link on a shortest path has zero traffic from the corresponding demand.

One workaround to this problem is what I followed in my simulation evaluation (Chap-

ter 6), to divert a minimal amount of traffic to these links. This is denoted by the

dashed arrow in Fig. 4.3(a).

In VRA-1N-mD we deal with a single node and several demands routed through it.

Consider the example shown in Fig. 4.3(b) with the link capacities and the demands.

Suppose identical link weights. It is easy to see that at node A the first flow requires

a 33%–67% percent split, while the second one needs a 50%–50% divide for optimal

network performance. These requirements are contradictory: for the first demand a

virtual link along A − C is preferred, while the second is routed best without any

virtual link. Clearly, both cannot be done at the same time, meaning that there is no

perfect solution. Nevertheless, a setup with the minimal error can indeed be selected.

In the remainder of this chapter we examine, how.

4.1 VRA-1N-mD Problem Definition

The formal definition of the VRA-1N-mD problem, using the notations summarized

in Table 4.1, is as follows. For a network node A we are given a matrix

G =



















g11 g12 . . . g1k

g21 g22 . . . g2k

...
...

. . .
...

gD1 gD2 . . . gDk



















, (4.1)
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Notation Description

k number of outgoing links used

D number of demands

G = (gij) ∈ ZD×k desired traffic volume per demand per outgoing link (gij ≥ 0)

Γ = (γij) ∈ RD×k row-normalized version of matrix G

Σ = (σij) ∈ {0, 1}D×k σij = 0 if gij = 0, σij = 1 otherwise

Gi =
∑k

j=1 gij total traffic volume of demand i

hij actual traffic volume per demand per outgoing link

e1, e2, . . ., ek number of allocated links (physical and virtual together)

Ei =
∑k

j=1 ejσij total number of parallel links on shortest paths for demand i

Uij = ej/(γijEi) per demand per link error (only where γij > 0)

U = maxγij>0 Uij per node error

Q ≥ Ei (∀i), Q ∈ Z+ upper bound on the number of usable links per demand

Table 4.1: VRA-1N-mD notations

representing how demands 1 . . . D arriving at the node should be split among outgoing

links 1 . . . k: gij is the traffic volume that belongs to demand i and should be sent

out on link j. gijs are non-negative integers. We can assume for simplicity that G

contains no all-zero rows or columns. Later on I will also use the row-normalized and

the signum versions of G:

γij =
gij

∑k
n=1 gin

; σij =











0, if gij = 0

1, if gij > 0
.

As an example I show these matrices for the simple instance shown in Fig 4.3(b):

G =





1 2

1 1



 , Γ =





1
3

2
3

1
2

1
2



 , Σ =





1 1

1 1



 .

We set up ej number of parallel links (including the physical and virtual ones) for

outgoing link j of node A. Our goal is to find e1, . . . , ek, such that an error metric is

minimized.

An important question is if we allow disabling a physical link instead setting

up parallel links, in a similar fashion to Overlay Optimization with Path Exclusion.

Formally it would mean setting the number of links to zero on an outgoing link,
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i.e., having ej = 0 for some j. Whether or not this can be performed is a network

administration issue, and is outside the scope of this work. Nevertheless, due to space

constraints, in the rest of this dissertation I suppose that such link disabling is not

permitted (i.e., ej > 0).

Let Ei =
∑k

j=1 ejσij be the total number of parallel links on the shortest paths for

the ith demand (i.e., we only sum those ejs, where the corresponding gij is not zero),

and Gi =
∑k

j=1 gij be the offered load for the demand.

According to ECMP’s equal-split rule, the per demand traffic volume on an out-

going link is:

hij =
ejGi

Ei

.

For the same reasons as described at VRA-1N-1D, here we introduce the per

demand per link error, defined as the ratio of the transmitted traffic and the offered

volume on a given outgoing link j, for a given demand i, but it is only defined if the

offered traffic is non-zero:

Uij =
hij

gij
=

Giej

gijEi
=

ej

γijEi
(∀gij > 0) .

The per node error (or shorty just error) is defined as the maximum of the per link

per demand errors:

U = max
i,j:γij>0

ej

γijEi

,

which we aim to minimize in the rest of this chapter.

To complete the previous example, suppose that e1 = 2, e2 = 3, which yields:

(Uij) =





6
5

9
10

4
5

6
5



 .

This results in U = 6/5, which can be shown to be actually the minimal error for the

given problem.

Like in the Overlay Optimization Section, below I will also study the problem

variant with limited number of links used for traffic splitting. I am using the Bounded

Total Resources model (Sec. 2.2), but here the upper limit is applied on a per demand

basis (by requiring Ei ≤ Q for all i = 1 . . . D), as detailed for Fig. 4.2.

To sum up, we can formulate the problem as follows.
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Problem 5, VRA-1N-mD. Given k, D, G, and Q, find {ej} such that Ei ≤ Q for

all i = 1 . . . D and U is minimal.

As a first approach, however, I will examine a simplified problem variant:

Problem 6, VRA-1N-mD-Unlimited. Given k, D, and G find {ej} such that U

is minimal.

4.2 Attributes of VRA-1N-mD and VRA-1N-mD-

Unlimited

After the definition, first I examine the problems without trying to solve them yet.

In this section I present an observation about the completeness of the problems and

statements about the possible values of the error metric.

4.2.1 Completeness of the Problems

I present an important finding about the completeness of the problems:

Theorem 11. Any nonnegative matrix with at least one non-zero element in each

row and in each column can be the matrix G of a VRA-1N-mD or a VRA-1N-mD-

Unlimited problem, which is the result of Peer-Local Optimization in a suitable net-

work.

Proof. For a given matrix G, I construct a network where after the Peer-Local Opti-

mization process (see Fig. 4.3(a)) at a certain node the required splitting ratios are

exactly as given in G.

Let G be in the form of (4.1). The corresponding capacitated network is shown

in Fig. 4.4. There are altogether d demands in the system, the ith going from Si to

Di, i.e., there is no traffic between Si and Dj if i 6= j. For each demand i the desired

splitting ratio is given by gij (j = 1 . . . k). Note that if for some i, j gij = 0 then the

corresponding link can be omitted from the network.

Trivially, at node A Peer-Local Optimization will result in a VRA-1N-mD/VRA-

1N-mD-Unlimited problem with the given matrix G.

This result is significant as it allows us to focus on the matrices only, instead of

the possibly much more complex networks.
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Figure 4.4: Capacitated network corresponding to a given matrix G

4.2.2 Bounds on the Error

Let us now see the theoretical bounds on the error of VRA-1N-mD and VRA-1N-mD-

Unlimited. The first statement is analogous to Lemma 1, giving a lower limit:

Lemma 12. U ≥ 1.

Proof. I will prove a stronger claim: in every row of G there is an element for which

the per link per demand error is at least one. The proof is by contradiction: suppose

this is not the case for the ith row. This means that for all j = 1 . . . k, where σij = 1:

Uij = ej/(γijEi) < 1 , that is ej/Ei < γij. Summing these yields

∑

j=1...k:σij=1

ej

Ei
<

∑

j=1...k:σij=1

γij

meaning that Ei/Ei < 1, which is clearly a contradiction.

Note that U = 1 is attainable for some matrices G by properly selecting {ej}, but

for other Gs there is no such {ej} setting. Examples and detailed discussion on this

topic is available in Sec. 4.3.1.

Next, I give an upper bound on the error:

Lemma 13.

U ≤ 1
mini,j:γij>0 γij
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Proof.

Uij =
ej

Eiγij
=

ej

(
∑k

n=1 enσin)γij

≤ 1
γij

,

from which the theorem follows.

Lemma 14. There is no universal (G-independent) upper bound on the error.

Proof. For any M > 0 integer the following matrix G results in U = M :

G =





1 2M − 1

2M − 1 1



 , Γ =







1
2M

2M−1
2M

2M−1
2M

1
2M





 .

Easily, the optimal solution is e1 = e2 = 1, for which U = U11 = U22 = 1/2
1/(2M)

=

M .

As in this optimal solution the total number of virtual links is zero, this theorem

is valid even if the number of virtual links is not limited in any way, i.e., it is valid

for both the VRA-1N-mD and the VRA-1N-mD-Unlimited problems. Likewise, the

other two bounds on the error given above are also valid for both problem variants.

4.3 Unlimited Number of Links

After exploring the theoretical limits, I look for an optimal link allocation. I start with

a simplified version of the problem, where the maximum number of link constraint is

relaxed, i.e., we allow unlimited number of parallel links to be used simultaneously, as

defined in Problem 6, VRA-1N-mD-Unlimited. Notice that in this case the problem is

practically defined by the matrix G itself. Accordingly, I will use the problem instance

and the matrix interchangeably in this section.

4.3.1 Consistency of a VRA-1N-mD-Unlimited Problem

Definition 1. A matrix G is consistent if and only if U = 1 can be achieved with a

suitable {ej}, allowing unlimited number of parallel links.
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Here are some examples on consistency:

Example 1. The following G is consistent, and U = 1 for the given {ej}:

G =











1 2 4 0 0

0 3 6 1 0

0 0 30 5 1











e =
[

15 30 60 10 2
]

Example 2. This matrix is also consistent:

G =

















0 1 0 2 0 0

0 0 2 0 0 1

0 0 0 0 3 7

5 3 0 6 0 0

















e =
[

5 3 14 6 3 7
]

Example 3. This matrix is inconsistent:

G =





1 2

1 1





Example 4. This matrix is also inconsistent:

G =

















1 2 4 0 0

0 3 6 1 0

0 0 30 5 1

2 0 0 7 0

















An Algorithm for Deciding Consistency. Algorithm 4.1 decides whether a

given G is consistent, and if it is, it also supplies an {ej} for which U = 1. Note

that the algorithm could be extended by dividing the resulting vector e by the GCD

of its coordinates to have a “nicer” result, but as we supposed unlimited total number

of available links, this is not necessary.
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Algorithm 4.1 Deciding Consistency of a Matrix G

Input: G
Output: consitent, {ej}

1: function VectorMergeAndCheck(v1,v2) {Check for all the coordinates of v1

and v2 if they are either equal or one of them is 0. If true, merge the non-zero
elements of v2 into v1. Requires identical vector sizes.}

2: for all coordinates i do
3: if v1[i] = 0 then
4: v1[i]← v2[i]
5: else if v2[i] 6= 0 and v1[i] 6= v2[i] then
6: return false

7: end if
8: end for
9: return true

10: end function

11: function IsConsistent(G) {Decides whether G is consistent. If true, also re-
turns an {ej} for which U = 1}

12: if G is empty or G has only one row then
13: e← G
14: return true, e
15: end if
16: e← 1st row of G
17: remove 1st row from G
18: while G is not empty do
19: found← false

20: for all rows i in G do
21: for all coordinates j of the ith row of G do
22: if Gij 6= 0 and ej 6= 0 then
23: found← true

24: exit the innermost for all loop
25: end if
26: end for
27: if found = true then
28: exit the innermost for all loop
29: end if
30: end for
31: if found = true then
32: f ← ith row of G
33: remove ith row from G
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34: p← ej

35: q ← fj

36: d← GCD(p, q)
37: p← p/d
38: q ← q/d
39: e← q · e {multiply a vector by a scalar}
40: f ← p · f {multiply a vector by a scalar}
41: if VectorMergeAndCheck(e, f)=false then
42: return false

43: end if
44: else{the remainder of G is independent of the already processed one}
45: cons, new_e←IsConsistent(G)
46: if cons = false then
47: return false

48: end if
49: VectorMergeAndCheck(e, new_e)
50: return true, e {exiting the main loop}
51: end if
52: end while
53: return true, e
54: end function

The idea of Algorithm 4.1 is to build the vector e by iterating through the rows

of matrix G. We start with e being the first row of G (lines 16-17). Then, we search

for a row in G, which has at least one non-zero element in a column, where e is also

nonzero (lines 18-30). If found, then we remove it from G and check if that row is

“compatible” with e, in the sense, that the ratio of the coordinates, where each vector

is non-zero, is identical. If they are not compatible, then G is inconsistent (lines 31-

43). If they are, then we extend e with the non-zero elements of the given row of G

(lines 41, 1-10). We repeat this until there are no more rows of G that have non-zero

elements, where e is non-zero. We then re-run the whole algorithm on the remainder

of G and merge the resulting e with the current one, if possible (lines 44-51).

Complexity of Algorithm 4.1. Examining the loops, it can be seen that at most

d2k + 4dk steps are required, so the complexity of the algorithm is O(d2k).

LP for Deciding Consistency. Linear Program 4.1 also solves this problem in

polynomial time. There is a feasible solution for the LP if and only if the matrix is
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LP 4.1 Deciding Consistency

variables: ej (ej ≥ ǫ, ej ∈ R, j = 1 . . . k)

constants: gij (gij ≥ 0, gij ∈ Z, i = 1 . . . d, j = 1 . . . k)

ǫ (ǫ > 0)

objective: −
constraints: ej1

gij2
= ej2

gij1
(∀i = 1 . . . d, j1, j2 = 1 . . . k : gij1

gij2
6= 0)

consistent. The role of ǫ is only to provide ej > 0, as the resulting vector e could

be multiplied by any constant and still be valid. A disadvantage of this LP-based

approach is that it returns real numbers as the solution, which are not trivial to map

to integer number of links.

The same problem could also be solved as an Integer LP (requiring ej ∈ Z+), but

it could result in non-polynomial running time. An intermediate solution would be to

use a rational solver, but in that case having a polynomially limited running time is

also not straightforward.

Note that LP 4.1 might look at first sight as a homogeneous system of linear

equations, but as the variables are required to be positive, the classical solutions, like

the Gaussian elimination, are not applicable here.

Consistency and Errors. Finally, I present a lemma on the nature of the errors

that are related to a consistent matrix G.

Lemma 15. If a matrix G is consistent then for an {ej} for which U = 1: Uij = 1

∀i, j : σij = 1.

Proof. By definition, for this {ej} setting Uij ≤ 1 (∀i, j : σij = 1). We have to

show that Uij = 1 holds. Suppose the opposite: ∃a, b : σab = 1, Uab < 1. Then

Uab = eb/(γabEa) < 1, i.e.,

eb/Ea < γab . (4.2)

Similarly for the rest of the matrix: Uij ≤ 1, which means

ej/Ei ≤ γij ∀ij : ij 6= ab, σij = 1. (4.3)
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Now let us sum (4.2) and (4.3) over the ath row:

∑

j=1...k:σaj=1

ej

Ea
<

∑

j=1...k:σaj=1

γaj

meaning that Ea/Ea < 1, which is a contradiction.

4.3.2 Notes on the Types of the Solution

I now show two, somewhat surprising observations about the types of the optimal

solution. As the complete proofs are quite lengthy, they are moved to Appendix C,

and here I only highlight their most important steps.

For simplicity, in the remainder of Section 4.3 I will use the normalized version of

the link number ej, denoted by fj to avoid confusion:

fj =
ej

∑k
i=1 ei

⇒ fj ∈ R+,
k

∑

j=1

fj = 1. (4.4)

Theorem 16. There is at least one VRA-1N-mD-Unlimited problem, where matrix G

contains integers only but the single optimal solution contains only irrational numbers

as fjs.

Sketch of Proof. Consider the following input matrix:

G =





2 1 0

2 2 1



 .

I prove in the Appendix C.1 that for this matrix for any optimal solution U12 = U21 =

U23 and U11 < U21, U22 < U12. Furthermore, I also show that there is a single optimal

solution (f1, f2, f3) in this case, for which expanding and solving the U12 = U21 = U23

system of equations and using that f1, f2, f3 > 0 and that f1 + f2 + f3 = 1, we get:

f1 =
2
5

(7−
√

34), f2 =
1
5

(−16 + 3
√

34), f3 =
1
5

(7−
√

34) .

This theorem has an important consequence:

Corollary 17. The optimal settings for the VRA-1N-mD-Unlimited problem cannot

always be reached using finite total number of links.
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The next theorem is even less straightforward than Theorem 16.

Theorem 18. There is at least one VRA-1N-mD-Unlimited problem, whose only

optimal solution contains at least one fj that cannot be written in a finite form using

integer constants and the usual +, −, ·, / and the nth root (n ∈ Z+) operators only.

Sketch of Proof. Consider the following matrix:

G =































1 0 0 0 0 0

6 1 0 0 0 0

6 6 1 0 0 0

6 6 6 1 0 0

6 6 6 6 1 0

6 6 6 6 6 1































.

I prove in Appendix C.2 that for this case the maximal error terms for the optimal

solution are U61 = U22 = U33 = U44 = U55 = U66. This leads to a fairly simple system

of equations on f1, . . . , f6. From these equations f2, . . . , f6 can be eliminated, and

what remains is a polynomial of f1:

923 521f 5
1 − 16 980 870f 4

1 + 118 664 280f 3
1−

− 390 577 680f 2
1 + 934 673 904f1 − 336 117 600 = 0 . (4.5)

I used the mathematical software Maple [55] to show that this polynomial equation

has got a single real root only (and four complex ones). According to Galois theory [56],

a polynomial equation can be solved by radicals1 if and only if its Galois group is a

solvable group. Using Maple I found that the Galois group of the polynomial given

in (4.5) is the symmetric group S5. This group, consisting of 120 elements, is not

solvable, meaning that (4.5) cannot be solved by radicals.

