
51

HOW IT ALL FITS TOGETHER

51

Speakers notes:

It begins with Lean as a concept, optimizing the whole vaule flow

With the Agile concept we focus on cooperation to eliminate waste

Scrum is one typical method that can be used to plan and keep good control
of what to do and who is doing what

XP is yet another method, but in this case a specific one for SW
development (eXtreme Programming)

Course Documentation Ericsson R&D Agile
& Lean Basics

2019-02-08

Waterfall, Agile, Lean

52

2019-02-08

Agile

53

2019-02-08

http://agilemanifesto.org/

2019-02-08

http://agilemanifesto.org/iso/hu/manifesto.html

55

2019-02-08

Principles of the Agile
Manifesto (1/2)
1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

56

http://www.agilemanifesto.org/principles.html

56

The manifesto also includes twelve principles. Here they are.

12 principles: they are each self-explanatory.

2019-02-08

Principles of the Agile
Manifesto (2/2)

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity--the art of maximizing the amount of work not done--is essential.
(YAGNI – You Aren’t Gonna Need It.)

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

57

http://www.agilemanifesto.org/principles.html

57

2019-02-08

Agile Approaches
Agile methods are not unified, there is
diversity

Each method implements the Agile
Manifesto differently

• Extreme Programming (XP)
• Scrum
• Kanban

We will consider

There are common practices across
these methods, which we’ll examine

58

2019-02-08

59

HOW IT ALL FITS TOGETHER

59

Speakers notes:

It begins with Lean as a concept, optimizing the whole vaule flow

With the Agile concept we focus on cooperation to eliminate waste

Scrum is one typical method that can be used to plan and keep good control
of what to do and who is doing what

XP is yet another method, but in this case a specific one for SW
development (eXtreme Programming)

2019-02-08

Extreme Programming
(XP)

Formulated in 1999 by Kent Beck, Ward
Cunningham and Ron Jeffries

Agile software development methodology (others:
Scrum, DSDM, Kanban)

Developed in reaction to high ceremony
methodologies

60

2019-02-08

Extreme Programming (XP)

A software development process

Designed to focus on four things:
• Coding, Testing, Listening, Designing

Feedback is built into the development practices, not bolted on.

No phases: you do all four of those things all the time.

61

2019-02-08

62

EXAMPLe OF PRINCIPLES FROM XP
(EXTREME PROGRAMMING)

› Test Driven Development

› Continuous Integration

› Collective Code Ownership

62

Speakers notes:

Collective code ownership doesn’t mean that everyone is supposed to do
everything. It means that we try learn more from each other to become less
vulnerable so e g Charles can keep on working with a design task even if Edith is on
sick leave on a Monday.

62

2019-02-08

XP: Why?

• Get all the requirements before starting
design

• Freeze the requirements before starting
development

• Resist changes: they will lengthen schedule
• Build a change control process to ensure

that proposed changes are looked at
carefully and no change is made without
intense scrutiny

• Deliver a product that is obsolete on release

Previously:

63

2019-02-08

XP: Embrace Change

Recognize that:

• All requirements will not be known at the beginning
• Requirements will change

Use tools to accommodate change as a natural process

Do the simplest thing that could possibly work and
refactor mercilessly

Emphasize values and principles rather than process

64

2019-02-08

XP Practices

(Source: http://www.xprogramming.com/xpmag/whatisxp.htm)
65

2019-02-08

66

Rapid, fine feedback:
• Test-driven design (via unit

and acceptance tests)
• On-site customer
• Pair programming

The Core XP Practices

Shared
Understanding:

• Planning game
• Simple Design
• System Metaphor
• Collective Code

Ownership
• Coding Conventions

Continuous process:
• Continuous integration
• Merciless refactoring
• Small, frequent releases Developer Welfare:

• Forty-hour week

The idea of a metaphor in Extreme Programming is to develop a common vision of
how the program works. At its best, a metaphor is a simple evocative description of
how the program works.

2019-02-08

The XP team

How to design and
program the
software
• programmers, designers,

and architects

Where defects are
likely to hide
• testers

Why the software is
important
• product manager

The rules the
software should
follow
• domain experts

How the software
should behave
• interaction designers

How the user
interface should look
• graphic designers

How to interact with
the rest of the
company
• project manager

Where to improve
work habits
• coach

67

2019-02-08

XP Practices: Whole
Team

All contributors to an XP project are one team

Must include a business representative: the ‘Customer’
• Provides requirements
• Sets priorities
• Steers project

Team members are programmers, testers, analysts, coach, manager

Best XP teams have no specialists

68

2019-02-08

XP Team size

Assume teams with 4 to 10
programmers (5 to 20 total team
members).

