White-box testing 2017-04-19

=
>

ERICSSON

WHITE-BOX
TESTING

Tibor Csondes,
BME-TMIT
Ericsson Hungary, Test Competence Center

© Ericsson AB 2017 1

White-box testing 2017-04-19

\\

AGENDA

» Introduction, test principles
» Black-box testing

» White-box testing

» Control flow testing
» Path testing

» Coverage testing

» Data flow testing

» Code review

» Unit testing

» Instrumentation

» Take aways

© Ericsson AB 2017 2

White-box testing 2017-04-19

ERICSSON

INTRODUCTION,
TEST PRINCIPLES

© Ericsson AB 2017 3

White-box testing 2017-04-19

\\

GOALS OF TESTING

» To show the presence of bugs (Dijkstra, 1987)

» If tests do detect failures, we cannot conclude that
software is defect-free

» Still, we need to do testing

—driven by sound and systematic principles
» Should help isolate errors

—to facilitate debugging
» Should be repeatable

- repeating the same experiment, we should get the same results

this may not be true because of the effect of execution
environment on testing

because of non-determinism

© Ericsson AB 2017 4

White-box testing 2017-04-19

SOFTWARE TESTING
PRINCIPLES

Davids suggests a set of testing principles:

» All tests should be traceable to customer
requirements.

» Tests should be planned long before testing
begins.
» The Pareto principle applies to software testing.

* 80% of all errors uncovered during testing
will likely be traceable to 20% of all
program modules.

» Testing should begin “in the small” and progress
toward testing “in the large”.

» Exhaustive testing is not possible.

\\

© Ericsson AB 2017 5

White-box testing

T

>

>

CHARACTERISTICS OF

ESTABLE SOFTWARE

Operable

— The better it works (i.e., better quality), the easier it is to test
Observable

— Incorrect output is easily identified; internal errors are automatically detected
Controllable

— The states and variables of the software can be controlled directly by the tester
Decomposable

— The software is built from independent modules that can be tested independently
Simple

— The program should exhibit functional, structural, and code simplicity
Stable

— Changes to the software during testing are infrequent and do not invalidate existing
tests

Understandable
— The architectural design is well understood; documentation is available and organized

\\

© Ericsson AB 2017

2017-04-19

White-box testing 2017-04-19

TEST CHARACTERISTICS

\\

» A good test has a high probability of finding an error
- The tester must understand the software and how it might fail
» A good testis not redundant

- Testing time is limited; one test should not serve the same purpose
as another test

» A good test should be “best of breed”

- Tests that have the highest likelihood of uncovering a whole class of
errors should be used

» A good test should be neither too simple nor too complex

— Each test should be executed separately; combining a series of tests
could cause side effects and mask certain errors

© Ericsson AB 2017 7

White-box testing 2017-04-19

\\

TEST HYPOTHESES

» Regularity: the number of control states in the implementation is
limited. This allows to limit testing to a finite set of behaviours for
systems exhibiting an infinite behavioural variety.

» Uniformity: it is sufficient to test only one out of several equivalent
behaviours.

» Independency: Faults in one of the modules of the tested system do
not affect the other modules, i.e., testing of the system is equivalent
to testing of its modules separately.

» Fairness: In a nondeterministic system, the different execution paths
tested cover all paths relevant for detecting possible faults.

© Ericsson AB 2017 8

White-box testing 2017-04-19

\\

ISTQB GLOSSARY

Black-box testing

» Synonyms: specification-based testing

» Testing, either functional or non-functional,
without reference to the internal structure of the
component or system.

White-box testing

» Synonyms: clear-box testing, code-based testing, glass-box testing,
logic-coverage testing, logic-driven testing, structural testing,
structure-based testing

» Testing based on an analysis of the internal
structure of the component or system.

© Ericsson AB 2017 9

White-box testing 2017-04-19

MAJOR FOCUS

W\

» Specification based (Black-box) testing:
functions, operations, external interfaces, external
data and information

» Structure based (White-box) testing:
internal structures, logic paths, control flows, data
flows internal data structures, conditions, loops,
etc.