A solution of the VRA-1N-mD-Unlimited problem is given as f1, f2, . . . , fk, where

fj ∈ R+. We expect real constants fj to be presented by an algorithm that solves

the problem in some sort of closed form, but “closed form” can be defined in several

1i.e., having a solution that can be written in a finite form using integer constants and the +, −,
·, / and the nth root (n ∈ Z+) operators only
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ways. For now I require fjs to be given by finite expressions that consist of integer

constants and the usual +, −, ·, / and the nth root (n ∈ Z+) operators only.

Corollary 19. No algorithm can give an optimal solution to VRA-1N-mD-Unlimited

in finite number of steps; even if the number of steps may depend on the actual

problem.

The idea behind this corollary is that an optimal solution cannot be computed in

finite number of steps if for some inputs it cannot be written in a closed form, since

writing the output is part of the solution.

4.3.3 An LP-based Iterative Solution

From the previous subsection we know that finding the exact solution is infeasible. I

can, nevertheless, search for an approximation of the optimal solution.

As a first step, I set up an LP that computes {fj} while keeping the per node

error under a given constant α. Naturally, for too small αs the LP will not have a

solution.

I do this by enforcing each per demand per link error term to be less than or equal

to α:
fj

γij
∑k

n=1 σinfn

≤ α ,

which can be rearranged as:

0 ≤
k

∑

n=1

σinfn −
fj

γijα
,

which leads to LP 4.2.

Note that in this LP I have provisionally relaxed the constraint
∑

j fj = 1 (see

(4.4)), and introduced variables f̂j to avoid confusion. The reason for this change is

that I wanted to enforce fj > 0, meaning that a link cannot be disabled. In an LP,

however, only “greater than or equal to” type constraints can be used and no “strictly

greater than” types. So I have released
∑

fj = 1 and added (4.6) requiring f̂j ≥ 1,

which does the trick. On the other hand, if an {f̂j} satisfies (4.8) then each {cf̂j}
does so as well, where c > 0. Therefore the objective function (4.7) has been added;

mainly for aesthetic reasons, as for the unlimited links case any f̂js satisfying (4.8)
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LP 4.2 VRA-1N-mD-Unlimited, Given α

indices: i = 1 . . . D

j = 1 . . . k

constants: α (α ≥ 1, α ∈ R)

γij (γij ∈ Q, γij ≥ 0, ∀i :
k

∑

n=1

γin = 1)

σij = sgn(γij)

variables: f̂j (f̂j ≥ 1, f̂j ∈ R) (4.6)

objective: minimize
k

∑

j=1

f̂j (4.7)

constraints: 0 ≤
k

∑

n=1

σinf̂n −
f̂j

γijα
, ∀i, j : γij > 0 (4.8)

are equally good. Solving LP 4.2 may return large f̂js, but they can be normalized to

one by dividing by their sum, and thereby acquiring fjs that conform to (4.4).

Now we can use binary search to find the smallest α for which LP 4.2 is solvable,

as described in Algorithm 4.2. Note that ǫU describes how close we want to get to

the optimal error: providing it is necessary due to the consequences of Corollary 17.

A typical value could be ǫU = 10−8. Nevertheless, this way we can approximate the

optimal solution arbitrarily close.

Complexity of Algorithm 4.2. This algorithm is based on a linear program that

contains no integer variables, hence it can be solved in polynomial time. The ques-

tion is, how many times is this LP run? Algorithm 4.2 does a binary search on the

[1, 1/ mini,j γij ] interval, until it reaches an optimal solution with an error less than

ǫU . For this log2(1/(ǫU mini,j γij)) steps are enough, meaning that Algorithm 4.2 runs

in polynomial time.

Summary. I have given an iterative algorithm for the VRA-1N-mD-Unlimited prob-

lem, which quickly converges to an optimal setting. According to Corollary 19 signif-

icantly better solution cannot be given.
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Algorithm 4.2 VRA-1N-mD-Unlimited
Input: G, ǫU

Output: {fj}
lower ← 1.0 {See Lemma 12}
upper ← 1/(mini,j γij) {See Lemma 13}
while upper − lower ≥ ǫU do

α← (upper + lower)/2
if solve_LP 4.2(α, G) finds a solution then

upper ← α
else

lower ← α
end if

end while
f ← solve_LP 4.2(upper, G) {Lower limits are not valid settings, upper limits
are valid. We need a valid setting}

Algorithm 4.3 VRA-1N-mD-Unlimited, Positive Matrix G

Input: G (gij 6= 0)
Output: {fj}

1: γij ← gij/
∑k

n=1 gin (repeated for i = 1 . . . d, j = 1 . . . k)
2: γ′

j ← mini=1...d γij (repeated for j = 1 . . . k)

3: fj =
γ′

j
∑k

n=1
γ′

n

(repeated for j = 1 . . . k)

4.3.4 A Special Case: Positive Matrix G

In this subsection I examine a special case of the VRA-1N-mD-Unlimited problem,

in which matrix G contains only positive elements. For this case Algorithm 4.3 will

provide a quicker and simpler solution than Algorithm 4.2. Furthermore, this solution

is exact and not just approximative.

Theorem 20. For a VRA-1N-mD-Unlimited problem in which matrix G is positive,

Algorithm 4.3 provides the single optimal solution.

Proof. The error U to be minimized is the maximal element in

(Uij) =



















f1

γ11

f2

γ12
. . . fk

γ1k

f1

γ21

f2

γ22
. . . fk

γ2k

...
...

. . .
...

f1

γd1

f2

γd2

. . . fk

γdk



















.
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Let us examine this matrix column by column. Clearly, the identity of the maximal

element in each column j is independent of fj and this value is maxi=1...d fj/γij = fj/γ′
j

(see Step 2 of Alg. 4.3). Thus the solution of the original problem is reduced to

minimizing the maximal element in

(U ′
j) =

[

f1

γ′

1

f2

γ′

2

. . . fk

γ′

k

]

.

Now I show that the single optimal solution is {fj} as given in Step 3 of Alg. 4.3.

In this case for each j = 1 . . . k: U ′
j = fj/γ′

j = 1/
∑

γ′
n = U . For any other {f̃j} setting

(
∑

f̃j = 1) there trivially exists a j for which f̃j > fj and then Ũ ′
j > U ′

j = U .

Note that
∑k

j=1 γ′
j ≤ 1: by definition γ′

j ≤ γ1j (j = 1 . . . k) and
∑k

j=1 γ1j = 1, so
∑

γ′
j ≤ 1. Consequently, U = 1/

∑

γ′
j ≥ 1, in accordance with my previous results. It

also follows that U = 1 if and only if G is consistent, again, as expected.

Easily, Algorithm 4.3 runs in O(kd) steps. As reading the input itself requires kd

steps, this is very effective.

4.4 Limited Number of Links

Now I give solutions to the original VRA-1N-mD problem, which has limit on the out-

going links used in parallel. We are searching for positive integers {ej} that minimize

the error, on the conditions Ei ≤ Q (i = 1 . . . D).

Clearly all link allocations are valid for which ej > 0 ∀j and
∑k

j=1 ej ≤ Q. Also,

as shown at the beginning of this chapter, there could be valid allocations for which

Ei ≤ Q ∀i holds, but
∑

j ej ≤ Q does not hold. This means that according to Lemma 7

there are at least
(

Q
k

)

valid link allocations, which calls for a more efficient solution

than the simple exhaustive search.

4.4.1 An ILP-based Iterative Solution

Linear Program 4.2 can be easily modified to LP 4.3 to suit the “limited total number

of links” case. Note that the objective function might be omitted here as well, it only

forces the LP solver to select a solution with the fewest total number of links. Just as
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LP 4.3 VRA-1N-mD, Given α

indices: i = 1 . . . D

j = 1 . . . k

constants: α (α ≥ 1, α ∈ R)

γij (γij ∈ Q, γij ≥ 0, ∀i :
k

∑

j=1

γij = 1)

σij = sgn(γij)
Q (Q ∈ Z+) (4.9)

variables: ej (ej ∈ Z+) (4.10)

objective: minimize
k

∑

j=1

ej

constraints: 0 ≤
k

∑

n=1

σinfn −
fj

γijα
, ∀i, j : γij > 0

k
∑

j=1

σijej ≤ Q, ∀i (4.11)

Algorithm 4.4 VRA-1N-mD by ILP
Input: G, Q, ǫU

Output: {ej}
This is the same as Algorithm 4.2, but with solving LP 4.3 instead of LP 4.2.

before, LP 4.3 works for a fixed α, but using it in Algorithm 4.4 (see above) results

in an arbitrarily good approximation for the VRA-1N-mD problem.

Note that LP 4.3 is actually an Integer Linear Program (ILP), and thus although

it is a simple and elegant way to find an optimal link setting, polynomial running

time is not guaranteed anymore.

Algorithm 4.4 stops if the difference of the errors in the last two iteration steps is

less than an input constant, ǫU , hence it is an approximation only in general. In the

“unlimited number of links” case there is no theoretical lower bound on the difference

of the errors of two different {ej} settings, therefore a sufficiently low number was

recommended, such as ǫU = 10−8. In the “limited total number of links” case, however,

due to the finite number of possible allocations, it is possible to give an absolute lower

bound on the difference of the errors for two link allocation settings and thus to find

an optimal solution. The following lemma gives such a lower bound.
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Lemma 21. For a VRA-1N-mD problem and for any two valid link allocation settings

{ej} and {e′
j} the following holds:

∆U = |U − U ′| ≥ 1
(maxi,j gij)2Q2

.

Proof. We can suppose U > U ′. Then

∆U = U − U ′ = max
i,j:gij>0

Uij − max
x,y:gxy>0

U ′
xy ≥

≥ min
i,j,x,y:gij>0,gxy>0,Uij>U ′

xy

{Uij − U ′
xy} = min

{

Giej

gijEi

− Gxe′
y

gxyE ′
x

}

=

= min

{

GiE
′
xejgxy −GxEie

′
ygij

gijgxyEiE ′
x

}

≥ 1
(maxi,j gij)2Q2

.

The last inequality is true because the numerator of the left-hand side fraction is a

positive integer, thus it is greater than or equal to one. For the denominator Ei, E ′
x ≤

Q by definition.

This means that for the “limited total number of links” case the recommended

constant for Algorithm 4.4 is

ǫU =
1

(maxi,j gij)2Q2
.

4.4.2 A Direct ILP Formulation

Theorems 16 and 18 (page 42) are valid for the “unlimited total number of links” case

only. This means that instead of the iterative solution shown above, theoretically a

single ILP with ejs and the error (α) as variables might be set up. Actually this really

is the case, and LP 4.4 is such an ILP formulation.

A few notes on this ILP. First, variable yin equals one if Ei = n, and zero otherwise.

This is enforced by the first two constraints. Therefore (4.13) is only effective if yin = 1,

i.e., Ei = n. In this case the constraint is: ej/γij ≤ αEi, which is the usual Uij =

ej/(γijEi) ≤ α error condition.

In the objective function (4.12) the main goal is to minimize the error, but if there

are several equally good solutions then we try to select one with the smallest total

number of links.
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LP 4.4 VRA-1N-mD, Direct, Optimal Solution

indices: i = 1 . . . D

j = 1 . . . k

n = 1 . . . Q

variables: ej (ej ∈ Z+)
α (α ≥ 1, α ∈ R)
yin (yin ∈ {0, 1})

constants: γij (γij ≥ 0, γij ∈ Q, ∀i :
k

∑

j=1

γij = 1)

σij = sgn(γij)
Q (Q > 0, Q ∈ Z)
r (a small number)
M (a large number)

objective: minimize α + r
k

∑

j=1

ej (4.12)

constraints:
Q

∑

n=1

yin = 1

k
∑

j=1

σijej =
Q

∑

n=1

yinn

ej

γij
≤ αn + M(1− yin), ∀i, j : γij > 0 (4.13)

k
∑

j=1

σijej ≤ Q, ∀i

Next, some words on choosing r and M . Constant r should be small enough so

that the ILP solver finds the minimal α. In theory r can be arbitrary small, and the

smaller the better, but in practice a too small r may cause rounding errors. According

to (4.12) we need α ≫ r
∑k

j=1 ej , thus r ≪ α/
∑k

j=1 ej. As in practice α ≈ 1 . . . 10

and
∑k

j=1 ej ≈ Q, r ≪ 1/Q is a good guess. For Q = 16 r = 10−5 was proven to be a

good choice. Using r = 10−10, however, produced incorrect results in practice (using

GLPK [57] with C++ and Lemon [58]) due to arithmetic underflow.

Similarly, theoretically M can be arbitrary large, in practice, however, a too large

M might cause errors because of the finite number representation. Here due to (4.13)

the rule of thumb is M > ej/γij. Using M > Q/ min γij is satisfactory, but it depends

on G. Nevertheless, if Q = 16 and γij > 0.02, then M = 1000 is suitable. Practically,
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Algorithm 4.5 VRA-1N-mD Heuristic
Input: G, Q, ǫU

Output: {ej}
{fj} ← Algorithm 4.2(G, ǫU)
{ej} ← Algorithm 3.3*({fj}, Q)

for Q = 16 and γijs inferred from real network capacities, M = 1000 was proven to

be a good choice, while M = 105 already resulted in incorrect behavior.

Finally, let us note that although a single ILP may look more appealing than an

iteratively used one, in practice the latter (i.e., Alg. 4.4) was proven to be much faster,

especially for large Qs. This is most probably due to the large number of auxiliary

integer variables (yin) in LP 4.4.

4.4.3 A Heuristic Solution

I provide a suboptimal, but fast heuristic as an alternative to the previously described

ILP-based solutions. The idea is to somehow represent matrix G of a VRA-1N-mD

problem with a vector of length k, and treat that as vector g of a VRA-1N-1D prob-

lem. The latter can be solved quickly, as described in the previous chapter. What

remains is to find an efficient method for the matrix G to vector g mapping. Solving

the VRA-1N-mD-Unlimited problem does exactly this: the resulting fjs can simply be

treated as vector g. This process is summarized in Algorithm 4.5. Certainly some in-

formation is lost during the matrix to vector conversion, which can lead to suboptimal

results. That is, nevertheless, acceptable as this method is a heuristic only.

A note on Algorithm 3.3* (referred at Alg. 4.5): Algorithms 3.1, 3.2, and 3.3

require integer gis as input, but internally they only use their normalized form: gi/G0,

where G0 =
∑k

j=1 gj . Sightly modified versions of these algorithms, marked with an

asterisk, take gi/G0 as input. In Algorithm 4.5 we provide {fj} as this input. This

also affects the complexity: instead of O(Qk log(G2
0E)) here, by applying Lemma 13,

we have O(Qk log(1/(ǫU mini gi/G0))).

Observe that in this heuristic we effectively apply the constraint
∑k

j=1 ej ≤ Q

instead of the less restrictive Ei ≤ Q, which might yield suboptimal results. This can

be perceived as the price to pay for the shorter running times.
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Complexity of Algorithm 4.5. The first step runs in polynomial time, as it is a

(non-integer) linear program embedded in a binary search. The second step runs in

O(Qk log (1/(ǫU min fj))). Although this is only pseudo-polynomial in k and Q, and

I have not established a lower bound on fj , for practical problem instances I found

Algorithm 4.5 to be much faster than Algorithm 4.4 [59].



Chapter 5

Peer-Global Optimization

I have briefly introduced Peer-Global Optimization at Section 2.3.4, and in this chapter

I describe it in detail.

The optimization task is the same as for Peer-Local Optimization: given a capaci-

tated network and a set of demands determine for each link a weight and the number

of parallel links that together minimize the maximal link utilization (see Fig. 5.1).

This time, however, we solve the problem concurrently for all the nodes in the net-

work so that we can reach a theoretically optimal virtual resource allocation.

5.1 VRA-PGO Problem Definition

Let us start with the formal definition of the Virtual Resource Allocation–Peer-Global

Optimization problem, using the notations of Table 5.1.

We are given a directed graph (V, F ) representing a network, with capacities cl for

each link l and a set of demands, each given by its originating and destination nodes,

and the offered traffic volume: {Od, Dd, Gd}D
d=1. The maximal number of virtual links

that can be applied at a node (R) is given as well.

network + 

link capacities 
demands 

VRA-PGO 

{e} weights 

Figure 5.1: Virtual Resource Allocation–Peer-Global Optimization

53



54 5.1. VRA-PGO PROBLEM DEFINITION

Notation Description

V set of vertices (nodes) in the network
F set of edges (physical links) in the network
Sn set of (physical) links originating at node n ∈ V

|Sn| number of (physical) links originating at node n

cl ∈ Q+ capacity of link l ∈ F

wl ∈ Q+ weight of link l

hl ≥ 0 (hl ∈ Q) total actual traffic volume on link l

el > 0 (el ∈ Z) number of parallel links (both physical and virtual)
at the place of link l

En =
∑

l∈Sn
el number of (physical and virtual) outgoing links at node n

D number of demands
Od ∈ F originating node of demand d (1 ≤ d ≤ D)
Dd ∈ F destination node of demand d

Gd ∈ Q+ traffic volume for demand d

R ≥ 0 (R ∈ Z) maximal number of virtual links per node
β ∈ Q+ maximal link utilization

Table 5.1: VRA-PGO notations

We are looking for link weights wl and parallel link number el (including the

physical and virtual links) for each link l, which minimizes the maximal link utilization

β = maxl∈F hl/cl, such that En ≤ |Sn|+ R (∀n ∈ V ).