Applying the staffing guidelines
to a team of 6 programmers
produces a team that also
includes 4 customers, 1 tester,
and a project manager, for a
total team size of 12 people.

69

2019-02-08

Full-Time Team Members

This particularly applies to customers, who are
often surprised by the level of involvement XP

requires of them.

All the team members should sit with the team
full-time and give the project their complete

attention.

70

Some organizations like to assign people to multiple projects simultaneously. This
fractional assignment is particularly common in matrix-managed organizations. (If
team members have two managers, one for their project and one for their function,
you are probably in a matrixed organization.)

2019-02-08

XP Practices: Planning
Game

Two key questions in software development:
• Predict what will be accomplished by the due date
• Determine what to do next

Need is to steer the project

Exact prediction (which is difficult) is not necessary

71

2019-02-08

XP Practices: Planning
Game

XP Release Planning
• Customer presents required features
• Programmers estimate difficulty
• Imprecise but revised regularly

XP Iteration Planning
• Two week iterations
• Customer presents features required
• Programmers break features down into tasks
• Team members sign up for tasks
• Running software at end of each iteration

72

2019-02-08

XP Practices:
Customer Tests

The Customer defines one or more automated
acceptance tests for a feature

Team builds these tests to verify that a feature is
implemented correctly

Once the test runs, the team ensures that it keeps
running correctly thereafter

System always improves, never backslides

73

2019-02-08

XP Practices: Small
Releases

Team releases running, tested software every
iteration

Releases are small and functional

The Customer can evaluate or in turn, release to end
users, and provide feedback

Important thing is that the software is visible and
given to the Customer at the end of every iteration

74

2019-02-08

XP Practices: Simple
Design

Build software to a simple design

Through programmer testing and design improvement, keep the
software simple and the design suited to current functionality

Design steps in release planning and iteration planning

Teams design and revise design through refactoring, through the
course of the project

75

2019-02-08

XP Practices:
Informative Workspace

Your workspace is
the cockpit of your

development
effort: create an

informative
workspace

An informative
workspace
broadcasts

information into
the room (eg.

radiators)

It’s improve
stakeholder trust

76

• Your workspace is the cockpit of your development effort. Just as a pilot
surrounds himself with information necessary to fly a plane, arrange your
workspace with information necessary to steer your project: create an informative
workspace.

• An informative workspace broadcasts information into the room. When people
take a break, they will sometimes wander over and stare at the information
surrounding them. Sometimes, that brief zoneout will result in an aha moment of
discovery.

• An informative workspace also allows people to sense the state of the project just
by walking into the room. It conveys status information without interrupting team
members and helps improve stakeholder trust.

2019-02-08

XP Practices: Pair
Programming

All production software is built by two programmers, sitting
side by side, at the same machine

All production code is therefore reviewed by at least one other
programmer

Research into pair programming shows that pairing produces
better code in the same time as programmers working singly

Pairing also communicates knowledge throughout the team

77

2019-02-08

XP Practices: Test-
Driven Development

Teams practice TDD by working in short cycles of adding a
test, and then making it work

Easy to produce code with 100 percent test coverage

These programmer tests or unit tests are all collected together

Each time a pair releases code to the repository, every test
must run correctly

78

2019-02-08

XP Practices: Design
Improvement

Continuous design improvement process called
‘refactoring’:

• Removal of duplication
• Increase cohesion
• Reduce coupling

Refactoring is supported by comprehensive
testing - customer tests and programmer tests

79

2019-02-08

XP Practices: Continuous
Integration

Teams keep the system fully integrated at all times

Daily, or multiple times a day builds

Avoid ‘integration hell’

Avoid code freezes

10 minutes build

80

'integration hell', e.g., integrating a big chunk of code changes at the last minute
which results in conflicts, and can take more time to resolve as compared to the
time required to make original changes.