© Ericsson AB 2017 10

White-box testing 2017-04-19

TeST TECHNIQUES REVISITED

e Dynamic.
Informal Review // \\ e / havioura]
i ,
m—
Walkthrough Structure based —

(White-box) L/ /

Technical Review
/ Usability

© Ericsson AB 2017 11

White-box testing

BLACK-BOX TESTING

— i

Behavioural

(Black- box)

=

Structure based on_ﬁml
‘Walkthrough (Whi) 5
— L /
/ Usability

Data

Flow Performance
eu:.//
Symbolic
Execution

Definition

-Use

=
>

ERICSSON

© Ericsson AB 2017

2017-04-19

12

White-box testing

» Black box testing

- Implementation/System/Software
Under Test

- Point of Control and Observation
» We can

—-send input (action),

- receive output (observation) and

- measure the time

BLACK BOX TESTING

Verdict: pass,
fail,

W\

© Ericsson AB 2017

2017-04-19

13

White-box testing

TEST CASES IN BLACK-BOX &
TEST

\

« Focus on a single requirement stimulus () non-blocking
» Returns verdict (pass, fail, inconclusive)
 Typically a sequence of action-observation-
verdict update:
- Action (stimulus): non-blocking
(e.g. transmit PDU, start timer) non-blocking

- Observation (event): takes care of multiple
alternative events (e.g. expected PDU,
unexpected PDU, timeout)

alternatives

blocking ¥ events

2017-04-19

Black-box testing means that the internal structure of the tested software product is not known:

the only way to test it is to send a message ("stimulus") to the system and to analyse the
received response. The latter is compared to the due response determined beforehand using
the reference specification. If the comparison (“pattern matching") between the real and the
expected response fails, the test case is considered as "failed" otherwise "passed".

The test script language must have means to match the expected and the received messages
even if the message elements arrive in different order, or some of them (the optional ones) are
missing. Usually, there are more than one possible responses; all of them must be accepted.

Once the match is determined, the next stimulus is constructed taking into consideration the
data having received in the response, and so on.

The test script language must be prepared to determine that the expected response is not
received within the specified time frame: it must handle timing ("temporal”) requirements.

© Ericsson AB 2017

14

White-box testing 2017-04-19

WHITE-BOX TESTING z

ERICSSON

© Ericsson AB 2017 15

White-box testing 2017-04-19

NEED FOR WHITE BOX TESTING 2

» Most of the functional and performance
iIssues arise due to bad coding

» White box tests do the same by getting into
the internals of every program

» Every developer is by default a white box
tester

» If your application must scale to a very
large extent, white box tests are inevitable

© Ericsson AB 2017 16

White-box testing 2017-04-19

BLACK BOX CANNOT TEST THESE

W\

»What path the program took to achieve the
end result

»Is there any dead and unused code
»Is there any extra code that is not needed
»Is the code compliant to coding standards

» Code coverage

© Ericsson AB 2017 17

White-box testing 2017-04-19

THE GENERAL WHITE BOX
TESTING PROCESS

W\

1. The SUT's implementation is analyzed
2. Paths through the SUT are identified

Inputs are chosen to cause the SUT to execute selected
paths

Expected results for those inputs are determined
The tests are run
Actual outputs are compared with the expected outputs

A determination is made as to the proper functioning of the
SUT

-

P .

© Ericsson AB 2017 19

White-box testing 2017-04-19

W\

APPLICABILITY

» White box testing can be applied at all levels of system
development
—unit, integration, and system.

» White box testing is more than code testing—it is not only
path testing.

» We can apply the same techniques to test paths between
modules within subsystems, between subsystems
within systems, and even between entire systems.

© Ericsson AB 2017 20

White-box testing 2017-04-19

\\

ADVANTAGES

» The tester can be sure that every path through
the software under test has been identified and
tested

» Side effects of having the knowledge of the
source code is beneficial to thorough testing.

» Optimization of code by revealing hidden errors
and being able to remove these possible defects.

» White box tests are easy to automate.

» White box testing give clear, engineering-based,
rules for when to stop testing.

© Ericsson AB 2017 21

White-box testing 2017-04-19

-

DISADVANTAGES >

» The number of execution paths may be so large then they
cannot all be tested.

» The test cases chosen may not detect data sensitivity
errors.

- For example: p=q/r; may execute correctly except when r=0.

» White box testing assumes the control flow is correct (or
very close to correct). Since the tests are based on the
existing paths, non-existent paths cannot be discovered
through white box testing.

» The tester must have the programming skills to understand
and evaluate the software under test.