In the previous two chapters it was more convenient to use the Bounded Total

Resources model (see Sec. 2.2) requiring E ≤ Q and Ei ≤ Q. Nevertheless, for

Chapter 3 with a simple R = Q − k substitution the Bounded Virtual Resources

model (E − k ≤ R) could have been used, too. Likewise, most of my findings in

Chapter 4 are about the Unlimited Resources model, but the rest are also trivial to

transform to the Bounded Virtual Resources scenario. With regard to the numerical

evaluation (Chapter 6), however, using the Bounded Virtual Resources model is more

practical, as different nodes can have different number of outgoing physical links. For

this reason throughout this chapter, unless stated otherwise, I limit the number of

virtual resources (En ≤ |Sn|+ R).

The problem can now be formulated as follows.

Problem 7, VRA-PGO. Given (V, F ), {cl}, D, {Od, Dd, Gd}, and R, find {wl}
and {el} that minimizes β, such that En ≤ |Sn|+ R (∀n ∈ V ).
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5.2 Optimal Solution

VRA-PGO is computationally hard to solve, as I will show in Sec. 5.3. Yet, I first

show a way to find the optimal solution in the form of the following ILP.

LP 5.1 VRA Peer-Global ILP

indices: d = 1 . . . D, demands

l = 1 . . . L, links

n = 1 . . . N , nodes

constants: cl > 0, link capacity

r a small constant

r2 r2 < r, a smaller constant

r3 r3 < r, another smaller constant

M a large constant

Gd the traffic volume for demand d

Od originating node of demand d

Dd destination node of demand d

δdn traffic source indicator: δdn =







1 if n = Od

0 otherwise

Sn set of (physical) links originating at node n

|Sn| number of (physical) links originating at node n

Tn set of (physical) links arriving at node n

R ≥ 0, max. number of usable virtual links per node

variables: udn real: node potential for demand d, node n

wl ≥ 0, ≤ 1, real: link weight minus r (5.1)

σdl binary: σdl = 1 iff l is on a shortest path between Od and Dd

β real, max. error

el ≥ 1, integer: no. of parallel links

θdl ≥ 0, real: traffic ratio of demand d that uses link l (5.2)
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ydnk ∀d, n : {|Sn| > 0, n 6= Dd} , k = 0 . . . |Sn|+ R, binary:

ydnk = 1 iff
∑

l∈Sn

σdlel = k

zlm m = 1 . . . R + 1, binary: zlm = 1 iff el = m

objective: minimize β + r3

∑

d

∑

l

θdl + r3

∑

l

el (5.3)

constraints: udOd
= 0 ∀d (5.4)

wl + r − udj + udi ≥ (1− σdl)r2 ∀l = (i, j), ∀d (5.5)

wl + r − udj + udi ≤ (1− σdl)M ∀l = (i, j), ∀d (5.6)
∑

l∈Sn

θdl −
∑

l∈Tn

θdl = δdn ∀d, n : n 6= Dd (5.7)

D
∑

d=1

θdlGd ≤ βcl ∀l (5.8)





∑

x∈Tn

θdx + δdn



 m ≤ θdlk + M(3− ydnk − zlm − σdl) (5.9)





∑

x∈Tn

θdx + δdn



 m ≥ θdlk −M(3− ydnk − zlm − σdl) (5.10)

R+1
∑

m=1

zlm = 1 ∀l (5.11)

R+1
∑

m=1

zlmm = el ∀l (5.12)

|Sn|+R
∑

k=0

ydnk = 1 ∀d, n : |Sn| > 0, n 6= Dd (5.13)

|Sn|+R
∑

k=0

ydnkk ≤
∑

l:γdl=1

el + M





∑

l:γdl=1

(1− σdl) +
∑

l:γdl=0

σdl



 (5.14)

|Sn|+R
∑

k=0

ydnkk ≥
∑

l:γdl=1

el −M





∑

l:γdl=1

(1− σdl) +
∑

l:γdl=0

σdl



 (5.15)

θdl ≤ σdl ∀d, l (5.16)

θdl ≥ σdlr ∀d, l (5.17)
∑

l∈Sn

el ≤ |Sn|+ R ∀n : |Sn| > 0 (5.18)
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Notes:

(5.2): the formal definition is: θdl = hdl/Gd, where hdl is the actual traffic volume for

demand d on link l. Certainly, 0 ≤ θdl ≤ 1, but θdl ≤ 1 follows from the constraints

of the ILP.

(5.9)–(5.10): ∀d, l, k = 1 . . . |Sn|+ R, m = 1 . . . R + 1, m ≤ k, n 6= Dd, where n is the

source of l.

(5.14)–(5.15): ∀d, n : |Sn| > 0, n 6= Dd and for all combinations of γdl ∈ {0, 1}, l ∈ Sn.

In other words, these constraints are repeated 2|Sn| times for each d, n (where |Sn| >
0, n 6= Dd), and in each one a different element of {0, 1}|Sn| is assigned to {γdl : l ∈
Sn}.

Let us see how this ILP works. The first three constraints come from the dual

formulation of the multi-commodity flow problem. The node potentials of the demand

origins are zero (5.4). If a link is on a shortest path of a demand (σdl = 1), then the

difference of potentials of its adjacent nodes equals the link weight (wl + r). On the

other hand, if l is not part of a shortest path of d (σdl = 0), then the weight is larger

than the difference (5.5), (5.6). wl ≤ 1 (5.1) will guarantee that the weights and

therefore the node potentials remain finite. The rest of the constraints assure that for

each demand there are a set of links connecting the source and destination for which

σdl = 1, which will cause some of the node potentials to be nonzero, as expected. This

first part provides the required link weights as outputs of the ILP.

The rest of the constraints ((5.7) and below) originate from the primal formulation

of a multi-commodity flow problem, augmented by the VRA flow split behavior, i.e.,

splitting proportionally to the number of parallel links. This second part provides

the number of parallel links (el) as output. The connection between the two parts is

realized exclusively by variables σdl.

Equation (5.7) is the usual Kirchhoff junction rule. Eq. (5.8) is the link capacity

constraint, where β is to be minimized in the objective. Constraints (5.9)–(5.15) to-

gether represent the ECMP equal-split rule applied to the virtual link scenario, which

could be summarized as:

θdl =





∑

x∈Tn

θdx + δdn





el
∑

x∈Sn
exσdx

, (5.19)

where n is the source of l, ∀d, l : σdl = 1. Unfortunately (5.19) is not linear, so I have
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introduced a set of auxiliary variables, and multiplied and modified the constraints

to make it fit the ILP.

Constraints (5.9) and (5.10) basically assert

θdlk =





∑

x∈Tn

θdx + δdn



 m , (5.20)

where m = el and k =
∑

x∈Sn
exσdx. For a brief explanation first observe that eq. (5.9)

and (5.10) cover a multitude of inequalities for different values of indexes d, l, k, m,

and n as described in the second note under the ILP. Most of these, however, are not

“live” constraints as M(3−ydnk−zlm−σdl) ≥M make them automatically true. These

are “real” constraints only when M(3−ydnk−zlm−σdl) = 0, i.e., ydnk = zlm = σdl = 1.

For these cases m = el and k =
∑

x∈Sn
exσdx are enforced, as described below.

m = el is achieved by the simple set of constraints (5.11) and (5.12). Note that

the upper bound of the sums is R + 1, since using R virtual links the maximum of el

is R + 1.

Constraints (5.13)–(5.15) are to ensure k =
∑

x∈Sn
exσdx. Observe that these con-

straints allow k = 0 . . . |Sn| + R. The upper limit comes from the definition of R,

while k = 0 is allowed, since if no traffic of demand d goes through node n, then
∑

x∈Sn
exσdx = 0. Equation (5.14) is repeated for all the possible 2|Sn| combinations

of γdl, but only one of them is a hard constraint (i.e., the right-hand side inside the

parenthesis is zero): when γdl = σdl ∀l. The same applies to (5.15), providing together

the required k =
∑

x∈Sn
exσdx for (5.20). Note that in these equations the conditions

|Sn| > 0 and n 6= Dd are theoretically not necessary, they are only included to reduce

the number of variables and the related constraints.

Equations (5.16) and (5.17) ensure that there is flow from a demand on a link if

and only if the corresponding σdl equals one. The last constraint, (5.18), limits the

number of virtual links per node to R.

The objective function (5.3) minimizes the MLU (β). It also keeps the
∑

θdl low

to avoid loops and minimizes
∑

el to prevent installing unnecessary virtual links.

Finally, a few words about constants M , r, r2, and r3. Theoretically their value can

be arbitrary as long as M is “large”, r is “small”, and r2 and r3 are “even smaller”.

In practice, however, these values should be set fairly accurately. For example, M

should be large enough to make each equation, where it is not multiplied by zero, an
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ineffective constraint. Theoretically, if we can find such an M , a larger one is always

acceptable as well. Yet in practice having numerical values spanning too many orders

of magnitudes is not favored by the ILP solvers, and so they may come up with

erroneous results. Consequently, M should be kept relatively small, but large enough

to fulfill its original purpose. Similar considerations apply for the small constants

r, r2, and r3. In the simulation, after some theoretical calculations and practical

experimenting, I found the following values appropriate: M = 100, r = 10−2, r2 =

r3 = 10−4.

5.3 Computational Complexity

In the previous subsection I have given a slow, but optimal solution to the VRA-

PGO problem. The algorithms given for Peer-Local Optimization can be considered

as quicker, but suboptimal heuristics for the same problem. Now I show that finding a

fast and even near-optimal solution is impossible, as the problem is computationally

hard by its nature.

This subsection consists of two parts: the first one lists the NP-completeness the-

orems along with their proofs, while the second one carries the inapproximability

results. I will use the notations introduced in Sec. 5.1.

5.3.1 NP-Completeness of VRA-PGO

First I slightly reformulate the Virtual Resource Allocation–Peer-Global Optimization

problem to be a decision problem. Furthermore, in this first formulation I take the

link weights as input parameters.

Problem 8, Virtual Resource Allocation–Peer-Global Optimization with

Given Weights (VRA-PGO-GW).

Instance. A directed graph (V, F ) representing a network with capacities cl ∈ Q+

and link weights wl ∈ Q+ for each link l ∈ F . A set of demands {Od ∈ F, Dd ∈ F,

Gd ∈ Q+}D
d=1. The maximal number of virtual links that can be applied at a node:

R ∈ Z (R ≥ 0). The maximal link utilization: β ∈ Q+.

Question. Is there a VRA assigning el > 0 (el ∈ Z) number of links to each

physical link l ∈ F , such that En ≤ |Sn|+ R (∀n ∈ V ) and maxl hl/cl ≤ β?
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Algorithm 5.1 Calculating hl (sketch)
Input: (V, F ), {el}, {wl}
Output: {hl}

Hdn ← 0 ∀d, n {traffic volume of demand d entering node n}
hdl ← 0 ∀d, l {traffic volume of demand d on link l}
for d← 1, D do

Run Dijkstra’s alg.: xnd ← shortest distance between n and Dd (∀n)
Determine {σdl}∀l from {xnd} and {wl} in O(|F |)
Let (V ′, F ′) ⊆ (V, F ) for which l ∈ F ′ iff σdl = 1. (V ′, F ′) is a DAG.
Topologically sort n ∈ V ′ in O(|V ′|+ |F ′|)
for all n ∈ V ′ in the topological order do

if n = Od then
Hdn ← Gd

else
Hdn ←

∑

l∈Tn
hdl {hdl 6= 0 due to the topological ordering}

end if
for all l ∈ Sn do

hdl ← Hdnel/
∑

x∈Sn
exσdx

end for
end for

end for
for l ← 1, L do

hl ←
∑D

d=1 hdl

end for

In the Question above |Sn| can be calculated from (V, F ); En and hl can be

calculated from (V, F ), {el}l∈F , {wl}l∈F and from the set of demands. The only non-

trivial point is the calculation of hl, but it also can be done in polynomial time: see

Algorithm 5.1.

This definition can be changed in several ways to obtain different versions of the

problem, including the following:

• VRA-PGO: In this case setting the link weights, and this way defining the

routing of the demands, is part of the problem, too. This variant is similar to

VRA-PGO-GW, only the link weights are moved from the Instance to the Ques-

tion. This problem has been examined in the previous parts of the dissertation.

• VRA-PGO-GW-SD (Single Demand): In this alternative we have only one

origin–destination–traffic volume triplet (D = 1).

• VRA-PGO-GW-Q: The definition of VRA-PGO-GW utilizes the Bounded
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Virtual Resources constraint (En − |Sn| ≤ R). In this version the Bounded

Total Resources (En ≤ Q) limit is used instead.

• VRA-PGO-GW-ABS (Absolute Error): Here instead of the relative error

(utilization) β, we have an absolute error, δ, requiring maxl(hl − cl) ≤ δ.

By combining the definitions given above, several other equally valid variants of

the VRA-PGO problem could be created. Fortunately, the following proofs about

computational complexity can be generalized relatively easily to many of these new

cases.

I start the list of the results with an important finding:

Theorem 22. VRA-PGO-GW is NP-complete.

Proof. This proof is inspired by an NP-completeness proof presented in [9].

First I show that VRA-PGO-GW is in NP, i.e., for a set {el} it can be checked

in polynomial time whether the conditions hold. The first set of conditions (En ≤
|Sn| + R, ∀n ∈ V ) is trivial to check in polynomial time. For the second condition

(maxl hl/cl ≤ β), hls have to be calculated. For this, for each demand the shortest

path routes have to be calculated first, which can be done in polynomial time. Then

the nodes on the shortest paths (which now together define a DAG) have to be

topologically sorted, for which the complexity is NC2 ⊆ P. Then computing hl and

ultimately maxl hl/cl can also be done in polynomial time. (See Alg. 5.1 for details.)

Now I prove that VRA-PGO-GW is NP-hard. I will reduce 3SAT to VRA-PGO-

GW. 3SAT is a famous NP-complete problem, and is formulated as follows.

Problem 9, Satisfiability of Boolean Expressions in 3CNF (3SAT).

Instance. A Boolean expression F in conjunctive normal form with no more than

three variables per clause (3CNF). F contains n variables x1, x2, . . . , xn, and consists

of m clauses C1, C2, . . . , Cm, such that each clause is a disjunction of exactly three

literals.1

Question. Is F satisfiable?

A simple example 3SAT problem is:

F = (x1 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4) (5.21)

1Some sources use “at most three literals” instead of “exactly three literals”. These definitions
are practically equivalent.
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Figure 5.2: Network for the 3SAT reduction

This instance contains two clauses and it is satisfiable with for example x1 = x2 =

x3 = x4 = true.

For any 3SAT instance F , I create a corresponding instance of VRA-PGO-GW.

Figure 5.2 sketches the network: node ki corresponds to clause Ci. For each variable

x, a set of nodes are defined: sx, Tx, T ′
x and a balanced binary tree between them,

and likewise Fx, F ′
x and a balanced binary tree between them. There are two global

nodes, t and u. The number of the leaves of both trees directly downstream Tx and

Fx is |x| for each tree, which denotes the least power of 2 bounding both the number

of negative and the number of positive occurrences of x in F (|x| ≥ 1). For a positive

occurrence of x in a clause Ci, there is an arc from a leaf under Fx to node ki. For a

negative occurrence of x in a clause Ci, there is an arc form a leaf under Tx to ki (just

like in the figure). Each leaf can only be used for at most one occurrence of x in the

clauses. Each leaf that is not connected to a node representing a clause is connected

to the global node u.

The link capacities are shown in the figure. The link weights are 1 for each link,

except for links sxt, for which wsxt = max(log2 |x|, 1) + 3. The demands are as follows:
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Figure 5.3: Example for F = (x1 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4)

for each variable x: sx → t : 4|x|, Tx → T ′
x : |x|, Fx → F ′

x : |x|. Furthermore, R = 1,

β = 1. This reduction is clearly polynomial.

As an example I show the VRA-PGO-GW instance for the 3SAT expression pre-

sented in (5.21). The graph with link capacities is plot in Fig. 5.3. The link weights

are 1 for all the links, except for the four sxi
t, for which the weights are 4. The de-

mands are: sxi
→ t : 4, Txi

→ T ′
xi

: 1, Fxi
→ F ′

xi
: 1 for i = 1, 2, 3 and sx4

→ t : 8,

Tx4
→ T ′

x4
: 2, Fx4

→ F ′
x4

: 2. R = 1, β = 1.