2019-02-08

XP Practices: Collective
Code Ownership

Any pair of programmers can improve any code at any time

All code gets the benefit of many people’s attention

Avoid duplication

Programmer tests catch mistakes

Pair with expert when working on unfamiliar code

81

2019-02-08

XP Practices: Coding
Standard

Code must look familiar, to support collective code ownership

All code in the system must look as though written by an
individual

Use common coding standard

82

2019-02-08

XP Practices:
Metaphor

XP Teams develop a common vision of the system

With or without imagery, define common system of names

Ensure everyone understands how the system works,
where to look for functionality, or where to add functionality

83

2019-02-08

XP Practices:
Sustainable Pace

Team will produce high quality product when not overly
exerted

Avoid overtime, maintain 40 hour weeks

‘Death march’ projects are unproductive and do not produce
quality software

Work at a pace that can be sustained indefinitely

84

In project management, a death march is a project where the members feel it is
destined to fail, or requires a stretch of unsustainable overwork. The general feel of
the project reflects that of an actual death march because the members of the
project are forced to continue the project by their superiors against their better
judgment.

2019-02-08

Characteristics of
Successful XP Projects

Very rapid development

Exceptional responsiveness to user and
customer change requests

High customer satisfaction

Amazingly low error rates

System begins returning value to customers
very early in the process

85

2019-02-08

XP Values

Communication Simplicity

Feedback Courage

86

2019-02-08

XP Values:
Communication

Poor communication in software teams is one of the root
causes of failure of a project

Stress on good communication between all stakeholders--
customers, team members, project managers

Customer representative always on site

Paired programming

87

2019-02-08

XP Values: Simplicity

‘Do the Simplest Thing That Could Possibly
Work’

• Implement a new capability in the simplest possible way
• Refactor the system to be the simplest possible code with

the current feature set

‘You Aren’t Going to Need It’ (YAGNI)

• Never implement a feature you don’t need now

88

2019-02-08

You Aren’t Gonna Need It
(YAGNI)
Important aspect of simple design: avoid
speculative coding.

• Whenever you’re tempted to add something to your
design, ask yourself if it supports the stories and features
you’re currently delivering. If not, well... you aren’t gonna
need it. Your design could change. Your customers’ minds
could change.

Similarly, remove code that’s no longer in use.

• You’ll make the design smaller, simpler, and easier to
understand. If you need it again in the future, you can
always get it out of version control. For now, it’s a
maintenance burden you don’t need.

89

Important aspect of simple design: avoid speculative coding. Whenever you’re
tempted to add something to your design, ask yourself if it supports the stories and
features you’re currently delivering. If not, well... you aren’t gonna need it. Your
design could change. Your customers’ minds could change.

Similarly, remove code that’s no longer in use. You’ll make the design smaller,
simpler, and easier to understand. If you need it again in the future, you can always
get it out of version control. For now, it’s a maintenance burden you don’t need.

We do this because excess code makes change difficult. Speculative design, added
to make specific changes easy, often turns out to be wrong in some way, which
actually makes changes more difficult. It’s usually easier to add to a design than to
fix a design that’s wrong. The incorrect design has code that depends on it,
sometimes locking bad decisions in place.

2019-02-08

XP Values: Feedback

Always a running system that delivers information
about itself in a reliable way

The system and the code provides feedback on
the state of development

Catalyst for change and an indicator of progress

90

2019-02-08

XP Values: Courage

Projects are
people-centric

Ingenuity of people
and not any
process that

causes a project to
succeed

91

2019-02-08

XP Criticism

Unrealistic--
programmer
centric, not

business focused

Detailed
specifications are

not written

Design after
testing

Constant
refactoring

Customer
availability

12 practices are
too

interdependent

92

2019-02-08

XP Thoughts

The best design is the code.

Testing is good. Write tests before code. Code is complete when it passes
tests.

Simple code is better. Write only code that is needed. Reduce complexity
and duplication.

Keep code simple. Refactor.

Keep iterations short. Constant feedback.

93

2019-02-08

Common XP
Misconceptions

No written design documentation
• Truth: no formal standards for how much or what kind of

docs are needed.

No design
• Truth: minimal explicit, up-front design; design is an

explicit part of every activity through every day.

XP is easy
• Truth: although XP does try to work with the natural

tendencies of developers, it requires great discipline and
consistency.