© Ericsson AB 2017 22

White-box testing 2017-04-19

WHITE BOX TESTING
TECHNIQUES

\\

» Control Flow Testing
- Path Testing

- Coverage Testing

» Data Flow Testing

© Ericsson AB 2017 23

White-box testing 2017-04-19

CONTROL FLOW TESTING 2

, - ERICSSON
MW/ \ o havioural
Wakrgh | [Stracture based| Ko ool RGN

e LL

T v
/ Usability

Performance

© Ericsson AB 2017 24

White-box testing

Sequential
statement block

Case C of

L1:S1;
L2: 82;

Ln: Sn;

end;

Ny
/

S1

S1

C

CONTROL FLOW TESTING
eELEMENTS

-

\

If C Then S1 else
S2;

® s

‘IfCThenSI;

© Ericsson AB 2017

2017-04-19

25

White-box testing

CONTROL FLOW TeSTING
ELEMENTS

-

\

C I1=1
zT ‘ While C do S; ‘ For loop:
S
S yes forI=1tondos;
I<=n
no
} S1 | Do loop:
do S1 until C;
¥ €
T

2017-04-19

© Ericsson AB 2017

26

White-box testing

FLOW GRAPH EXAMPLE

G = (V, E) where
-V is the set of basic blocks
- E is the set of control branches

Example:
a = Read(b) Input:
c=0 b=2
while (a>1)

If (an2 >c)

c=c+a Output:
a=a-2 a=0,c=2

L o

White-box testing | Ericsson internal | ® Ericsson AB2017 | 2017-04-19 | Page 27

W\

© Ericsson AB 2017

2017-04-19

27

White-box testing 2017-04-19

PATH TESTING

W\

mﬁ//-s\::,. yd

Walkthrough Structure based

Technical M/

© Ericsson AB 2017 28

White-box testing 2017-04-19

PATH TESTING =

-

» Identifies the execution paths through a module
of program code

» Creates and executes test cases to cover those
paths.

- Path: A sequence of statement execution that begins at
an entry and ends at an exit.

- An element of an Independent path set is any path
through the code that introduces at least one new set of
processing statements or a new condition.

- Basis Path Testing is a means for ensuring that all
independent paths through a code module have been
tested

© Ericsson AB 2017 29

White-box testing

CYCLOMATIC COMPLEXITY Z

» Provides a quantitative measure of the logical complexity
of a program

» Defines the number of independent paths in the basis set

» Provides an upper bound for the number of tests that must
be conducted to ensure all statements have been
executed at least once

» Can be computed three ways

- The number of regions

-V(G)=E - N+ 2, where E is the number of edges and N is the
number of nodes in graph G

-V(G) =P + 1, where P is the number of predicate nodes in the flow
graph G

Regions are the faces in a planar graph.

© Ericsson AB 2017

2017-04-19

30

White-box testing

W\

DERIVING THE BASIS SET
AND TeST CASES

1. Using the design or code as a foundation, draw a
corresponding flow graph

2. Determine the cyclomatic complexity of the
resultant flow graph

3. Determine a basis set of linearly independent
paths

4. Prepare test cases that will force execution of each
path in the basis set

© Ericsson AB 2017

2017-04-19

31

White-box testing 2017-04-19

\\

BASIC PATH COVERAGE

» The number of Basic paths is
E-N+2

» Example

p1=start—1,2-3-end

p2 =start-1,2-3-4-6-3-end
p3=start-12-3-4- 5-6-3-end

E-N+2=8-7+2=3

© Ericsson AB 2017 32

White-box testing 2017-04-19

COVERAGE TESTING Z

ERICSSON

ehavioura
< ACK- X
Waikiwough | [Structure based —

etc

© Ericsson AB 2017 33

White-box testing 2017-04-19

\\

ISTQB GLOSSARY

» Code coverage: An analysis method that determines which parts
of the software have been executed (covered) by the test suite and
which parts have not been executed, e.g., statement coverage,
decision coverage or condition coverage.

» Statement coverage: The percentage of executable statements
that have been exercised by a test suite.

» Decision coverage: The percentage of decision outcomes that
have been exercised by a test suite. 100% decision coverage
implies both 100% branch coverage and 100% statement
coverage.

» Condition coverage: The percentage of condition outcomes that
have been exercised by a test suite. 100% condition coverage
requires each single condition in every decision statement to be
tested as True and False.