I now prove that if the F 3SAT instance is satisfiable, then there is a suitable

virtual link allocation for the VRA-PGO-GW problem. Let us consider a set of logical

constants that satisfy F and use them for x, y, z, etc. Let el = 1 for all the links,

except for one set of links: if x is true, then esxTx
= 2 and esxFx

= 1, otherwise, if x

if false, then esxTx
= 1 and esxFx

= 2. Easily, En ≤ |Sn| + R holds for all the nodes.
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For almost all the links hl/cl ≤ 1 is trivially true, it is nontrivial only for the kit type

links, where the capacity is 5.

I now show that even for these links hl/cl ≤ 1 holds. Each of the three incoming

links of ki has a demand originated at an sx-like node, where x corresponds to a

variable. If the literal in Ci corresponding to x is not satisfied (i.e., x is in positive

form and x is false, or x is in negative form and x is true), then 2 units of traffic arrive

to node ki. If, however, the literal is satisfied, then 1 unit of traffic arrives due to the

traffic split at node sx. We know that F is satisfied, i.e., at most two of the literals

in Ci are unsatisfied, meaning that at most 5 units of traffic can arrive to node ki.

Now follows the opposite direction: if there is a suitable virtual link allocation for

VRA-PGO-GW, then the 3SAT instance F is satisfiable. First consider the binary

tree under Tx. As it has |x| leaves, each connected to T ′
x with a link with capacity of 1,

and as there is a demand Tx → T ′
x : |x|, and as R = 1, it follows that el = 1 for all the

links between Tx and T ′
x for any suitable virtual link allocation for VRA-PGO-GW.

By symmetry, this statement also holds for the links between Fx and F ′
x. It is also easy

to see that esxt = 1 and either (esxTx
= 1 and esxFx

= 2) or (esxTx
= 2 and esxFx

= 1):

if it were not so (i.e., esxTx
= esxFx

= 1 and either esxt = 1 or esxt = 2), then the

capacity limit would be violated on sxt. There are no other nodes in the network

where traffic split occurs.

Observe the following: if the literal in Ci containing x is unsatisfied then 2 units of

traffic arrive to ki from sx, otherwise 1 unit, as we have equal split throughout both

balanced binary trees. Now, let each variable x be true, if esxTx
= 2, and let it be

false if esxFx
= 2. This variable substitution will satisfy F . The reason is simple: for

each clause Ci in F , there is a node ki, and as hkit/ckit = hkit/5 ≤ 1, there is at most

5 units of traffic arriving to ki. This means that for each clause there is at most two

unsatisfied literals in F .

This proof can be easily modified to prove the NP-completeness of different ver-

sions of the problem.

Theorem 23. VRA-PGO-GW-Q is NP-complete.

Proof. Same as the previous proof, except for using Q = 4 instead of R = 1. Although

in the binary trees it is possible to have el = 2 simultaneously for a pair of links
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originated at a common node, as this still results in equal traffic split, this causes no

problem.

This also proves the following:

Theorem 24. VRA-PGO-GW-Q is NP-complete if Q = 4 is a given constant.

The strength of this theorem is that there is a constant Q, for which the problem

is NP-complete, i.e., in this case Q is not an input parameter. To show an analogy,

deciding if there is a k-vertex clique in a graph is NP-complete if k is an input

parameter, but for any given k the problem can be solved in polynomial time.

Theorem 25. VRA-PGO-GW-ABS is NP-complete.

Proof. Same as the proof of Thm. 22, but by using δ = 0 instead of β = 1.

I have developed another proof of Theorem 22, along with some related theorems

and proofs. However, to maintain the easy readability of this chapter those have been

placed to Appendix C.3. Yet, those proofs are significant not only because they tackle

the same problem family differently, but also because they target different variants

of VRA-PGO. For example, Theorem 39 claims the NP-completeness of VRA-PGO

itself.

The proof of the next theorem will be needed for the inapproximability results.

Theorem 26. VRA-PGO-GW-SD is NP-complete.

Proof. This proof is based on the proof of Theorem 22. This time, however, let |x| = 2

if there is no more than one negative and no more than one positive occurrence of x

in F . VRA-PGO-GW-SD is in NP, for the same reasons as VRA-PGO-GW is in NP.

The network is modified, and is shown in Fig. 5.4. The first difference between

Figs. 5.2 and 5.4 is the binary tree rooted at node s. It has q leaves, where

q = min
k∈Z

2k : q > 12
n

∑

i=1

|xi| .

Most of these leaves are connected to the nodes sx, Tx, Fx, sy, Ty, Fy, . . . (each

triplet representing a variable in the related 3SAT instance), as shown in the figure.

The number of leaves connected to a single node is shown underlined. The rest of the
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Figure 5.4: Network for VRA-PGO-GW-SD

leaves, not connected to any of the sx, Tx, Fx type nodes, are connected to t. Their

number is q − 12
∑ |xi|, which, by the definition of q, is at most q/2.

The leaves of the trees rooted at Tx and Fx are named Tx,1, Tx,2, . . . , Tx,|x| and

Fx,1, Fx,2, . . . , Fx,|x|, respectively. They are connected to some ki or to u, as described

previously.

The link capacities are shown next to each link. Let

p = max
i=1...n

log2 |xi| .

All the link weights are 1 by default, except for the links where it is shown by the

numbers in an ellipse. Let the single demand be s → t : q. R = 1. β = 1. This

reduction is polynomial.

First I prove the 3SAT ⇒ VRA-PGO-GW-SD direction. Let x, y, z, etc. be the

logical constants that satisfy F . Let el = 1 for all the links, except the following. If
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x is true, then let esxTx
= 2 and esxFx

= 1; if x is false, let esxFx
= 2 and esxTx

= 1.

These kind of link allocations will be called canonical allocations below.

First note that all possible directed paths between s and t are also a minimum total

weight (i.e., shortest) path: the total length of these shortest paths are log2 q + p + 5.

Easily, En ≤ |Sn|+ R holds for all the nodes. For almost all the links it is easy to

see that hl/cl ≤ 1 is true. For the kiu type links (with capacity of 17 units), however,

some explanation is needed. The reason why these links are not overutilized is the

same as described at the proof of Theorem 22: 6 units of traffic arrives at ki from

the variables corresponding to a not satisfied literal and 5 units from the variables

representing a satisfied literal. As at least one literal is satisfied in each clause, links

kiu are not overutilized.

Link ut is not overfilled either: the total traffic arriving to Tx, Fx, Ty, Fy, . . .

is 12
∑ |xi|, and this is the traffic that will eventually traverse on ut, resulting in

hut/cut = 1.

Now I prove the VRA-PGO-GW-SD ⇒ 3SAT direction: if there is a suitable

virtual link allocation for VRA-PGO-GW-SD, then the corresponding 3SAT instance

is satisfiable.

I will first prove that any suitable virtual link allocation must be canonical.

First consider the tree rooted at s. It has q leaves and each one is part of a

minimum total weight path from s to t. As q amount of traffic arrives at s, and as

each one of the q leaves has a single outgoing link with one unit capacity and as

β = 1, there must be one unit of traffic on each link leaving the leaves. This means

that el = 1 for all the links within the tree under s.

Each link that is a single outgoing link at any node can have el = 1 or el = 2, but

as in practice these result in identical behavior I will assume el = 1 for these links.

This is the case for the links originated at the leaves of the tree under s, as well.

4|x| amount of traffic arrives at sx, and again, all three of its outgoing links are

on shortest paths towards t (with total weight from sx to t of log2 |x| + 4). Easily,

esxu = 1 and either (esxTx
= 1 and esxFx

= 2) or (esxTx
= 2 and esxFx

= 1), otherwise

the capacity limit would be violated on the link sxu.

Let us now focus on the binary tree under Tx. Note that all the nodes and all the

links within the tree are still on a shortest path. Depending on esxTx
and esxFx

either

5|x| or 6|x| amount of traffic arrives at Tx. I prove that in both cases el = 1 for all
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the links in the binary tree. First note that if el = 1 for all the links and 5|x| arrives

at Tx, then 5 units of traffic will reach each leaf, 10 units each node above the leaves,

20 each node above them, etc. Likewise, if 6|x| arrives at Tx, then 6 will arrive at

each leaf, 12 at the next level, etc. Next, suppose the opposite of the statement to be

proven: for some links within the tree el = 2. This means that there is at least one

leaf, say Tx,i, where the incoming traffic is at least 10 · 2/3 = 20/3, if 5|x| arrives at

Tx. (If there is only one link with el = 2 in the tree, and that is right above a leaf,

then 10 ·2/3 = 20/3 units of traffic will arrive to exactly one leaf. If this link is higher

up in the tree then there will be more than one leaves with 20/3 units of traffic. If

there are several links with el = 2 then the arrival traffic of some leaves could be even

higher.) Similarly, if 6|x| arrives at Tx then there is at least one leaf, say Tx,i, where

the incoming traffic is at least 12 · 2/3 = 8. As both of these values (20/3 and 8) are

greater than 6, our assumption leads to a contradiction violating hl/cl ≤ 1 on the link

leaving Tx,i, which proves that for all the links in the binary tree el = 1. The previous

reasoning also yields that hTx,iu = 6 or hTx,ikj
= 6 (whichever exists) if esxTx

= 2.

Likewise, if esxTx
= 1, then hTx,iu = 5 or hTx,ikj

= 5.

Certainly, the same proof applies to the links under Fx. As there are no more

nodes in this network where traffic split may occur, we can safely suppose el = 1 for

the rest of the links. At this point I have shown that β = 1 can happen only if the

link allocation is canonical.

As links kiu are not overutilized by assumption, the related variable substitution

(i.e., x is true if and only if esxTx
= 2) will satisfy the 3SAT expression F .

5.3.2 Inapproximability of VRA-PGO

To examine the approximability of a problem the first step is to formulate it as an

NP optimization (NPO) problem [60]. Again, several problem definition versions could

have been listed here, but for simplicity I only list those two, which are crucial for

the main inapproximability results:

Problem 10, Minimal Error Virtual Resource Allocation–Peer-Global Op-

timization with Given Weights (MIN-VRA-PGO-GW, shortly MVPG).

Instance. A directed graph (V, F ) representing a network with capacities cl ∈ Q+

and link weights wl ∈ Q+ for each link l ∈ F . A set of demands {Od ∈ F, Dd ∈ F,
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Gd ∈ Q+}D
d=1. The maximal number of virtual links that can be applied at a node:

R ∈ Z+.

Solution. A virtual resource allocation assigning el > 0 (el ∈ Z) number of links

to each physical link l ∈ F , such that En ≤ |Sn|+ R (∀n ∈ V ).

Measure. The maximal link utilization β = maxl hl/cl.

Goal. Minimize the measure.

Note that |Sn| can be calculated from (V, F ); En can be calculated from (V, F )

and from {el}l∈F ; hl can be calculated from (V, F ), {el}l∈F , {wl}l∈F , and from the set

of demands, as explained at Alg. 5.1.

Next I show that MVPG is indeed an NPO:

1. The set of the instances of MVPG is recognizable in polynomial time. This

means that if Σ is the input alphabet and I ⊆ Σ∗ is the set of input instances

then x ∈ I for an x ∈ Σ∗ can be verified within polynomial time of |x|. For

MVPG it is clearly the case.

2. The size of the solution is indeed a polynomial function of the size of the in-

stance.

3. Deciding if a solution candidate is a solution or not can be done in polynomial

time, as computing En is fast.

4. The measure can be calculated in polynomial time of the size of the solution.

This statement is not trivial, but its proof is essentially the same as the proof

of VRA-PGO-GW is in NP, presented in the proof of Theorem 22.

The following version of the previous problem will also be important for the ap-

proximability results.

Problem 11, Minimal Error VRA-PGO with Given Weights for a Single

Demand (MIN-VRA-PGO-GW-SD, shortly MVPGS).

This is essentially the same as MVPG, but has only exactly one demand.

MVPGS is an NPO problem as well, because the reasons listed for MVPG are all

valid for this problem version, too.

The proof of Theorem 22 can be extended to show that generally the optimal

solution cannot even be approximated efficiently:
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Theorem 27. No polynomial time algorithm exists that approximates the optimum

of MVPG better than a factor of 6/5 (unless P = NP).

Proof. This proof uses ideas from a similar reasoning presented in [9]. Also, it heavily

relies on the proof of Theorem 22, using the same VRA-PGO-GW instance bound to

a 3SAT problem (see Fig. 5.2). Finding an optimal resource allocation, which yields

β = 1, is proven there to be NP-hard. I will now show that for the same instance any

virtual resource allocation that results in β > 1 also results in β ≥ 6/5.

In fact I prove an equivalent statement: for the given VRA-PGO-GW instance if

a virtual resource allocation results in β < 6/5 then it also results in β = 1. Because

of R = 1, for each link l, either el = 1 or el = 2. Consider first the links within the

binary trees. If el were 2 for any of them, then there would be an ingress link of T ′
x

or F ′
x, for which hl/cl ≥ 4/3, which is against our assumptions.

Next, consider the outgoing arcs of sx. If for all the three arcs el = 1, then

hsxt/csxt = 4/3, again a contradiction. esxt = 2 would result in hsxt/csxt = 2, which is

not possible either. Thus either esxTx
= 2 or esxFx

= 2. As no more splitting occurs,

we can suppose el = 1 for the rest of the links.

Now it is easy to see that for almost for all the links hl/cl ≤ 1: the only critical

links are the kit type ones. Based on the previous observations, for a node ki each

incoming link carries either 1 or 2 units of traffic. Consequently, if hkit/ckit < 6/5

then hkit/ckit ≤ 1.

A corollary of this theorem is that MVPG is not part of the PTAS (Polynomial

Time Approximation Scheme) class, as it is not possible to efficiently approximate

the optimal solution within every constant ratio. I show now the same for the single

demand version of the problem, which will also be used later, in the proof of a stronger

statement:

Theorem 28. No polynomial time algorithm exists that approximates the optimum

of MVPGS better than a factor of 18/17 (unless P = NP).

Proof. This proof relies on the proofs of Theorems 26 and 27. I will use the same

VRA-PGO-GW-SD instance as the proof of Theorem 26 (see Fig. 5.4). As finding the

optimal resource allocation for this instance is already proven to be NP-hard, I will

show, just as at the proof of Theorem 27, that if for the given VRA-PGO-GW-SD

instance a virtual resource allocation results in β < 18/17 then it also results in β = 1.
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I first show that a resource allocation with β < 18/17 must be canonical (for the

definition see the proof of Theorem 26). Because of R = 1, for each link l, either

el = 1 or el = 2. Just as before, we may safely suppose el = 1 for the links that are

single outgoing links from a node.

Consider first the links within the binary tree under s. If el were 2 for any of

them, then there would be an egress link of at least one of the leaf nodes, for which

hl/cl ≥ 4/3, which is against our assumptions.

Next, consider the outgoing arcs of sx. If for all the three arcs el were 1, then

hsxu/csxu = 4/3, again a contradiction. esxu = 2 would result in hsxu/csxu = 2, which

is not possible either. Thus either esxTx
= 2 or esxFx

= 2.

Let us now focus on the binary trees under Tx. At the proof of Theorem 26 I have

shown that if for some links within the tree el = 2, then there is at least one leaf,

say Tx,i, where the minimum amount of traffic on its outgoing link is at least 20/3.

As for this link hl/cl ≥ (20/3)/6 = 20/18 > 18/17, this would violate our β < 18/17

assumption. Certainly, the same proof applies to the binary tree under Fx.

As no more splitting occurs, we can suppose el = 1 for the rest of the links. Thus

I have shown that a resource allocation with β < 18/17 is indeed canonical.

Now it is easy to see that if β < 18/17 then for almost all the links hl/cl ≤ 1: the

only critical links are the kiu type ones. Based on the previous observations, for a

node ki each incoming link carries either 5 or 6 units of traffic. Consequently, either

hkiu ≤ 17, meaning hkiu/ckiu ≤ 1, or hkiu = 18, yielding hkiu/ckiu = 18/17, which is

against our assumptions.

This means that if for this VRA-PGO-GW-SD instance a virtual resource alloca-

tion results in β < 18/17 then it also results in β = 1.

From the previous theorem it follows that MVPGS is not part of the PTAS class,

either. The next statement is the strongest in this section.

Theorem 29. No polynomial time algorithm exists that could approximate the opti-

mal solution of MVPGS to any given constant ratio (unless P = NP).

In other words this means that MVPGS is not part of the APX class.

The proof of Theorem 29 applies the inapproximability gap amplification technique,

which has recently been introduced in [43] to prove a similar inapproximability for

the OSPF ECMP link weight configuration problem.
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Figure 5.5: MVPGS compounding

Just like at the inapproximability proof in [43], I first introduce the ⊗ (compound)

operator for MVPGS instances. From two instances IA and IB a new instance I =

IA ⊗ IB can be crated by compounding if both of the following conditions hold:

1. the traffic volume of the demand to be transmitted in IB is 1,

2. the allowed maximum number of virtual links (R) is identical in IA and IB.