94

2019-02-08

More Misconceptions

XP is just legitimized hacking
• Truth: XP has extremely high quality standards

throughout the process
• Unfortunate truth: XP is sometimes used as an

excuse for sloppy development

XP is the one, true way to build software
• Truth: it seems to be a sweet spot for certain kinds

of projects

95

2019-02-08

XP Summary (by ISTQB)

Values:
• communication, simplicity, feedback, courage, respect

Principles:
• humanity, economics, mutual benefit, self-similarity, improvement,

diversity, reflection, flow, opportunity, redundancy, failure, quality, baby
steps, accepted responsibility

Primary practices:
• sit together, whole team, informative workspace (radiators), energized

work, pair programming, stories, weekly cycle, quarterly cycle, slack (do
not use 100% allocation), 10 minute build, continuous integration, test
first programming, incremental design

Many other agile practices use some aspects of XP

96

2019-02-08

97

HOW IT ALL FITS TOGETHER

97

Speakers notes:

It begins with Lean as a concept, optimizing the whole vaule flow

With the Agile concept we focus on cooperation to eliminate waste

Scrum is one typical method that can be used to plan and keep good control
of what to do and who is doing what

XP is yet another method, but in this case a specific one for SW
development (eXtreme Programming)

2019-02-08

98

THE SCRUM FRAMEWORK

98

Speakers notes:

Process description of Scrum as one example of a method that can be used within
Lean and Agile product development

2019-02-08

99

ROLES
Product Owner

Coach

Team

99

Speakers notes:

Product owner

Represents the interests of all the stakeholders

ROI objectives

Prioritizes the product backlog

Team

Cross-functional

Self-managing

Self-organizing

Coach
Coaches the team in the Agile and Lean process
Challenges the team for continuous improvement
Teaching the way we do Agile & Lean
Ensures the following of Agile & Lean rules and practices

2019-02-08

100

USER STORIES AND ESTIMATION (1)

Describe requirements in product backlog

Syntax: As <role> I want to <requirement>
because <business reason>

Example:

• As a customer I want to reserve movie tickets with my
mobile
• Because I want to be sure that I have a seat when I arrive

to the theater
100

Speakers notes:

User stories are a way of describing customer requirements without having
to create formalized requirement documents and without performing
administrative tasks related to maintaining them.

A user story could describe a small feature but normally a feature is divided
into several user stories.

2019-02-08

101

USER STORIES AND ESTIMATION (2)

Planning poker method
• Product owner (or a

stakeholder with the best
knowledge) explains the story

• Team members estimate the
story independently and select
a card

• They show the cards
simultaneously

• Explain why estimates differ
• End or go back to step 2

101

Speakers notes:

This is an exercise which will focus on the ability to cooperate in a Team

2019-02-08

102

Sprint planning

Time-box (eg. 2 hours)

• 1st - 1 hours max. for team to select Product
Backlog and sets goal with Product Owner

• 2nd - 1 hours max. for team to define Sprint
Backlog to build functionality

Attendees

• Product owner, team and Scrum Master

Product owner must prepare the Product
Backlog prior to the meeting

• Product owner decides what the product backlog
constitutes

Output: Sprint backlog

• Tasks, task estimates, task assignments

Product
Backlog

Team
Capacity

Analyze, evaluate and select
Product Backlog for Sprint

Estimated
Work

Decompose to specifications
and tasks, estimate tasks

Budgeted
Work in
Tasks

102

Speakers notes:

The very first time a Team work like this is set up it might take an hour or
two.

This example could be a SW Team with a “normal size” of 6-8 members,
(depending on the product, its maturity and complexity) that after
implementation of Agile and Lean wow now can be done within a few

2019-02-08

minutes, or significantly shorter planning time.

2019-02-08

Code produced (all ‘to do’ items in code completed)

Code commented, checked in and run against current version in source control

Peer reviewed (or produced with pair programming) and meeting development standards

Builds without errors

Unit tests written and passing

Deployed to system test environment and passed system tests

Passed UAT (User Acceptance Testing) and signed off as meeting requirements

Any build/deployment/configuration changes implemented/documented/communicated

Relevant documentation/diagrams produced and/or updated

Remaining hours for task set to zero and task closed

Definition of DONE (DoD)
10 Point Checklist

103

See more at: http://www.allaboutagile.com/definition-of-done-10-point-
checklist/#sthash.8rcJSONz.dpuf

2019-02-08

104

TRANSPARENCY – TASK BOARD

104

Picture of task board: Kniberg, Henrik 2006. Scrum and XP from the Trenches.
<http://www.crisp.se/henrik.kniberg/ScrumAndXpFromTheTrenches.pdf>

Speakers notes:

Normally the team has their Daily Scrum standing at this task board. A Daily Scrum is a:

-Daily 15 minute work meeting;

-Same place and time every day;

- Where everyone answers three questions;

What have you done since last meeting?