100% implication is true if there is no early evaluation

© Ericsson AB 2017 34

White-box testing 2017-04-19

COVERAGE OUTPUT —
() cC 2C -
Example:
Line Code Time

47 | myproc (p1, p2) 7181

48 if (p1 < p2) 2

49 call proci(); 388

50 it (p1 > p2) 0

51 callproc2() 0

52 if(p1==p2) 2

6789

© Ericsson AB 2017 35

White-box testing 2017-04-19

W\

COVERAGE GOALS

» Coverage must have 100% at the end of
all tests for every function (new projects)

» There must be 1 test for every relational
operation in conditions

» There must be 1 test for every loop
termination

» There must be 1 test for every exception

» There must be 1 test for every test exit
point (if method has multiple return
points)

© Ericsson AB 2017 36

White-box testing 2017-04-19

eXAMPLE: SAMPLE CODE FOR
COVERAGE ANALYSIS

W\

1 float foo (int a, int b, int ¢, int d, float ¢) {
2 float e;

3 if (@a==0) {

4 return 0;

5 3

6 int x = 0;

¢ if ((a==b) OR ((c == d) AND bug(a))) {
8 x=1;

9 3

10 e=1/x;

11 return e;

12}

37

© Ericsson AB 2017 37

White-box testing 2017-04-19

STATEMENT COVERAGE

\\

» Statement coverage is a measure of the percentage of
program statements that are run when your tests are
executed.

» The objective should be to achieve 100% statement
coverage through your testing.

» Identify the cyclomatic number and executing this
minimum set of test cases will make this statement
coverage achievable.

» Test Case 1: call the method foo(0, 0, 0, 0, 0.), expected
return value of 0.

» In Test Case 1, we executed the program statements on
lines 1-5 out of 12 lines of code - a 42% (5/12) statement
coverage.

© Ericsson AB 2017 39

White-box testing

STATEMENT
COVERAGE(CONT))

» To attain 100% statement coverage, one should execute an
additional test case.

W\

» Test Case 2. the method call foo(1, 1, 1, 1, 1.), expected
return value of 1.

» This executes the program statements on lines 6-12 - a
100% statement coverage.

© Ericsson AB 2017

2017-04-19

40

White-box testing

DECISION/BRANCH COVERAGE 2

\

» Decision or branch coverage is a measure of how
many of the Boolean expressions of the program have
been evaluated as both true and false in the testing.

» The example program has two decision points — one on
line 3 and the other on line 7.

3 if(a == 0) {
7 if((a==b) OR ((c == d) AND bug(a))) {

Decision and branch coverage are the same in ISTQB terminology. In other
literature they are differs.

© Ericsson AB 2017

2017-04-19

41

White-box testing

DECISION/BRANCH
COVERAGE(CONT)

» For decision/branch coverage, evaluate an entire Boolean
expression as one true-or-false predicate even if it contains
multiple logical-and or logical-or operators.

» We need to ensure that each of these predicates (compound
or single) is tested as both true and false.

W\

Decision Coverage

Line # Predicate True False

3 (a==0) Test Case 1 Test Case 2
f00(0,0,0,0,0) | foo(l, 1.1, 1, 1)
return 0 retwrn 1

7 ((a==b) OR ((c ==d) AND bug(a))) | Test Case 2
foo(l, 1. 1, 1, 1)
retwrn 1

© Ericsson AB 2017

2017-04-19

42

White-box testing

DECISION/BRANCH
COVERAGE(CONT))

» Three of the four necessary conditions - 75% branch
coverage.

» We add Test Case 3: foo(1, 2, 1, 2, 1) to bring us to
100% branch coverage(making the Boolean expression
False).

» The objective is to achieve 100% branch coverage in
your testing.

» In large systems only 75%-85% is practical.

» Only 50% branch coverage is practical in very large
systems of 10 million source lines of code or more.

\\

© Ericsson AB 2017

2017-04-19

43

White-box testing 2017-04-19

CONDITION COVERAGE

\\

» Condition coverage reports the true or false
outcome of each Boolean sub-expression of a
compound predicate.

» In line 7 there are three sub-Boolean expressions to
the larger statement (a==b), (c==d), and bug(a).

» Condition coverage measures the outcome of each
of these sub-expressions independently of each
other.

» With condition coverage, you ensure that each of
these sub-expressions has independently been
tested as both true and false.

© Ericsson AB 2017 44

White-box testing 2017-04-19

CONDITION
COVERAGE(CONT.)

C'ondition coverage

W\

Predicate True False

(a=—b) Test Case 2 Test Case 3
foo(l, 1, x, x, foo(1,2,1,2, 1)
1) return division by
value 0 zero!

(c==d) Test Case 3

foo(1,2.1,2.,1)
division by
zero!

bug(a)

© Ericsson AB 2017 45

White-box testing 2017-04-19

CONDITION
COVERAGE(CONT.)

» Condition coverage of the table is only 50%.

W\

» The true condition (c==d) has never been tested.

» Short-circuit Boolean has prevented the method
bug(int) from ever being executed.