An example of compounding is shown in Fig. 5.5. The capacities are shown next

to the links and each link weight is one unit. In IA the demand is A → D : 1, in IB

it is U → Z : 1. R = 1 in all these instances.

The formal definition of IA⊗IB is the following (see Fig. 5.6). Take the IA network

and replace each link in it with the following subnetwork. Let the original link in IA

be ab with capacity c and weight w, and the demand in IB be s → t. Let the total

minimum weight of s → t (i.e., the length of the shortest path between s and t) be
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Figure 5.6: ⊗ definition

w2. In IA ⊗ IB create a link asab with capacity c and weight w/4. Also create a link

tabb with infinite capacity and weight w/4. Between sab and tab insert the network

of IB: s replaced by sab, t becoming tab, x turning to xab, etc. For each link xy in

IB with capacity cxy and weight wxy create a link xabyab of capacity cxyc and weight

wxyw/(2w2). This way the total minimum weight of the ab subnetwork in IA⊗IB will

remain w, and also the shortest paths between sab and tab will stay as it were between

s and t. Let the demand of the new IA ⊗ IB instance be equal to the demand of IA,

and R in the new instance be as it was in IA and IB.

For an MVPGS instance I let OP T (I) denote the measure for the optimal solution,

i.e., the minimal β. Furthermore, let us use the notation

I0 = ⊗0I = I

I1 = ⊗1I = I ⊗ I

I2 = ⊗2I = I ⊗ (⊗1I) = I ⊗ (I ⊗ I)
...

Ik = ⊗kI = I ⊗ (⊗k−1I)

Note that in general (I ⊗ I)⊗ I 6= I ⊗ (I ⊗ I).

Now the following lemma can be presented and proven:

Lemma 30. Let I be an instance of MVPGS with OP T (I) ≥ 1. Then OP T (⊗kI) =

(OP T (I))k+1 for any k ∈ Z, k ≥ 0.
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Proof. The proof is by induction. For k = 0 we have OP T (⊗0I) = OP T (I)1, which

is clearly true. Now suppose the lemma is true for k, i.e. OP T (Ik) = OP T (I)k+1, and

I prove it for k + 1.

First I prove that OP T (Ik+1) ≤ OP T (I)k+2, by giving a link allocation setting in

Ik+1 with MLU OP T (I)k+2. Let e0
l denote the number of parallel links at link l in I0,

which results in the optimal allocation. Furthermore, let ek
l be the number of parallel

links at link l for the optimal allocation in Ik (for which OP T (Ik) = OP T (I)k+1).

Likewise, let ek+1
l denote the number of links at l in Ik+1. This new link allocation is:

ek+1
asab

= e0
ab, ek+1

tabb = 1, ek+1
xabyab

= ek
xy .

Let β0
l = hl/cl be the utilization of link l in I0 with the optimal link setting.

Similarly, let βk
l be the link overload in Ik using optimal allocation. The link utilization

in Ik+1 is:

βk+1
asab

= β0
ab, βk+1

tabb = 0, βk+1
xabyab

= βk
xyβ0

ab .

We used a link allocation for which maxl β0
l = OP T (I), which is supposed to be at

least one, and we assumed that maxl βk
l = OP T (I)k+1. These yield maxl βk+1

l will

not take place at an asab or tabb type link. Instead,

max
l

βk+1
l = max

xy,ab
βk+1

xabyab
= max

xy,ab
βk

xyβ0
ab = OP T (I)k+1 ·OP T (I) = OP T (I)k+2 .

Next I prove that OP T (Ik+1) ≥ OP T (I)k+2. The proof is by contradiction. Sup-

pose the opposite, i.e. for a suitable link allocation in Ik+1: OP T (Ik+1) < OP T (I)k+2.

Thus, using the previous notations, we suppose that for this link setting for each link l:

βk+1
l < OP T (I)k+2.

Let us focus on a subnetwork in Ik+1, which corresponds to a link ab in I0. Let

βk+1
asab

= δab. There are two possibilities:

In the first case for all links ab in I0: δab < OP T (I) in Ik+1. This would mean,

however, that using e0
ab = ek+1

asab
in I0 would result in β0 < OP T (I), which contradicts

to the definition of OP T (I).

In the second case there is at least one link ab in I0 such that δab ≥ OP T (I) in

Ik+1. Consider now the corresponding sab → tab subnetwork in Ik+1 with unaltered

link allocation. Suppose it had one unit of incoming traffic and let us denote the
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utilization for link xabyab in this case with γxabyab
. We know that βk+1

xabyab
= δabγxabyab

and we supposed for all the links that βk+1
l < OP T (I)k+2. This means for all xy that

OP T (I)k+2 > βk+1
xabyab

= δabγxabyab
≥ OP T (I)γxabyab

that is

γxabyab
< OP T (I)k+1 ,

which means that the Ik instance could be solved with MLU less than OP T (I)k+1,

which is again a contradiction.

Now we are ready to prove that MVPGS is not part of the APX class:

Proof of Theorem 29. According to the theorem, for any constant factor α > 1 there

is no polynomial time algorithm that can find a solution to each MVPGS instance I

with MLU less than α · OP T (I). To show this, for each α I will create one MVPGS

instance and show that it is not possible to quickly approximate the optimum within

a factor of α for that instance.

First take the instance described at proof of Theorem 26, with the network plot

in Fig. 5.4. Divide each link capacity by q and let the demand be s→ t : 1. The other

parts of the instance (e.g. the link weights) are unaltered. I will call this instance I0.

From the proof of Theorem 28 it follows that either OP T (I0) = 1 or OP T (I0) ≥
18/17 (depending on the solubility of the 3SAT problem behind it), and deciding

between these two possibilities is NP-hard.

Let k be the smallest positive integer such that (18/17)k ≥ α. Now let us create

MVPGS instance Ik−1 = ⊗k−1I0. First note that the size of Ik−1 can be upper bounded

by a polynomial function of the size of I0; consequently it can also be upper bounded

by a polynomial function of the size of the 3SAT problem behind it. Next, according

to Lemma 30 OP T (Ik−1) = OP T (I0)k. This means that either OP T (Ik−1) = 1 or

OP T (Ik−1) ≥ (18/17)k ≥ α and it is NP-hard to decide which case holds. The latter

is true as if we could decide in polynomial time between these options then by this

we could also solve I0 quickly.

This means that if OP T (Ik−1) = 1 then it cannot be approximated in polynomial

time better than a factor of α.



Chapter 6

Numerical Evaluation

The complexity-related results of the previous chapter state the hardness of Peer-

Global Optimization in general. They, however, do not necessarily mean that in prac-

tical networks no effective solution can exist. To see how the different algorithms

perform in realistic environments I have implemented a simulation framework, which

is based on my descriptive use case, OSPF ECMP Traffic Engineering.

The simulator takes a capacitated network and a set of demands as inputs and

solves the Virtual Resource Allocation problem using several different algorithms. I

have implemented the framework and the optimization algorithms in C++ using the

powerful LEMON Graph Library [58]. I have solved the embedded linear programs

using the IBM ILOG CPLEX Optimizer [61].

Note that unlike my analytical results, this numerical evaluation could hardly be

conclusive. Yet, my results show the potential of the proposed techniques on a set

of typical inputs. Furthermore, the presented simulation framework provides a quick

way to test the performance of different algorithms on any given network and demand

set.

6.1 Examined Algorithms

I have included the following seven optimization approaches in my simulator:

1. Overlay Optimization, as described in Chapter 3.

2. Overlay Optimization with Path Exclusion, see Sec. 2.3.2 and Chapter 3.

3. Peer-Local Optimization using ILP, described in Section 4.4.1 (Alg. 4.4).
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network + 
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Figure 6.1: Global Optimization

4. Heuristic Peer-Local Optimization, as shown in Section 4.4.3 (Alg. 4.5).

5. Peer-Global Optimization using the ILP presented in Sec. 5.2.

6. Global Optimization, described in Sec. 6.1.1 below.

7. OSPF Weight Optimization, as introduced in Sec. 2.3.1, and detailed in Sec 6.1.2

below.

6.1.1 Global Optimization

Taking the capacitated network and the demands and solving the related multi-

commodity flow LP results in the optimal per link per demand traffic (see Fig. 6.1).

This serves as the first step of the Overlay Optimization and Peer-Local Optimiza-

tion mechanisms, as described earlier. If, by using an adequately sophisticated TE

mechanism, the demands could be routed perfectly according to the solution of this

LP then the theoretical minimal MLU could be reached.

Accordingly, I have included a simple algorithm in my simulation platform that

treats the outputs of this multi-commodity LP as actual traffic values. These results

will then serve as reference values, since no algorithm (neither Peer-, nor Overlay-

based) can perform better than this one. Furthermore, I will actually divide the

MLU’s of the different algorithms by this optimal MLU to have a normalized value,

which is independent of the actual link bandwidths and traffic volumes.

The result of this optimization will be denoted in the charts as Global Optimum.

Certainly, when displaying MLU values, Global Optimum will be constant 1.0 due to

the normalization.
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network + 
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OSPF weight optimization  

weights 

Figure 6.2: OSPF Weight Optimization

6.1.2 OSPF Weight Optimization

The OSPF Weight Optimization problem is simple to define: set the link weights so

that running OSPF with ECMP on top of this network will generate the best result,

which is the minimal MLU in our case (see Fig. 6.2). This is actually OSPF-TE. Note

that in this case we are not applying virtual resources at all.

The OSPF Weight Optimization problem is proven to be NP-hard [9]. In the same

paper a link weight local search heuristic is proposed, which have been implemented in

an open source toolbox, called TOTEM (TOolbox for Traffic Engineering Methods [62,

63]). TOTEM itself is a Java-based graphical, modular toolkit, and the algorithm

described in [9] has been implemented in a C language module called IGPWO (Interior

Gateway Protocol Weight Optimizer [64]). Nevertheless, in the rest of this dissertation

I will simply refer to this algorithm as the “TOTEM” method.

I have taken the source code of the IGPWO module out of the TOTEM (ver. 3.2.1)

framework and (after fixing some bugs) included in my simulations to serve as a best-

practice solution of the OSPF Weight Optimization problem. To do so, the error

function of TOTEM has been modified. The original implementation contained a

convex, piecewise linear cost function of the link load, which were summed over all the

links, whereas I simply used the maximal link utilization as the error to be minimized.

During the simulations I have used the following settings: iteration number: 50 000,

max link weight: 5, random initial weights, minimum sampling rate: 0.001, maximum

sampling rate: 0.04, initial sampling rate: 0.02.

6.1.3 Implementation Aspects

Previously, in Chapters 3 and 4 on Overlay and Peer-Local Optimization the Bounded

Total Resources model (see Sec. 2.2) has been used (requiring E ≤ Q and Ei ≤ Q)

for easier presentation. Yet, as described in Sec. 5.1, these considerations can easily
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be transformed to the Bounded Virtual Resources scenario. This latter model is also

used at the Peer-Global Optimization discussions in Chapter 5. In the simulation

the Bounded Virtual Resources constraint has been implemented as well. The actual

requirement is E − |Sn| ≤ R, where E is the total number of links/paths used at

a node, |Sn| is the number of physical outgoing links/paths of a node and R is the

maximal number of virtual links/paths that can be installed per node. The reason for

this choice is that it makes it easier to compare the algorithms running at different

nodes with different number of outgoing physical links. Also, in this case for the Peer-

Local and Peer-Global Optimization scenarios R = 0 reverts to the classical OSPF-TE

optimization problem without virtual links, providing a meaningful comparison.

Practical problems arose when the path decomposition module in the Overlay

Optimization algorithms (see Fig. 3.1(b)) returned a path with very little traffic on

it. In this case the VRA-1N-1D algorithm tried not to overutilize this path, which

certainly provided the local optimum for the VRA-1N-1D problem, but it was proven

to be highly suboptimal regarding the global MLU. To overcome this issue, if a path

was found with traffic less than 5% of the total demand then it was deleted and its

traffic was distributed over the rest of the paths, resulting in considerably lower MLU.

Similarly, to avoid the same problem for the Peer-Local Optimization algorithms,

the case when a link is on a shortest path of a demand (σij = 1), but it has very little

traffic on it (gij < 10−7 or γij < 0.05) is treated exceptionally. In this situation the

traffic proportion of the demand on the given link (γij) has been risen at the expense

of the other outgoing links on the shortest paths.

6.2 Simulation Scenarios

I have used three realistic network topologies for the simulations. The first one is

the well known North American Abilene network topology, shown in Fig. 6.3(a) (see

also Table 6.1). The second examined network is shown in Fig. 6.3(b): it is a simpli-

fied Pan-European optical core network, which have been proposed in [65]. In both

networks uniform link bandwidths of 100 units have been used. The third network

(AS3967) was taken from the inferred ISP data maps of the Rocketfuel dataset [66].

Approximate POP-level maps has been obtained by collapsing the topologies so that

nodes correspond to cities and leaf nodes have been eliminated. This network comes
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(a) Abilene network (b) Pan-European network

Figure 6.3: Network topologies

Network No. of nodes No. of unidirectional links Link capacities [units]

Abilene 12 30 100
Pan-European 16 46 100
AS3967 21 72 44–1000

Table 6.1: Network characteristics

with inferred link capacities between 44 and 1000 units, with an average of 345 units.

The resulting graph for this network contained 21 nodes over three continents and 72

capacitated unidirectional edges.

I had 5 demands in each simulation session for the Abilene and the Pan-European

networks, and 16 for the larger AS3967 topology. In each case the source and desti-

nation nodes were selected randomly. The traffic volumes have also been picked at

random for each demand with uniform distribution on the [5, 30] units interval. The

maximal number of virtual links or paths (R) was varied between 0 and 8, inclusive.

Due to the complexity of the ILP applied in Peer-Global Optimization, it took up

to several hours, or even days to run a single instance of simulation (consisting of 9

runs with R = 0 . . . 8) on the smaller Abilene and Pan-European topologies with only

5 demands. Yet, these scenarios have been simulated 300 times (with all the seven

algorithms) on a high-performance computer to decrease the variance of the results.
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The AS3967 topology was too complex to run Peer-Global Optimization on it, but

on the other hand it allowed me to run the rest of the algorithms 3000 times.

6.3 Simulation Results

The results are shown in Fig. 6.4. The first three charts show the MLU as a function

of R for the examined scenarios.

For the Abilene network TOTEM performed almost as good as Peer-Global Opti-

mization for the no virtual link case, which is its theoretical lower bound. For R = 0

Peer-Local and Overlay Optimizations performed clearly worse than TOTEM, which

is no surprise: running a VRA algorithm without virtual resources does not make

much sense. However, allowing only two virtual links per node the performance of

Overlay Optimization became as good as TOTEM’s, and as R grows, Overlay Op-

timization clearly overperformed TOTEM, getting as close as a few percents to the

Global Optimum. The Peer-Local ILP and Peer-Local Heuristic algorithms performed

the worst, only reaching the MLU of TOTEM at R = 8. Note, however, that these

are quick heuristics only for the VRA-PGO problem. The Peer-Global Optimization’s

MLU is well below TOTEM’s even for R = 1 and it keeps decreasing as R increases,

almost reaching the Global Optimum for only R = 4. This shows that the Peer-Global

Optimization approach does have a high potential, but the currently applied heuris-

tics are not taking full advantage of this, leaving space for future research for better

ones.

For the Pan-European scenario the results are similar. Note that here TOTEM

performed significantly worse comparing to its theoretical limit. This is not surprising

though, as TOTEM itself is just a heuristic optimization algorithm for an NP-hard

problem. Here Peer-Local Optimizations performed somewhat worse, yet Peer-Global

Optimization shows, that the theoretical Global Optimum is very closely approachable

using VRA.

For the AS3967 case the Peer-Local approaches perform even weaker, but Overlay

Optimization is still better than TOTEM at R = 3 already. Here the “Peer-Global

Optimum” curve is missing, as the related ILP was practically unsolvable for this

larger network.
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(a) Normalized MLU for the Abilene topology
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(c) Normalized MLU for the AS3967 topology
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Figure 6.4: Simulation results
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Fig. 6.4(d) shows the average link utilizations for the Pan-European network, again

normalized by the optimal Maximal Link Utilization, which is why all the results are

well below one. As all the presented algorithms aim to minimize a different metric,

the MLU, the average link utilization chart is considerably different than the MLU

charts. Here, Peer-Global Optimization performs the worst and the best ones are the

Overlay methods, but note that all the measured values are within 5% of the optimal

MLU.

Regarding the Peer-Local algorithms it might be somewhat surprising that the ILP

is not always better than the heuristic approach. The reason is simple: locally the ILP

version is better, certainly, but a worse local solution can actually result in a better

global MLU, as the graphs shows. Nonetheless, in all the cases their performance is

very close to each other and mostly the ILP-based version performs better.

Similarly, sometimes Overlay Optimization with Path Exclusion seems to perform

worse than plain Overlay Optimization. This is again due to the fact that the (lo-

cal) optimization objective and the (global) measured metric is different. Note also

that Overlay Optimization can theoretically overperform Peer-Global Optimization,

although it did not happen in my practical evaluation.