What will you do before next meeting?

What is in your way?

-In order to find Impediments and make Decisions

The definition of Done is very important to agree upon, settle this within the Team

2019-02-08

105

RETROSPECTIVES

Set the stage
• Focus for this retrospective

Gather data
• Ground it in facts, not opinions

Generate insights
• Observe patterns

Decide what to do
• Move from discussion to action

105

Speakers notes:

Point out that retrospectives are for the team and should thereby be run by
he team, not a manager (the team should even decide if the manager is
allowed to participate).

The goal is to find impediments for better ways of working. Earlier, before
Agile ways of working, this was normally done once or twice a day. Now, we
want to do this at the end of every sprint.

2019-02-08

106

Scrum, Summary (by ISTQB)

Practises

• Sprint (Iteration)
• Product increment
• Products backlog
• Definition of Done (DoD) – exit

criteria
• Timeboxing – fix duration for

iteration, fix daily meetings
• Transparency

No specific software
development techniques

Roles

• Scrum Master (SM) ensures
practices and rules are
implemented, followed – process
focused scrum theory

• Product Owner (PO) represents
the customer and owns product
backlog – he/she can change
product backlog any time

• Development Team (3-9, self-
organized) develops and tests
product

Scrum does not prescribe
testing approach

106

2019-02-08

2019-02-08

看板 – Kanban cards limit excess work in progress

看板 – kanban literally means “visual
card,” “signboard,” or “billboard.”

Toyota originally used Kanban cards to
limit the amount of inventory tied up in
“work in progress” on a manufacturing
floor

kanban cards act as a form of
“currency” representing how WIP (Work
In Progress) is allowed in a system.

Kanban is an emerging process
framework that is growing in popularity
since it was first discussed at Agile 2007
in Washington D.C.

107

108

TRANSPARENCY – KANBAN
APPROACH

108

Speakers notes:

Working with Kanban is all about optimizing flow. The Kanban board could
be used on all levels. Leadership Teams as well as personally.

2019-02-08

The numbers show maximum amount of Work in progress in every step of the
process. I order to enhance collaboration, the amount show be a lot smaller then the
team-size.

The board could be used either by showing impediments or for using regular job.

2019-02-08

Kanban basic rules

Visualize the
workflow

Limit Work In
Progress (WIP)

Measure and
optimize lead
time

study implement integrate test done

2 4 1 3

Lead time until done

Cycle time of impl.

backlog

109

2019-02-08

Processes

110

2019-02-08

Visualize the
workflow

Product management Systems Design & FT System I&V Sales

Management team

C
us

to
m

e
r

Customer

111

2019-02-08

Visualize the
workflow

Design (2)Planned (x) Test (6) Integrate (3) Done

US x

TR, CSR

US y

Improvement

112

2019-02-08

Limiting Work In
Progress
20% time is lost to context switching per task, so fewer tasks
means less time lost (from Gerald Weinberg, Quality Software
Management: Systems Thinking)

113

2019-02-08

Limiting Work In
Progress

114

2019-02-08

Limiting Work In
Progress
New work items can only be pulled into a state if there is
capacity under the WIP limit.

(3) (2)

115

2019-02-08

Limiting WIP -
emergency

Design (2)Planned (x) Test (6) Integrate (3) Done

US x

TR, CSR

US y

Improvement

Priority lane – limit 1

116

2019-02-08

Limiting WIP –
exploding items

Design (2)Planned (x) Test (6) Integrate (3) Done

US x

TR, CSR

US y

Improvement

117

2019-02-08

metrics
Metrics are a tool for everybody

The team is responsible for its metrics

Metrics allow for continuous improvement

• Quality
• Work in Process
• Lead / Cycle time
• Waste / Efficiency
• Throughput

Manage quantitatively and objectively using
only a few simple metrics

118

2019-02-08

Little’s Law for
Queuing Theory

Total Cycle Time = Number of
Things in Progress / Average

Completion Rate

The only way to reduce cycle
time is by either reducing the

WIP, or improving the average
completion rate.