» Suppose bug(int) returns a value of true when passed
a value of a=1 and returns a false value if fed any
integer greater than 1.

Short-circuiting is where an expression is stopped being evaluated as soon as
its outcome is determined. So for instance:

if (a == || ¢ ==d || e ==f) { // Do something }

If a ==Dbis true, then c == d and e == f are never evaluated at all, because
the expression's outcome has already been determined.

© Ericsson AB 2017 46

White-box testing

CONDITION COVERAGE(CONT.) Z

» Test Case 4 address test (c==d) as true: foo(1, 2, 1,1, 1),
expected return value 1.

» When we run the test case, the function bug(a) actually
returns false, which causes our actual return value (division
by zero) to not match our expected return value.

» This allows us to detect an error in the bug method. Without
the addition of condition coverage, this error would not have
been revealed.

» To finalize our condition coverage, we must force bug(a) to be
false.

© Ericsson AB 2017

2017-04-19

a7

White-box testing

by zero error”.

CONDITION COVERAGE(CONT.)

» Test Case 5, foo(3, 2, 1, 1, 1), expected return value “division

» The condition coverage thus far is shown in the Table.

C'ondition Coverage Continued

Predicate True False

(a=—b) Test Case 2 Test Case 3
foo(1l.1,x,.x, 1) foo(1.2,1.2,1)
return value 0 division by

zero!

(c==d) Test Case 4 Test Case 3
foo(1,2,1,1, 1) foo(1.2,1,.2,1)
return value 1 division by

zero!

bug(a) Test Case 4 Test Case 5
foo(1,2,1, 1. 1) foo(3,2,1.1.1)
return value 1 division by

zero!

=
>

© Ericsson AB 2017

2017-04-19

48

White-box testing 2017-04-19

CONDITION
COVERAGE(CONT))

W\

» There are no industry standard objectives for condition
coverage, but we suggest that you keep condition
coverage in mind as you develop your test cases.

» Our condition coverage revealed that some additional test
cases were needed.

© Ericsson AB 2017 49

White-box testing 2017-04-19

EXHAUSTIVE TESTING z
DRAWBACKS

» The number of paths could be huge and thus untestable
within a reasonable amount of time.
—Every decision doubles the number of paths and

—Every loop multiplies the paths by the number of iterations
through the loop.

» For example:
for (i=1; i<=1000; i++)
for (j=1; j<=1000; j++)
for (k=1; k<=1000; k++)
doSomethingWith (i, j, k) ;

executes doSomethingWith() one billion times (1000x1000x1000).

© Ericsson AB 2017 50

White-box testing 2017-04-19

EXHAUSTIVE TESTING
DRAWBACKS(CONT)

W\

» Paths called for in the specification may simply be missing
from the module. Any testing approach based on

implemented paths will never find paths that were not
implemented.

if (a>0) doIsGreater();
if (a==0) dolsEqual();

// missing statement - if (a<0) dolsLess();

Negative path

© Ericsson AB 2017 51

White-box testing 2017-04-19

DATA FLOW TESTING =

ERICSSON

ehavioura
dLc ACK- >4
Waikiwough | [Structure based —

(White box) 7
e I /

© Ericsson AB 2017 52

White-box testing 2017-04-19

\\

DATA FLOW TESTING

» Data flow testing is a powerful tool to detect improper use of
data values due to coding errors.

main () {
int x;
if (x==42){...} // Data error!

} // x 1is undefined

93

© Ericsson AB 2017 53

White-box testing

int x;

int y;

DATA FLOW TESTING

» Variables that contain data values have a defined life
cycle. They are created, they are used, and they are
killed (destroyed) - Scope

//
//
/7
/7
/7
/7
/7
/7
/7

W\

begin outer block

%X is declared as an integer within this outer block

X can be accessed here

begin inner block

y is declared within this inner block

both x and y can be accessed here

y is automatically destroyed at the end of this block
®x can still be accessed, but y is gone

®Xx is automatically destroyed

© Ericsson AB 2017

2017-04-19

54

White-box testing 2017-04-19

W\

DATA FLOW TESTING

» Variables can be used
—in expression
—in conditionals

» Possibilities for the first occurrence of a variable
through a program path
—-~d the variable does not exist, then it is defined (d)
—-~u the variable does not exist, then it is used (u)

-~k the variable does not exist, then it is killed or
destroyed (k)

© Ericsson AB 2017 55

White-box testing

DATA FLOW TESTING <
-

» Examine time-sequenced pairs of defined (d), used (u), and
killed (k):

dd - not invalid but suspicious, probably a programming error

du - perfectly correct, the normal case

dk - not invalid but probably a programming error

ud - acceptable

uu - acceptable

uk - acceptable

kd - acceptable.

ku - a serious defect. Using a variable that does not exist or is
undefined is always an error.

kk - probably a programming error.