Looking at the solution of the embedded VRA-1N-1D problem (Fig. 6.4(e)), Op-

timization with Path Exclusion always performs better, which is not surprising as it

has a higher degree of freedom. This figure shows also clearly that the convergence

to the optimum is quick as R increases. For R = 6 the solution is within 10% of the

optimum, which indicates the strength of Alg. 3.3 and the whole VRA concept.

6.3.1 Resource Consumption

The simulations has been carried out on the High Performance Computing Cluster

of the Budapest University of Technology and Economics (called “superman”). Each

optimization session was run on a single core of an Intel Xeon Processor X5660 (but

several sessions were run in parallel). The average running times and memory con-

sumption of the different algorithms are summarized in Table 6.2.

The first row (“5 algorithms”) shows the total resource usage of the two Over-

lay Optimizations, the two Peer-Local Optimizations and Global Optimization. The

second row represents the TOTEM optimization alone, while the third row reveals
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Algorithms
run

Average running time Average memory usage

Abilene Pan-Eu AS3967 Abilene Pan-Eu AS3967

5 algorithms 0.35 s 0.74 s 1.82 s 7 MB 9 MB 10 MB

TOTEM 5.98 s 18.1 s 74.7 s 4 MB 4 MB 4 MB

7 algorithms 9 m 37 s 9 h 49 m – 46 MB 1.5 GB –

Table 6.2: Resource consumption of the different algorithms

the results for all the seven algorithms altogether (i.e., it includes TOTEM and Peer-

Global Optimization as well). All the displayed results represent average values gained

over 300 simulation runs.

The results show very short (≈ second, sub-second) running times for Overlay,

Peer and Global Optimizations. No further performance-profiling has been carried

out here, but the results suggest that these algorithms are likely to be suitable when

short response times are needed, like real-time TE optimization. For TOTEM, the

calculations took several tens of seconds, even exceeding a minute, which is consider-

ably higher than the previous ones, but still can be practical for non-realtime tasks.

The memory usage was modest, only 4–10 MB in these cases. Note that the variance

of the results discussed so far were very low.

When Peer-Global Optimization was included the average running times increased

up to several hours. In this case the variance was much higher as well: the running

times for a single session ranged from a couple of seconds to several days. The memory

usage also varied from a few MB to almost 30 GB. This means that the proposed Peer-

Global Optimization algorithm may not be a viable option in many of the practical

cases.



Chapter 7

Conclusions

7.1 Summary

In this dissertation I have studied the possibility of enhancing load balancing schemes

by unequal traffic splitting when the underlying technology only offers roughly uni-

form data distribution among the resources. For this, I have proposed the Virtual

Resource Allocation (VRA) framework, which tricks a legacy load balancer into an

almost arbitrary traffic split ratio. As an example of this flexibility, if used in an

OSPF-TE environment, this simple proposal can significantly enhance the network

performance without any hardware or software modification of today’s routers. In-

stead, VRA can be applied right away only by changing a few administrative settings

in the management plane.

I have examined the theoretical limits of the formalized problem, and, where it

was theoretically possible, have given fast and optimal algorithms to determine where

and how much virtual resources to provision. I have shown, however, that finding the

optimal allocation for some important scenarios is computationally intractable. For

these cases I have proposed quick heuristic algorithms along with a necessarily slow,

but optimal one.

I have implemented a simulation evaluation framework for a possible VRA applica-

tion: IP Traffic Engineering. My simulation results underpin that the VRA approach

has a huge practical potential. In the examined networks, the VRA Peer-Global Opti-

mization algorithm achieved much better network performance than the “traditional”

85
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Computational
complexity

Practical
running time

Network
performance

Requirements
beyond OSPF
ECMP

VRA Overlay
Optimization

pseudo-
polynomial

very fast good, with few
virtual links

end-to-end
tunnels for each
shortest path;
virtual paths

VRA Peer-Local
Optimization

unknown in
general,
pseudo-poly. for
the heuristic

very fast slightly worse
than the others

virtual links

VRA
Peer-Global
Optimization

NP-complete very slow very good virtual links

OSPF Weight
Optimization
(TOTEM as
heuristic)

undefined
(iterative) for
the heuristic,
NP-complete in
general

moderate moderate none

Global
Optimization

polynomial very fast best (optimal) explicit path
setup with
arbitrary split
ratios

Table 7.1: High level summary of different techniques

(TOTEM) method. Moreover, according to the results, the theoretical best perfor-

mance could be approximated up to 1–2% by allowing as few as 3–4 virtual links per

node. Another VRA implementation, Overlay Optimization, is also proven to be a

very effective tool. Although it requires a more sophisticated network infrastructure,

the proposed algorithms performed outstandingly in the simulations. They ran very

fast with minimal memory usage, and overperformed TOTEM by using only two or

three virtual paths.

For quick comparison Table 7.1 contains a high-level summary of the presented

techniques; the numerical details can be found in Chapter 6. A short note on the

requirements for Global Optimization (last row, last column in the table): explicit

path setup with arbitrary split ratios can be achieved in several ways, including the

MPLS-TE implementation of most of today’s routers.

Finally, for the list of my theses please refer to Appendix A, and for a comparative

list of the problem definitions given in this work see Appendix B.
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7.2 Possible Future Work

In this dissertation several findings have been presented concerning different variants

of the Virtual Resource Allocation problem. These cover the theoretical basics of

VRA, as well as algorithms that can be used in communication networks right away.

Yet, certainly there are several possible ways to enhance or extend my findings, which

are beyond the limits of a single dissertation. I list a collection of such open questions

below.

Global Overlay Optimization. In Chapter 3 I have given a method for Overlay

Optimization that first finds the optimal multipath routing of the demands and then

allocates virtual paths, as shown in Fig. 3.1(b). Theoretically, better results could be

achieved if the routing of the demands and the virtual resource allocation are opti-

mized jointly. Certainly this approach is much harder. Paper [35] discusses a similar

problem, but with a different optimization objective: network utility maximization

instead of maximum link usage minimization.

Heuristic for VRA-PGO. I have shown that the VRA-PGO problem is NP-

complete, and it cannot even be approximated efficiently. I have also provided a

slow ILP that finds an optimal solution. Moreover, VRA Peer-Local Optimization

itself can be considered as a quick heuristic to VRA-PGO. Despite the fact that in

general no good approximation is possible, for realistic networks heuristics better

than Peer-Local Optimization could exist. To find one is a task remaining for further

research.

NP-completeness of VRA-1N-1D/mD. My complexity-related results on VRA-

PGO practically mean that it is generally computationally hard to find optimal (and,

actually, near-optimal) solutions to the Virtual Resource Allocation problem for sev-

eral nodes and several demands simultaneously. I presume that for a single node

(VRA-1N-mD) the problem is also NP-complete, and what is more, it is NP-complete

for one node and one demand (VRA-1N-1D), too. Proving (or disproving) these is

also left for future research.

Certainly, if the NP-completeness of VRA-1N-1D could be proven, it would imply

the same property for VRA-1N-mD, being the former special case of the latter. Note,
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however, that although Algorithm 3.3 (presented in Sec. 3.3) to solve the VRA-1N-1D

problem is not polynomial, it runs very fast for Qs in the range of thousands or even

millions, which is well above the foreseeable useful domain. Likewise, the Algorithms

presented in Sec. 4.4 perform well in practical situations.

NP-completeness of GSA-W. I have proven the NP-completeness of different

versions of the VRA-PGO problem. A related open question, as detailed in Ap-

pendix C.3.2, is whether the “Good Simultaneous (Diophantine) Approximation in

a Weaker Sense” problem is NP-complete. My conjecture is that it is indeed NP-

complete, but it seems to be fairly hard to prove this and it is also out of the scope

of this dissertation.

Topology virtualization. Several techniques have been proposed in the literature

and used in practice for creating a virtual network over a physical one. There are a

variety of reasons to do so, one of them is to have a simpler network than the original

one, as suggested in [67] recently. My Overlay Optimization method, presented in

Chapter 3, is also such a technique. Its main advantage is the decomposition of a large

problem into independent, smaller subproblems (one for each demand) what results

in a fast and very efficient operation. On the other hand, its path decomposition step

may end up with too many end-to-end shortest paths, which can result in suboptimal

splitting if the number of applicable virtual paths is not too high. Using end-to-end

tunnels (Overlay Optimization) is one extreme, the other is not using overlaying at

all. In between them there are several possibilities, including the ones proposed in [67].

Using shorter (non end-to-end) tunnels, may be a beneficial trade-off that results in

good decomposability yet smaller number of shortest paths, therefore resulting in

better network performance. This topic, however, is left for future work.

Another form of topology virtualization could be introducing virtual nodes along-

side the existing ones. As an example, for the capacitated network shown in Fig. 7.1(a)

the demands A → F : 100, B → G : 100 cannot be delivered without error using

virtual links only. This is because matrix G of node C is

G =





80 20

20 80



 ,
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Figure 7.1: Introducing virtual nodes. Demands: A→ F : 100, B → G : 100

which is clearly inconsistent. If, however, we could virtually duplicate nodes D, E

and their incoming links (see Fig. 7.1(b)), then this matrix would be

G =





80 0 20 0

0 20 0 80



 ,

which is now consistent. This means that with six virtual links1 (e =
[

4 1 1 4
]

) the

demands can be routed without any error. As this simple example shows, achieving

better resource utilization by node virtualization is another promising future research

topic. As a theoretical problem, the best virtualization strategy should be found,

and concurrently, practical means for node virtualization in real networks should be

experimented with.

Deciding consistency in linear time. The complexity of Algorithm 4.1, which

decides the consistency of a matrix G, is O(d2k). This is polynomial-time and is fast

enough in all practical cases, but theoretically it could be interesting to examine

whether there is an algorithm solving the same problem in O(dk).

1Six virtual links compared to the topology shown in Fig. 7.1(b), which certainly means eight
virtual links compared to the original topology depicted in Fig. 7.1(a).
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Unique optimal solution for VRA-1N-mD-Unlimited. I suspect the unique-

ness of the optimal solution for the VRA-1N-mD-Unlimited problem on some condi-

tions.

Before continuing, let me include here a few simple definitions:

• A submatrix B of matrix A is a matrix that is obtained by deleting an arbitrary

(non empty) set of rows and/or columns from matrix A.

• An independent submatrix B of matrix A is a submatrix, for which the following

holds: if we highlight in A the rows and columns corresponding to B, then other

than B itself, only 0 valued elements are highlighted.

• An undividable matrix is a matrix that contains no independent submatrices.

For example in

A =































1 2 0 1 0 1

0 0 3 0 3 0

0 0 3 0 3 0

1 0 0 2 0 1

0 0 3 0 3 0

1 0 0 1 0 2































the boldfaced

B =











3 3 3

3 3 3

3 3 3











submatrix is an independent submatrix. Here A is not undividable, B is undividable.

My first conjecture is that there is a unique optimal {fj} solution of a VRA-1N-

mD-Unlimited problem, if the corresponding matrix G is undividable.

My second conjecture is that if matrix G of a VRA-1N-mD-Unlimited problem

contains independent submatrices, then the solution of the problem is unique to its

independent, undividable submatrices.

Let me explain this second conjecture. Let G1, G2, . . . , Gn be the independent,

undividable submatrices of G. (It should also be proven that such a division into sub-

matrices is unique.) I suspect that the solution for each Gi is unique (first conjecture).

Let me denote the sum of fjs belonging to the columns of Gi with fGi
. I suspect that
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there are infinite number of optimal solutions to the original problem, as any set of

{fGi
}s can be sufficient, as long as fGi

> 0 (∀i) and
∑n

i=1 fGi
= 1.

As an example, suppose that G consists of three independent, undividable subma-

trices, G1, G2 and G3. Suppose further that f1, f2 and f3 belongs to G1, f4 and f5

to G2, and f6 and f7 to G3. Then, solving the 3 different subproblems, there will be

unique solutions in forms of {fj} such that f1 +f2 +f3 = 1, f4 +f5 = 1 and f6 +f7 = 1.

Now, for the original problem af1, af2, af3, bf4, bf5, cf6, cf7 (a+b+c = 1, a, b, c > 0)

is an optimal solution. (Using the previous notations, FG1
= a, FG2

= b, FG3
= c.)

Moreover, a, b, c can be arbitrary as long as a + b + c = 1 and a, b, c > 0, so there are

infinite number of solutions to the original problem.

As these considerations are a bit out of the scope of my dissertation, and I have

proven my theorems without them, I have left them for possible future work. Nev-

ertheless, proving these conjectures, which are interesting on their own, too, would

largely simplify the proofs presented in Appendices C.1 and C.2.

Proof-of-concept deployment. VRA is a general concept for augmenting legacy

equal-split load balancing systems. Nevertheless, for a given application, like the pre-

sented OSPF-TE, a proof-of-concept deployment would be interesting. This would

not require hardware or software modifications in the routers, just some control plane

settings when installing the virtual links. The results are expected to be similar to

those gained by simulations.
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Appendix A

List of Theses

In this chapter I list my theses with references to the related parts of this dissertation.

The citations refer to my publications listed in Appendix D.

Thesis Group 1. [C3, J1] I have studied the possibility of enhancing load balancing

schemes by unequal traffic splitting when the underlying technology only offers uniform

data distribution among the resources. For this I have proposed the Virtual Resource

Allocation technique that augments the load balancer to realize an almost arbitrary

traffic split ratio. For the OSPF Traffic Engineering application scenario I have intro-

duced and analyzed the Overlay Optimization method, which is a specialization of the

Virtual Resource Allocation, utilizing an overlay network.

Discussed in Chapters 2 and 3.

Thesis 1.1. I have proposed a solution, named Overlay Optimization, to the Traffic

Engineering problem in communication networks that uses end-to-end tunnels with

parallel virtual paths and OSPF routing on top of this overlay network. As a part

of this solution, I have formalized the Virtual Resource Allocation problem for only

one network node and one demand as an optimization problem. I have shown via

an example that the performance of OSPF Traffic Engineering can be enhanced by

Overlay Optimization.

See the introduction of Chapter 3 and Section 3.1. For the example see Fig. 2.1.
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Thesis 1.2. I have given bounds on the error of the VRA-1N-1D problem under

different constraints.

Discussed in Section 3.2.

Thesis 1.3. I have given an optimal solution with pseudo-polynomial running time to

the VRA-1N-1D problem. Furthermore, I have given an optimal, pseudo-polynomial

time algorithm for the problem variant of minimizing the link number under a con-

straint on the maximal error. I have also given optimal, pseudo-polynomial time al-

gorithms for variants of the previous two problems in which the error or link number

minimization have to be done simultaneously at several nodes, while having a common

constraint on the total link number or on the error, respectively.

See Sections 3.3 and 3.4.

Thesis Group 2. [C1, J1] I have proposed and examined in detail another Virtual

Resource Allocation scheme in the OSPF Traffic Engineering scenario that eliminates

the overlay network from the architecture, thereby facilitating the deployment. This

approach operates on the original network topology and makes decisions locally at the

network nodes, so I named it Peer-Local Optimization.

Presented in Chapter 4.

Thesis 2.1. I have proposed a new solution to the OSPF Traffic Engineering prob-

lem, named Peer-Local Optimization, which is not using overlays and relies solely on

decisions made locally at the network nodes. As part of this solution I have formal-

ized the Virtual Resource Allocation problem for one node and several demands as an

optimization problem.

Discussed at the introduction of Chapter 4 and in Section 4.1.

Thesis 2.2. I have shown that matrix G, which forms the core of the VRA-1N-mD

and the VRA-1N-mD-Unlimited problems, can be almost arbitrary: any nonnegative

matrix with at least one non-zero element in each row and in each column can be

matrix G for a given node in a suitable network.

This corresponds to Theorem 11 in Section 4.2.1.
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Thesis 2.3. I have given bounds on the error of the VRA-1N-mD and the VRA-1N-

mD-Unlimited problems along with a polynomial time algorithm that decides whether

the general lower bound can be reached for a particular problem instance with unlimited

number of links.

See Sections 4.2.2 and 4.3.1.

Thesis 2.4. I have proven that an optimal virtual link settings for VRA-1N-mD-

Unlimited cannot always be reached using finite number of links.

See Theorem 16 and Corollary 17 in Section 4.3.2.

Thesis 2.5. I have shown that no algorithm can give an optimal solution to the

VRA-1N-mD-Unlimited problem in finite number of steps; even if the number of steps

may depend on the actual problem.

See Theorem 18 and Corollary 19 in Section 4.3.2.

Thesis 2.6. I have given an approximation algorithm that can find, in polynomial

time, a solution that is arbitrarily close to the optimal solution of the VRA-1N-mD-

Unlimited problem.

See Alg. 4.2 and the related discussion in Section 4.3.3.

Thesis 2.7. I have given two different, Integer Linear Program-based optimal solu-

tions to the VRA-1N-mD problem. I have also given a pseudo-polynomial running

time heuristic to the same problem.

See the whole Section 4.4.