• Achieving both is desirable.
• Limiting WIP is easier to

implement by comparison.

119

2019-02-08

2019-02-08

Use cumulative flow diagrams to visualize work in
progress

www.agilemanagement.net/Articles/Papers/BorConManagingwithCumulat.html

Lead time: 11 D

Lead time: 4 D

120

Value stream mapping

121

2019-02-08

Tibor Csöndes | 2019-02-08 | Agilis hálózati szolgálatásfejlesztés | Open | Public | Page 122

Prioritization method
› Business value?

› Cost of delay classification

Expedite: critical, and immediate cost of delay; can
exceed other kanban limit (bumps other work) 1st

priority

Fixed date: cost of delay goes up significantly after
deadline; 2nd priority

Accelerating: cost of delay goes up increasingly
over time; 3rd priority

Normal: Cost of delay linear over time; 4th priority

122

2019-02-08

Scaling – swim lanes

Team “A”

Team “B”

…

Team “X”

Not
started donestarted … … … …

123

2019-02-08

Tibor Csöndes | 2019-02-08 | Agilis hálózati szolgálatásfejlesztés | Open | Public | Page 124

R&D Agile Target – other
part
Requirement Point

Tasks related to team are collected, prioritized and updated continuously in a shared excel sheet
/ team’s whiteboard

3

At least the next task states are available on the team's board: "Not Started", "In progress",
"Blocked", "Done".

5

There are limits set for each of the "active" states. "Keep focus." 5

Daily scrum meeting (What did you do yesterday? What do you plan to do today? Are there any
impediments?)

5

Self organized team – team members select the tasks based on priorities. 5

Retrospective meetings in every 2-4 weeks (what went well, what should be improved) 5

Team tracks the lead-time of each task. (Average lead-time.) 5

Co-located team 5

Visualize

the workflow

Limit WIP

Measure and

Optimize lead time

124

2019-02-08

One day in kanban
land

125

2019-02-08

After a Kanban
Implementation…

“Nothing else in their world should have
changed. Job descriptions are the same.
Activities are the same. Handoffs are the
same. Artifacts are the same. Their process
hasn't changed other than you are asking
them to accept an WIP limit and to pull work
rather than receive it in a push fashion”
David Anderson.

126

2019-02-08

sources

› http://www.limitedwipsociety.org/

› http://www.crisp.se/henrik.kniberg/kanban-vs-scrum.pdf

127

2019-02-08

Kanban Summary (by ISTQB)

Optimize flow of work in value-added chain

Instruments:

• Kanban board
• Work-in-progress limit
• Lead time

Both Kanban and Scrum provide status transparency and
backlogs, but:

• Iteration is optional in Kanban
• Items can be delivered one at a time or in a release
• Timeboxing is optional

128

2019-02-08

Lean & Agile

129

2019-02-08

Helps in generating on-line documentation or offline
reference manual from documented source files.

Combine source code with documentation and other
reference materials

Make it easier to keep the documentation and code in
sync

• Doxygen
• Javadoc
• T3Doc

We will see:

Documentation
systems

130

2019-02-08

Source code documentation
generator tool, Doxygen is a

documentation system for C++,
C, Java, Objective-C, Python,

IDL (Corba and Microsoft
flavors), Fortran, VHDL, PHP,

C#, and to some extend D.

Most useful tags:
• \file
• \author
• \brief
• \param
• \returns
• \todo (not used in assignments)

Doxygen

131

2019-02-08

Attach special comments, called
documentation comment (or doc
comment) to classes, fields, and

methods. /** … */

Use a tool, called javadoc, to
automatically generate HTML pages

from source code.

Javadoc Tags: Special keyword
recognized by javadoc tool. Common
Tags:
• @author Author of the feature
• @version Current version number
• @since Since when
• @param Meaning of parameter
• @return Meaning of return value
• @throws Meaning of exception
• @see Link to other feature

Javadoc

132

2019-02-08

TTCN-3 source code tagging

Standard: ETSI ES 201 873-10

Example
• /***************************************

** @desc XYZ **
** Initialize to pre-trial defaults. **
** **
123
**/

T3doc

133

2019-02-08

TTCN-3 documentation
tags

134

2019-02-08