© Ericsson AB 2017

2017-04-19

56

White-box testing 2017-04-19

W\

DATA FLOW ANOMALY

~-State of variable

~action

...... anomalous

state

oo

© Ericsson AB 2017 57

White-box testing

STATIC DATA FLOW TESTING 2

\

» Static testing cannot find all errors

Examples:

- Arrays are collections of data elements that share the same name and
type. For example:

int test[100]; //defines an array named test
// consisting of 100 integer elements,
// named test[0], test[l], etc.

- Arrays are defined and destroyed as a unit but specific elements of the
array are used individually.

- Static analysis cannot determine whether the define-use-kill rules have
been followed properly unless each element is considered individually.

© Ericsson AB 2017

2017-04-19

58

White-box testing

DYNAMIC DATA FLOW TESTING g

» Data flow testing is based on a module's control flow, it
assumes that the control flow is basically correct.

» The data flow testing process is to choose enough test cases
so that:
- Every "define" is traced to each of its "uses"
- Every "use" is traced from its corresponding "define"
—-To do this,

Enumerate the paths through the module.

Begin at the module's entry point, take the leftmost path through the
module to its exit.

Return to the beginning and vary the first branching condition. Follow that
path to the exit.

Repeat until all the paths are listed.

For every variable, create at least one test case to cover every define-use
pair.

© Ericsson AB 2017

2017-04-19

59

White-box testing

CODE REVIEW

\ Behavioural
Static Analysis (Black-box)
Sirtcinre baved —

Adcai B’ / | Cete
Performance

=
>

- ERICSSON

© Ericsson AB 2017

2017-04-19

60

White-box testing 2017-04-19

CODE ReVIEW
» Code review can save upto 30% of testing

cost at a later point in time

» Usual problems happen due to cut and paste
of code where it is not required

» When there is a transition from one
developer to another, code goes thru
challenges

» Quick fixes on big projects cause enormous
amount of turbulence on production systems

» [deally senior people must review code

» Spend at least 10% of coding time on code
review

\\

© Ericsson AB 2017 61

White-box testing 2017-04-19

CODE REVIEW CHECKLIST

Just try these 9 critical points in daily life

No hard coding

Ensure loop termination conditions

No object creation inside loops

Close every object that you open

Give comments to every code block

Use database connection only when you need
Remove unused variables and code portions
Follow a consistent naming convention

Try to reduce overloading methods very often

\\

CPONDOTH NS

© Ericsson AB 2017 62

White-box testing 2017-04-19

ERICSSON

UNIT TESTING

© Ericsson AB 2017 63

White-box testing

UNIT TESTING IN GENERAL

» Scope: one component from the design

—Unit can be a page or a function or a method
within a class or a whole program itself

» Responsibility of the developer
—Not the job of an independent testing group

» Both white-box and black-box techniques are
used for unit testing

» Maybe necessary to create stubs:
-If modules not yet implemented or not yet tested

=
>

© Ericsson AB 2017

2017-04-19

64

White-box testing 2017-04-19

UNIT TESTING

» Unit test must focus on
—data type of every parameter
—data format of every parameter
—boundary values of every parameter
» For any given code, what deliverable do
we provide as part of unit testing?

—Most of the times it is just the trust on the
developer

W\

© Ericsson AB 2017 65

White-box testing 2017-04-19

— -
STUBS AND DRIVERS =
» When the program under test needs some
pre-built data or state, we need to mimic
the same
» This is a short-cut approach, but it serves |T°S'°"“'i
the purpose i i
» Stub is the one that mimics a called D Tt
function o N dn
» Driver is the one that mimics a caller f’“‘s‘"b‘] [’“‘S““]
function
» When we use stubs and drivers, it is a must
that we ensure that the data created by
them are destroyed soon after the test

© Ericsson AB 2017 66

White-box testing 2017-04-19

\\

UNIT TESTS

» Mocking:
- substitutes its own object (the “mock object”) for an object that talks
to the outside world
—checks thatit is called correctly and provides a pre-scripted
response

» Stubs and Drivers

Component: A A Driver

Component: B Stub B

Mock objects are a popular tool for isolating classes for unit testing. When
using mock objects, your test

substitutes its own object (the “mock object”) for an object that talks to the
outside world. The mock object

checks that it is called correctly and provides a pre-scripted response. In doing
so, it avoids time-consuming

communication to a database, network socket, or other outside entity.