Thesis Group 3. [J1] I have proposed and comprehensively studied another solution

for OSPF Traffic Engineering, which I call Virtual Resource Allocation–Peer-Global

Optimization. I have proven that it is NP-complete and cannot be approximated effi-

ciently. I have also given an Integer Linear Program that finds an optimal solution

and observed that Peer-Local Optimization can be used here as a faster heuristic.

Presented in Chapter 5.
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Thesis 3.1. I have identified and formally described the Peer-Global Optimization

problem, which can provide a near-optimal solution for OSPF Traffic Engineering.

See Section 5.1.

Thesis 3.2. I have given an Integer Linear Program that finds an optimal solution

to the Peer-Global Optimization problem.

See LP 5.1 presented in Section 5.2.

Thesis 3.3. I have proven the NP-completeness of the Peer-Global Optimization prob-

lem and several of its variants.

Discussed in Section 5.3.1.

Thesis 3.4. I have formulated two variants of Peer-Global Optimization as NP opti-

mization problems and have proven that it is impossible to computationally efficiently

approximate their optimal solution within every constant ratio (unless P = NP).

See the first part of Section 5.3.2, including Theorems 27 and 28.

Thesis 3.5. I have shown that the optimal solution of the MVPGS problem (which

is a variant of Peer-Global Optimization) cannot be approximated with a polynomial

time algorithm within any constant ratio (unless P = NP).

See Theorem 29 in Section 5.3.2.



Appendix B

List of Problem Definitions

Table B.1 shorty summarizes the different problem definitions given throughout this

work for easier reference and comparison.
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Appendix C

Auxiliary Proofs

C.1 Proof of Theorem 16

This section is devoted to prove

Theorem 16 (revisited). There is at least one VRA-1N-mD-Unlimited problem,

where matrix G contains integers only but the single optimal solution contains only

irrational numbers as fjs.

Before the theorem itself I prove some lemmas first. For the notations and defini-

tions used below please refer to Sections 4.1 and 4.3.

Lemma 31. For a matrix G in the form

G =





g11 g12 0

g21 g22 g23



 (g11g12g21g22g23 6= 0) , (C.1)

and for any f1, f2, f3 (fj > 0,
∑

fj = 1), which minimizes U , both of the following

statements hold:

U = U11 ∨ U = U21 (C.2)

U = U12 ∨ U = U22 (C.3)

Proof. First I prove (C.2). The proof is by contradiction: suppose that for some G (in

the form of (C.1)) and {fj}, which minimizes U , (C.2) does not hold, i.e., U11 < U
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and U21 < U . I will give an f ′
1, f ′

2, f ′
3 triplet (f ′

j > 0,
∑

f ′
j = 1), such that the

corresponding error U ′ < U .

Let

f ′
1 = αf1 + 1− α,

f ′
2 = αf2,

f ′
3 = αf3,

0 < α ≤ 1 .

I will prove that there is a suitable α for which U ′ < U .

Recall





U11 U12 0

U21 U22 U23



 =





f1

(f1+f2)γ11

f2

(f1+f2)γ12
0

f1

(f1+f2+f3)γ21

f2

(f1+f2+f3)γ22

f3

(f1+f2+f3)γ23



 =

=





f1

(f1+f2)γ11

f2

(f1+f2)γ12
0

f1

γ21

f2

γ22

f3

γ23



 ,

and that U = min Uij (ij ∈ {11, 12, 21, 22, 23}). Observe

U ′
12 =

f ′
2

(f ′
1 + f ′

2)γ12
=

αf2

(αf1 + 1− α + αf2)γ12
=

f2

(f1 + f2 − 1 + 1
α

)γ12

,

U ′
22 =

f ′
2

γ22
=

αf2

γ22
,

U ′
23 =

f ′
3

γ23
=

αf3

γ23
.

These are all strictly increasing continuous functions of α ∈ (0, 1]. Also note that

U ′
11 =

f ′
1

(f ′
1 + f ′

2)γ11

=
αf1 + 1− α

(αf1 + 1− α + αf2)γ11

,

U ′
21 =

f ′
1

γ21

=
αf1 + 1− α

γ21

are both continuous functions of α ∈ (0, 1].

Because of the continuity and monotonicity and the fact that for α = 1: U ′
11 =

U11 < U and U ′
21 = U21 < U , for a sufficiently small ǫ > 0 having α = 1 − ǫ we
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will have U ′
11 < U and < U ′

21 < U . For this α also U ′
12 < U12, U ′

22 < U22, U ′
23 < U23.

Therefore for the f ′
1, f ′

2, f ′
3 triplet with the given α we have U ′ < U , which is a

contradiction.

Due to symmetry, the same reasoning can be applied to prove (C.3).

Lemma 32. For a matrix G in the form given in (C.1) and for any f1, f2, f3 (fj > 0,
∑

fj = 1) minimizing U , if U11 = U12 then matrix G is consistent.

Proof. U11 = U12 means

f1

(f1 + f2)γ11

=
f2

(f1 + f2)γ12

. (C.4)

Substituting γ12 = 1−γ11 into (C.4) we got γ11 = f1/(f1 +f2). Substituting this back

to the definition of U11 we got U11 = 1, meaning also that U11 = U12 = 1.

According to Lemma 31 either U = U11 = U12 = 1 (meaning that matrix G is

consistent) or U = U21 = U22 > 1. Let us take a closer look on this latter case.

U21 = U22 means f1/γ21 = f2/γ22, but as U11 = U12, by the definition of U11 and U12,

we also have f1/γ11 = f2/γ12, i.e. γ11/γ12 = γ21/γ22. Now because γ11 + γ12 = 1 we

have

γ11 =
γ21

γ21 + γ22

, γ12 =
γ22

γ21 + γ22

,

which means again that G is consistent with f1 = γ21, f2 = γ22, f3 = γ23.

Lemma 33. For a matrix G in the form given in (C.1) and for any f1, f2, f3 (fj > 0,
∑

fj = 1) minimizing U , if U = U21 = U22 = U23 then matrix G is consistent.

Proof. U21 = U22 = U23 = U means

f1

γ21
=

f2

γ22
=

f3

γ23
= U ,

i.e.,

f1 = γ21U,

f2 = γ22U,

f3 = γ23U .

Summing these equations and using f1 +f2 +f3 = γ21 +γ22 +γ23 = 1 yields U = 1.
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Lemma 34. For a matrix G in the form given in (C.1) and for any f1, f2, f3 (fj > 0,
∑

fj = 1) minimizing U : U = U23.

Proof. This proof is by contradiction, too. Suppose we have a G and an optimal {fj}
for which U23 < U . Nevertheless, according to the Lemma 31 (C.2) and (C.3) must

still hold. Let us divide this proof into four cases, according to how (C.2) and (C.3)

can be true:

Case 1. U = U21 > U11 and U = U22 > U12.

The proof for this case is similar to the proof of Lemma 31. Let

f ′
1 = αf1,

f ′
2 = αf2,

f ′
3 = αf3 + 1− α,

0 < α ≤ 1 .

(C.5)

Now U ′
21 = f ′

1/γ21 = αf1/γ21 is strictly increasing and continuous function of α

and so is U ′
22 = f ′

2/γ22 = αf2/γ22. Also note that for α = 1: U ′
21 = U21 = U and

U ′
22 = U22 = U . On the other hand U ′

23 = f ′
3/γ23 = (αf3 + 1− α)/γ23 is a continuous

function of α ∈ (0, 1] with U ′
23 = U23 < U for α = 1. Also notice that U ′

11 = U11 < U

and U ′
12 = U12 < U .

This means, there is a suitable α (close to 1), for which U ′ > U ′
11, U ′ > U ′

12,

U ′ = U ′
21 < U , U ′ = U ′

22 < U and U ′ > U ′
23. This means that f ′

1, f ′
2, f ′

3 with this α

result in an error U ′ < U , which is a contradiction.

Case 2. U = U11 ≥ U21 and U = U22 > U12.

Let us use again {f ′
i} as defined in (C.5). As shown in the previous case, U ′

11 and

U ′
12 is independent of α; U ′

21, U ′
22 are continuous, increasing and U ′

23 is continuous

function of α ∈ (0, 1]. Furthermore, for α = 1: U ′
21 = U21 ≤ U , U ′

22 = U22 = U and

U ′
23 = U23 < U .

This means that there is a suitable α, for which U ′
21 < U , U ′

22 < U , U ′
23 < U ,

U ′
12 = U12 < U and U ′

11 = U11 = U = U ′. So {f ′
i} is minimizing the error U ′ = U just

as well as {fi} does, but this G, {f ′
i} setting contradicts (C.3) of Lemma 31.
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Case 3. U = U21 > U11 and U = U12 ≥ U22.

This case, by symmetry, is essentially identical to Case 2.

Case 4. U = U11 ≥ U21 and U = U12 ≥ U22.

U11 = U12, so applying Lemma 32 shows that matrix G is consistent. Consequently,

according to Lemma 15, U23 = 1 = U , which contradicts our assumption.

Lemma 35. For a matrix G in the form given in (C.1) and for any f1, f2, f3 (fj > 0,
∑

fj = 1) minimizing U both of the following statements hold:

1. U11 = U21 if and only if G is consistent,

2. U12 = U22 if and only if G is consistent.

Proof. If G is consistent then, according to Lemma 15, U11 = U12 = U21 = U22 =

U23 = U = 1, which proves the first direction of the statements.

For the other direction I start with the first statement. According to Lemma 31

U = U11 = U21. Moreover, due to the same lemma U = U12 and/or U = U22. Let us

split the proof into two cases accordingly:

If U = U12 holds then U = U11 = U12, so, according to Lemma 32, G is consistent.

If U = U22 is true, then due to Lemma 34 U23 = U , i.e., U = U21 = U22 = U23.

Consequently, Lemma 33 can be applied, which proves the consistency of G.

Considering the symmetry, the same reasoning can be applied to prove the second

direction of the second statement.

The last lemma in this section is the following:

Lemma 36. For an inconsistent matrix G in the form given in (C.1) and for any

f1, f2, f3 (fj > 0,
∑

fj = 1) minimizing U : either U = U11 = U22 = U23 or

U = U21 = U12 = U23 is true. Both cases are possible.

Proof. G is inconsistent, so due to Lemma 35 U11 6= U21 and U12 6= U22. According to

this and Lemmas 31 and 34, for a given G exactly one of the following statements is
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true:

U = U11 = U12 = U23 (C.6)

U = U11 = U22 = U23 (C.7)

U = U21 = U12 = U23 (C.8)

U = U21 = U22 = U23 (C.9)

Statement (C.6), however, cannot be true for an inconsistent G, as it contradicts

Lemma 32. Similarly, equation (C.9) would contradict Lemma 33.

What remains is to show that both (C.7) and (C.8) is possible for different Gs.

Consider any inconsistent G in form given in (C.1). For an optimal {fj} setting either

(C.7) or (C.8) will be true. Now swap the first two columns of G to get G′. Due to

the symmetry f ′
1 = f2, f ′

2 = f1, f ′
3 = f3 is an optimal solution of G′. Consequently, if

(C.7) is true for G then (C.8) is true for G′ and vice versa.

Now we are ready to put the pieces together:

Proof of Theorem 16. Consider the following matrices:

G =





2 1 0

2 2 1



 , Γ =





2
3

1
3

0
2
5

2
5

1
5



 . (C.10)

G is clearly inconsistent, so according Lemmas 35 and 36 we know that for any optimal

f1, f2, f3, either

U11 = U22 = U23 and U21 < U11, U12 < U22, or

U21 = U12 = U23 and U11 < U21, U22 < U12.

I show now that the latter case holds.

Supposing the opposite, we pay attention only to U12 < U22. This means that

f2

(f1 + f2)1
3

<
f2
2
5

.

Rearranging this (using f2 > 0) we got 6/5 < f1 + f2, which contradicts f1 + f2 < 1.
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At this point we know that for any optimal f1, f2, f3: U21 = U12 = U23. This

results in the following system of equations:

f2

(f1 + f2)1
3

=
f1
2
5

,

f2

(f1 + f2)1
3

=
f3
1
5

,

f1 + f2 + f3 = 1 ,

which can be reduced to:

5f 2
1 − 28f1 + 12 = 0,

f2 = 1− 3
2

f1,

f3 =
f1

2
.

Solving this using f1 < 1 we got:

f1 =
2
5

(7−
√

34),

f2 =
1
5

(−16 + 3
√

34),

f3 =
1
5

(7−
√

34) ,

which, due to the reasoning above, is the only optimal solution to the problem given

with (C.10). Consequently, for the single optimal solution f1, f2, f3 are irrational.

C.2 Proof of Theorem 18

In this section I prove

Theorem 18 (revisited). There is at least one VRA-1N-mD-Unlimited problem,

whose only optimal solution contains at least one fj that cannot be written in a finite

form using integer constants and the usual +, −, ·, / and the nth root (n ∈ Z+)

operators only.
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A suitable example is enough to prove this theorem. Throughout the proof and

the related lemmas I will be using the VRA-1N-mD-Unlimited problem defined by

the following matrices:

G =































1 0 0 0 0 0

6 1 0 0 0 0

6 6 1 0 0 0

6 6 6 1 0 0

6 6 6 6 1 0

6 6 6 6 6 1































, γ =































1 0 0 0 0 0
6
7

1
7

0 0 0 0
6
13

6
13

1
13

0 0 0
6
19

6
19

6
19

1
19

0 0
6
25

6
25

6
25

6
25

1
25

0
6
31

6
31

6
31

6
31

6
31

1
31































. (C.11)

For an optimal solution f1, f2, . . . , f6 the error matrix is:

Uij =































U11 0 0 0 0 0

U21 U22 0 0 0 0

U31 U32 U33 0 0 0

U41 U42 U43 U44 0 0

U51 U52 U53 U54 U55 0

U61 U62 U63 U64 U65 U66































=

=

































1 0 0 0 0 0
f1

(f1+f2) 6

7

f2

(f1+f2) 1

7

0 0 0 0
f1

(f1+f2+f3) 6

13

f2

(f1+f2+f3) 6

13

f3

(f1+f2+f3) 1

13

0 0 0
f1

(f1+···+f4) 6

19

f2

(f1+···+f4) 6

19

f3

(f1+···+f4) 6

19

f4

(f1+···+f4) 1

19

0 0
f1

(f1+···+f5) 6

25

f2

(f1+···+f5) 6

25

f3

(f1+···+f5) 6

25

f4

(f1+···+f5) 6

25

f5

(f1+···+f5) 1

25

0
f1

(f1+···+f6) 6

31

f2

(f1+···+f6) 6

31

f3

(f1+···+f6) 6

31

f4

(f1+···+f6) 6

31

f5

(f1+···+f6) 6

31

f6

(f1+···+f6) 1

31

































.

Furthermore, I will denote with Umax the set consisting of the maximal elements

of Uij for the given optimal solution. Certainly the value of the maximal elements is

the per node error, U , as defined at Sec. 4.1.

Before the actual proof I present two lemmas.

Lemma 37. For any optimal solution of the VRA-1N-mD-Unlimited problem given

by the matrix (C.11), at least one element of the set {U21, U31, U41, U51, U61} is an

element of Umax.
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Proof. The proof is by contradiction. We suppose the opposite, yet give f ′
1, f ′

2, . . . , f ′
6,

for which U ′ < U . Let:

f ′
1 = αf1 + 1− α,

f ′
2 = αf2,

f ′
3 = αf3,

f ′
4 = αf4,

f ′
5 = αf5,

f ′
6 = αf6,

0 < α ≤ 1 .

Let us first examine U ′
i1 (i = 2, . . . , 6):

U ′
i1 =

f ′
1

(f ′
1 + · · ·+ f ′

i)γi1
=

αf1 + 1− α

(α(f1 + · · ·+ fi) + 1− α)γi1
.

U ′
i1 is clearly a continuous function of α ∈ (0, 1], with U ′

i1 = Ui1 for α = 1.

Now let us see U ′
ij (j > 1, U ′

ij > 0):

U ′
ij =

f ′
j

(f ′
1 + · · ·+ f ′

i)γij
=

αfj

(α(f1 + · · ·+ fi) + 1− α)γij
=

fj

(f1 + · · ·+ fi + 1
α
− 1)γij

.

U ′
ij is again a continuous function of α ∈ (0, 1], with U ′

ij = Uij for α = 1. It can also

be seen that U ′
ij is a strictly increasing function of α ∈ (0, 1].

Because of the monotonicity and continuity described above, for a sufficiently

small ǫ > 0 having α = 1 − ǫ we will have U ′
i1 < U (i = 2, . . . , 6) (as we indirectly

supposed Ui1 < U and U ′
i1 = Ui1 for α = 1) and U ′

ij < U (j > 1, U ′
ij > 0) (due to

the monotonicity and the limit value at α = 1). This, on the other hand, means that

U ′ < U , which contradicts the optimality of the initial solution.

Lemma 38. For any optimal solution of the VRA-1N-mD-Unlimited problem given

by the matrix (C.11), the largest elements of the 1st, 2nd, . . . , 6th columns of matrix

Uij are U61, U22, U33, U44, U55, U66, respectively.