Beware of mock objects. They add complexity and tie your test to the
implementation of your code. When

you’re tempted to use a mock object, ask yourself if there’s a way you could
improve the design of your code

so that a mock object isn’t necessary. Can you decouple your code from the
external dependency more cleanly?

Can you provide the data it needs—in the constructor, perhaps—rather than
having it get the data itself?

Mock objects are a useful technique, and sometimes they’re the best way to
test your code. Before you assume

that a mock object is appropriate for your situation, however, take a second
look at your design. You might

have an opportunity for improvement.

© Ericsson AB 2017 67

White-box testing

BASIC STRATEGY FOR UNIT
TESTING

1. Create black-box tests

Based on the specification of the unit (as
determined during design)

2. Evaluate the tests using white-box
techniques (test adequacy criteria)

How well did the tests cover statements,
branches, paths, DU-pairs (Def-Use), etc.?

Many possible criteria; at the very least need
100% branch coverage

3. Create more tests when needed: e.g., to
increase coverage of DU-pairs

=
>

© Ericsson AB 2017

2017-04-19

68

White-box testing

RN swN =

=X
o

UNIT TESTING CHECKLIST

Test case for custom exceptions.

Test case for system exceptions.

Test case for “body” of an if condition.
Test case for “body” of an else condition.
Test case for every loop termination.
Test case for every recursion termination.

Test case for pointers release (for memory leaks).

Test case for every procedure entry and exit.

Test case for every parameter validation for
procedures.

. Test case for resource release (Closing DB

connections, releasing objects etc.)

-

\

© Ericsson AB 2017

2017-04-19

69

White-box testing

AUTOMATE UNIT TESTS

» To reduce time, we need to write a program, that calls
the program under test and pass parameters

» Ideally the test program must be in the same language
as the program being tested

- This will help in maintaining the homogeneity of the data type of
parameters passed

» Since developers know the programming language, it is
easy for them to write the test program as well

» The investment on the unit tes_t automation isS one
time as long as changes are minimal

» The person who automates test for a program must
know the program well

\\

© Ericsson AB 2017

2017-04-19

70

White-box testing 2017-04-19

TESTING APIS

W\

» APls do exchange of data from one piece to another

» APls are usually consumed by many independent
programs

» APIs in general are meant to provide a window of
information to 3" parties

» One change in API will affect all consumers at once
» Most of the current day apps provide APls

» Some APls do require authentication mechanism

» APIs fall under external interfaces

© Ericsson AB 2017 71

White-box testing 2017-04-19

=
>

ERICSSON

INSTRUMENTATION

© Ericsson AB 2017 72

White-box testing 2017-04-19

INSTRUMENTATION

» White box tools and profiler tools use one single concept
called Instrumentation

» Source code is compiled and built as binary

» These tools understand the format of these binary files —
where function entry points are made, how they exit,
where stack is maintained etc.

» Before profiling, they instrument the binary — inject
their own log codes in the binary locations

» During the execution, the instrumented code is run and
every detail is logged using these injected code (such
as entered function x, executed loop y, exited function vy,
destroyed object o etc.)

» Using these logs, the tools provide internal details

\\

© Ericsson AB 2017 73

White-box testing 2017-04-19

INSTRUMENTATION
OVERHEADS

» When profilers run along with the instrumented
programs, it adds load to the machine

» This is a necessary overhead we need to take

» The performance overheads are negligible
when compared to actual object size

» The statistics that are collected out of the
programs will vary from time to time; but if the
variance is beyond 5%, then the tool has real
issues

» Also, do not run 2 competing tools on the same
machine. The effects are unpredictable

\\

© Ericsson AB 2017 74

White-box testing

MEMORY LEAKS

» When a memory pointer is declared and
initialized and it is not released, it is a leak

» Even in managed code sections, the leaks are
there for a time till the garbage collector acts

» Leaked memory locations are useless and
vulnerable

» One program leaking 10 bytes of memory per
call — can bring down the system in a day
when 1000s of users use the same for 100s of
transaction

» This is very important when we deal with
device drivers and embedded systems

\\

© Ericsson AB 2017

2017-04-19

75

White-box testing 2017-04-19

\\

MEMORY PROFILING

» This happens at runtime

» Profiling is the basic block of performance
engineering

» Concept of instrumentation and tracing happens

» Call graph will tell what is the path the program
touched in terms of functions