Proof. First I prove that U < 6 for any optimal solution of the given problem. To

do so I show that U < 6 for f1 = f2 = · · · = f6 = 1/6. If f1 = f2 = · · · = f6, then
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clearly in each row of Uij the biggest element is the rightmost one. The value of these

elements are: U22 = 7
2
, U33 = 13

3
, U44 = 19

4
, U55 = 25

5
, U66 = 31

6
, and these are all less

than 6. This means that for any optimal solution, which certainly cannot be worse

than this particular one, U < 6.

Let us now consider the first row of matrix Uij . I first show that U21 < U31. Suppose

the opposite:
f1

(f1 + f2)6
7

≥ f1

(f1 + f2 + f3) 6
13

,

which can be rearranged to:

6 ≤ f3

(f1 + f2 + f3) 1
13

= U33 .

This means that U ≥ U33 ≥ 6, which contradicts the optimality according to our first

statement (U < 6).

Using the very same steps, U31 < U41, U41 < U51, U51 < U61 can be shown:

supposing the opposite would yield U44 ≥ 6, U55 ≥ 6, U66 ≥ 6, respectively.

With this we have shown that U61 is the largest element in the first column. Let

us now move on to the second one.

First I show that U22 > U32:

f2

(f1 + f2)1
7

>
f2

(f1 + f2 + f3) 6
13

,

which can be rewritten as

13(f1 + f2) < 42(f1 + f2 + f3) ,

which is true as by our assumption f1, . . . , f6 > 0.

In a similar way it can be shown that U22 > U42, U22 > U52, U22 > U62 (concluding

the second column), U33 > U43, U33 > U53, U33 > U63 (third column), U44 > U54,

U44 > U64 (fourth column), U55 > U65 (sixth column).

Using these results we can return to the main problem of this section:

Proof of Theorem 18. First I prove that Umax = {U61, U22, U33, U44, U55, U66} for any

optimal solution of the VRA-1N-mD-Unlimited problem given by the matrix (C.11).



118 C.2. PROOF OF THEOREM 18

From Lemma 37 and Lemma 38 follows that U61 ∈ Umax. From Lemma 38 follows

also that the only possible other members of Umax are U22, U33, U44, U55, U66.

Now I show that U22 ∈ Umax. Suppose the opposite, that we have an optimal set

of fjs, where U22 < U . Let as define a new set of fjs as:

f ′
2 = αf2 + 1− α,

f ′
j = αfj, (j = 1, 3, 4, 5, 6)

0 < α ≤ 1 .

In the same fashion as shown at the proof of Lemma 37, it can be shown that U ′
22 is

a continuous function of α ∈ (0, 1], with U ′
22 = U22 for α = 1. It can also be shown

similarly that U61, U33, U44, U55, U66, which are the possible elements of Umax, are

continuous and strictly increasing function of α ∈ (0, 1]. Because of this monotonicity

and continuity, for a sufficiently small ǫ > 0 having α = 1− ǫ we will have U ′
22 < U

and U ′
ij < Uij ≤ U (ij = 61, 33, 44, 55, 66), which contradicts the optimality of the

initial solution.

Next, I show in two steps that U33 ∈ Umax. Similarly to the previous paragraph,

let us suppose the opposite, namely for an optimal fj setting U33 < U .

Step 1. Let us have

f ′
3 = αf3 + 1− α,

f ′
j = αfj, (j = 1, 2, 4, 5, 6)

0 < α ≤ 1 .

For a sufficiently small ǫ > 0 having α = 1 − ǫ: U ′
33 < U and U ′

61 < U61, U ′
44 < U44,

U ′
55 < U55, U ′

66 < U66, but U ′
22 = U22.

Step 2. Let

f ′′
1 = βf ′

1 + 1− β,

f ′′
j = βf ′

j, (j = 2, 3, 4, 5, 6)

0 < β ≤ 1 .
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According to similar considerations as above, for a β that is sufficiently close to 1:

U ′′
61 < U61, U ′′

22 < U ′
22 = U22, U ′′

33 < U ′
33 < U , U ′′

44 < U ′
44 < U44, U ′′

55 < U ′
55 < U55,

U ′′
66 < U ′

66 < U66. According to Lemma 38 these are the possible candidate elements

of Umax, so U ′′ < U , which is a contradiction again.

The idea of the proof in the last paragraph can be easily reused to prove that

U44 ∈ Umax, U55 ∈ Umax and U66 ∈ Umax.

I have just proven that for any optimal solution of the problem given by (C.11):

U = U61 = U22 = U33 = U44 = U55 = U66. Using this we can set up the following

system of equations:

f2

(f1 + f2)1
7

=
f3

(f1 + f2 + f3) 1
13

f2

(f1 + f2)1
7

=
f4

(f1 + f2 + f3 + f4) 1
19

f2

(f1 + f2)1
7

=
f5

(f1 + f2 + f3 + f4 + f5) 1
25

f2

(f1 + f2)1
7

=
f6

(f1 + f2 + f3 + f4 + f5 + f6) 1
31

f2

(f1 + f2)1
7

=
f1

(f1 + f2 + f3 + f4 + f5 + f6) 6
31

1 = f1 + f2 + f3 + f4 + f5 + f6 .

From these equations f2, f3, f4, f5, f6, can be eliminated, and what remains is a

polynomial of f1:

923 521f 5
1 − 16 980 870f 4

1 + 118 664 280f 3
1−

− 390 577 680f 2
1 + 934 673 904f1− 336 117 600 = 0 (C.12)

I used the mathematical software Maple [55] to show that this polynomial equation

has got a single real root only (and four complex ones).

Now a little algebra follows [56]. According to the Abel–Ruffini theorem, there is

no general algebraic solution to polynomial equations of degree five or higher. This

does not mean, however, that no polynomial equation of degree five or more can be
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solved by radicals1: x5 = 1 for example is pretty easy to solve. On the other hand,

there are polynomials that cannot be solved, such as x5 − x + 1 = 0. According to

Galois theory, a polynomial equation can be solved by radicals if and only if its Galois

group is a solvable group.

Using Maple I found that the Galois group of the polynomial given in (C.12) is

the symmetric group S5. This group, consisting of 120 elements, is not solvable ([56],

p. 125), meaning that (C.12) cannot be solved by radicals, proving Theorem 18.

C.3 Addendum on Computation Complexity

In this section I present alternative proofs and their corollaries about the computa-

tional complexity of the VRA-PGO related problems. They not only represent differ-

ent approaches, but also tackle different variants of the same problem family. As an

example, Theorem 39 states the NP-completeness of the original VRA-PGO problem

itself.

C.3.1 X3C Reduction

Theorem 22 (revisited). VRA-PGO-GW is NP-complete.

Proof 2 of Theorem 22. This proof is partially based on the idea presented in [68].

I will not prove again that VRA-PGO-GW is in NP, only the more interesting

part, namely that VRA-PGO-GW is NP-hard. I will reduce the X3C (Exact Cover

by 3-Sets) problem to VRA-PGO-GW. X3C is NP-complete, and is defined as follows:

Problem 12, Exact Cover by 3-Sets (X3C).

Instance. Set X = {x1, . . . , xp} of p = 3q elements and a family C of n 3-subsets

of X (C = {C1, . . . , Cn}, Ci ⊆ X, |Ci| = 3, i = 1, . . . , n), n ≥ q.

Question. Does C contain a subfamily C′ ⊆ C, consisting of q pair-wise disjoint

subsets of X (|C′| = q)?

For an arbitrary instance of X3C I create an instance of VRA-PGO-GW corre-

sponding to it. The network is shown in Figure C.1: the nodes in the second and

1i.e., having a solution that can be written in a finite form using integer constants and the +, −,
·, / and the nth root (n ∈ Z+) operators only
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Figure C.1: Network for the X3C reduction

fourth row correspond to the 3-subsets of X in the X3C problem and the nodes in

the third row correspond to the elements of X. The link capacities are shown in the

figure, which are 3 for all links CiXj and are 1 for all links XjDi. For links XjB the

link capacity equals to the number of edges arriving to node Xj plus one. The link

weights are one unit for all of the links but link AB, for which wAB = 3. The demands

are the following: A→ B : 3(n+q +1), Ci → Di : 3, i = 1 . . . n. The maximal number

of virtual links is R = q. The MLU is β = 1. This reduction is polynomial.

I now prove that if the X3C instance contains a suitable C′ subfamily, then there

is a suitable virtual link allocation for the VRA-PGO-GW problem. Let C ′
1, . . . , C ′

q

be the members of C′. Let us assign el = 1 for all the links, except links AC ′
i, for

which eAC′

i
= 2. Constraints En ≤ |Sn|+ R are trivially not violated.

The maxl hl/cl ≤ β = 1 is not violated either. For node A the total traffic is

3(n + q + 1), which is split onto exactly n + q + 1 links, resulting in 3 units of traffic

per link. As eACi
≤ 2, hACi

/cACi
≤ 1. For Ci → Xj → Di there is an extra one unit

of traffic from the Ci → Di demand. This means that for Ci ∈ C′ hCiXj
/cCiXj

= 1,

and for Ci /∈ C′ hCiXj
/cCiXj

= 2/3. It can easily be seen that for the rest of the links

hl/cl = 1.

Let us now see the opposite direction: if there is a suitable virtual link allocation for

the VRA-PGO-GW problem, then the X3C instance contains a suitable C′ subfamily.

First observe the demands Ci → Di : 3. Suppose Ci is connected to Xk, Xl and

Xm. Note that the demand, in order to be routed without violating the constraint
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maxl hl/cl ≤ β = 1 at links XkDi, XlDi, and XmDi, must be split equally at nodes

Ci, i.e., eCiXk
= eCiXl

= eCiXm
. Next, note that no traffic split occurs at nodes Xj

due to the different destinations of the demands.

The most interesting traffic split occurs at node A. Observe that the volume of

demand A → B : 3(n + q + 1) equals the total capacity of the incoming links to B.

This means that all the links arriving to node B must be fully filled. This is true for

link AB as well, meaning that the traffic volume arriving to node A (i.e. 3(n + q + 1))

must be split onto n + q + 1 links to have 3 units of traffic on AB. Consequently, a

link ACi carries 3eACi
traffic. Thus eACi

> 2 would result a hl/cl > 1 on the given

link, so it is not possible. Hence there must be q virtual links distributed over (real)

links ACi (i.e., eACi
= 2 for q links, and eACi

= 1 for n− q). To avoid the overloading

of links XjB, the ACis, for which eACi
= 2, are selected in a way that actually solves

the corresponding X3C problem: Ci ∈ C′ in the X3C problem if and only if eACi
= 2

in VRA-PGO-GW.

This proof can easily be extended to different variants of the problem as follows.

The first one is especially interesting as it states the NP-completeness of the original

version of the problem.

Theorem 39. VRA-PGO is NP-complete.

Note that for R = 0 the problem is reduced to a weight-searching problem, which

has been proven to be NP-complete in [9]. For R > 0, however, the statement is yet

to be proven.

Proof. VRA-PGO is in NP, for the same reason as VRA-PGO-GW is. I use the same

reduction as in Proof 2 of Theorem 22. If the X3C instance contains a suitable C′

subfamily, then VRA-PGO is solvable: the solution is the same as above, with link

weights being one unit for all of the links but link AB, for which wAB = 3.

The opposite direction is pretty easy, too: notice that in order to fully transfer

all the demands without exceeding the link capacities on the links incoming to nodes

Di and B, all the links of the network must be utilized. This can be achieved with

essentially the same weight setting as above: ∀l wl = c, except for wAB = 3c for any

c > 0. After this the proof is the same as Proof 2 of Theorem 22.
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Theorem 25 (VRA-PGO-GW-ABS is NP-complete) can be proven here, too. The

proof is essentially the same as the above proof of Thm. 22, but using δ = 0 in place

of β = 1.

Likewise, Theorem 23 (VRA-PGO-GW-Q is NP-complete) can be proven here,

too: using Q = n + q + 1 instead of R = q, the proof is almost the same as above.

Only in the first part of the proof “Constraints En ≤ |Sn| + R are trivially not

violated” should be replaced by the following: “Constraints Edn ≤ Q are not violated:

it is trivial for node A, and also for nodes Ci (as n, q ≥ 1). For nodes Xi: EdXi
=

|SXi
| = |TXi

| + 1 ≤ n + 1 < Q”. Note, however, that the Q used here can be fairly

large.

C.3.2 Good Simultaneous Approximation Reduction

In this section VRA-PGO-GW-ABS is examined again, but with δ > 0. My conjecture

is that this case is NP-complete, too, but I will only prove a weaker statement. For

this I first show the definition of the Good Simultaneous Diophantine Approximation

problem (from [69], but with slightly modified notations):

Problem 13, Good Simultaneous (Diophantine) Approximation (GSA).

Instance. A finite vector of rationals g1, . . . , gd and positive integers N , s1, s2.

Question. Is there an integer W with 1 ≤W ≤ N such that

min
n∈Z
|Wgi − n| ≤ s1

s2
∀i ?

The NP-completeness of the GSA is proven by J. C. Lagarias in [69]. I will use

another problem for the proof, which is a variation of GSA:

Problem 14, Good Simultaneous (Diophantine) Approximation in a Weaker

Sense (GSA-W).

Instance. A finite vector of rationals g1, . . . , gd and positive integers N , s1, s2.

Question. Is there an integer W with 1 ≤W ≤ N such that

min
n∈Z
|gi −

n

W
| ≤ s1

s2
∀i ?

As far as I know, the NP-completeness of GSA-W is not proven, but my conjecture

is that it is true. Consequently, the theorem I prove is:
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Figure C.2: Network for the GSA-W Reduction

Theorem 40. VRA-PGO-GW-ABS with δ > 0 is NP-complete if GSA-W is NP-

complete.

Proof. VRA-PGO-GW-ABS is in NP, and the proof is essentially the same as at

Theorem 22. Next I prove by Karp reduction that VRA-PGO-GW-ABS is NP-hard if

GSA-W is NP-complete. Suppose we have a GSA-W instance. We can safely suppose

that for all i gi < 1.

Consider the network in Fig. C.2 with the link capacities shown, where M = dN .

Let wl = 1 be the weights for all the links and the demands be:

X → Y : dM

X → Ci : 1 (i = 1, . . . , d) .

Let the max. absolute error be δ = s1/s2 and the resource bound: R = (N − 2)d (or

Q = Nd). (Note that R or Q can be pretty large here.) The reduction is polynomial.

I first show that if GSA-W is solvable then the given VRA-PGO-GW-ABS instance

can be solved as well. Let the solution of the GSA-W be W . For i = 1, . . . , d let

fi = arg minn∈Z |gi − n/W |. Let eXAi
= fi and eXBi

= W − fi for i = 1 . . . d and for

the rest of the links let el = 1.

The condition En ≤ |Sn| + R (or Edn ≤ Q) is only interesting at node X. There

EX = Wd, and as |Sn| + R = 2d + (N − 2)d and as W ≤ N , the constraint is not
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violated. (Similarly, for d : X → Y , n = X: Edn = Wd ≤ Nd = Q. For the other

demands and/or nodes the inequality is trivial.)

The next question is whether maxl(hl−cl) ≤ δ. Certainly we only have to consider

edges with cl <∞. For edges l = DiY : hl− cl = M −M = 0 < δ. For edges l = AiCi:

hl−cl ≤ δ is to be proven, where hl = fi/W , cl = gi. If hl−cl = fi/W −gi is negative,

then it is clearly less than δ. If not, we can use fi/W − gi = |fi/W − gi|, which is less

than or equal to δ by the initial conditions. The reasoning for the BiCi edges is very

similar.

I show now that a solution of VRA-PGO-GW-ABS solves GSA-W, too. For δ ≥ 1

the solution is trivial, so let us consider δ < 1. First observe that for all i, j ∈ {1, . . . , d}
eXAi

+ eXBi
= eXAj

+ eXBj
, which is required for hDiY − cDiY = 0. I show this by

contradiction, supposing the opposite, i.e., the difference is positive for at least one i:

hDiY − cDiY > 0⇒ dM(eXAi
+ eXBi

)
EX

−M > 0⇒

⇒ d(eXAi
+ eXBi

) > EX ⇒ d(eXAi
+ eXBi

) ≥ EX + 1 .

Using this we got:

hDiY − cDiY =
dM(eXAi

+ eXBi
)

EX
−M ≥M

(

EX + 1
EX

− 1
)

=

=
M

EX
≥ M

|SX |+ R
=

M

Nd
= 1 .

This would then mean a higher link error than δ, a contradiction, so eXAi
+ eXBi

=

eXAj
+ eXBj

is proven.

Let us now consider links AiCi and BiCi. Supposing that VRA-PGO-GW-ABS is

solvable, the error on the links is at most δ. Let W = Ex/d = eXAi
+ eXBi

, which

exists, according to the previous paragraph. This means:

hAiCi
− cAiCi

=
eXAi

W
− gi,

hBiCi
− cBiCi

=
W − eXAi

W
− (1− gi) = −(hAiCi

− cAiCi
) .

Consequently, |hAiCi
− cAiCi

| = |hBiCi
− cBiCi

| ≤ δ, therefore W is a solution of

GSA-W.
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