» Statistical profilers talk about memory and cpu

» Memory consumed at that instance by variables
and functions

» Memory released at any given point of time

© Ericsson AB 2017 76

White-box testing 2017-04-19

MEMORY QUANTIFICATION 2

» What is the consumption of memory and cpu is quantified

» Usual quantification happens in basic unit of
measurement

» UOM can be KB or machine cycles

» How many cpu cycles are spent in this method when this
iS running

» How many cpus cycles are spent to initialize the class

© Ericsson AB 2017 77

White-box testing

2017-04-19

MEMORY USAGE

view_summary

get_call_details logon _do_redistrafion

10% 1% 12%
view_bill
2%

17%
pay_bil
2%

dispute_bill
36%

Method Kbytes

logon 138
do_registration 1607
view_bill 254
pay_bill 2897
dispute_bill 4876
view_summary 2346
get_call_details 1345

© Ericsson AB 2017

78

White-box testing 2017-04-19

\\

BUFFER OVERFLOW

» When arrays or memory blocks are declared and we try
to access beyond those boundaries it is called overflow

» When program variable space is packed, the overflows
can cause damage to program counters or other stack
areas

» When stack is compromised, the result is program abort

» Dynamic arrays are also vulnerable to overflow when
people do not keep track of the max allocations

» Buffer overflow can result on network buffers also when
the response buffer is underestimated

» Protection of buffer overflow is usually made by providing
padding space to every memory space — but this needs to
be done against memory optimization

This is an important topic from security point of view.

© Ericsson AB 2017 79

White-box testing

W\

OBJeECT ISSUES

» Objects require space and the methods need cpu
cycles

» When objects are declared and not destroyed,
they also cause leaks

» Unused objects are vulnerable areas for attack

» Closure and nullifying objects are essential for
optimized use of memory

» Creating a series of objects in a multi user
environment can cause spiral problems

© Ericsson AB 2017

2017-04-19

80

White-box testing

FUNCTION-WISE
QUANTIFICATION

» Every function has variables and statements

» Parameters and variables take space from
symbol table as well as stack

» Statements do take cpu cycles based on how
many times they get executed

» When one function calls another, there is a huge
amount of context switch happening at heap and
program registry levels

» How many times these context switches

happen will also determine the complexity of the
programs

\\

© Ericsson AB 2017

2017-04-19

81

White-box testing 2017-04-19

-

METRICS COLLECTION >

» Average number of unit test cases per page/component/any specific
unitin the project

» Total number of unittest cases

» Total number of unit test cases failed in test pass-1
» Total number of unit test cases failed in test pass-2
» Total number of unittest cases failed in test pass-n
» Total number of memory leaks found

» Percentage code coverage as per the tool statistics

» Execution timefor each testrun

» Total test execution time for all units

» Ratio of # of defects found in unittesting to # of defects found in
code review

» Defect distribution across units (asp related, db related, parameter
related etc.)

© Ericsson AB 2017 82

White-box testing 2017-04-19

METRICS ANALYSIS z

» Trend analysis helps in seeing whether the error
rate moves up or down

» See pattern of failures and find out the corrective
action

» Metrics vary a lot from developer to developer;
hence find out error rate pattern across
developers

» Analyze failure pattern and time of failure

» It is not easy to catch all errors in one round of
testing; hence do more rounds; more often

© Ericsson AB 2017 83

White-box testing

CONFIGURATION
MANAGEMENT

» Since we develop test code, we need to check in
these code sections to VSS or subversion or
PVCS

» Maintain a uniform x.y version code to all test
cases and suites

» Check in the test data along with test code as well

» Have one single person who can oversee all
the CM operations

» Never allow people to have local copies of test
code

W\

© Ericsson AB 2017

2017-04-19

84

White-box testing 2017-04-19

W\

UNIT TEST PRACTICES

» Keep adding more tests every day

» More data preparation is the key

» Test often - even twice a day

» Run unit tests on a clean test bed

» Review unit test code as well

» Run regression unit tests daily

» Run unit tests by a different developer
» Make unit test code simple

» Never try to have if then else in a test code
» Do not have loops in a test code

» Run critical tests first

© Ericsson AB 2017 85

White-box testing 2017-04-19

W\

DON'TS

» Do not test entire functionality in one test

» One test must satisfy just one condition (focus on
one requirement)

» Never miss the null value test for any parameter

» Never miss any negative value tests for database
connection or query tests

» Never miss trying to access an object or record that
does not exist, because these are the places where
exceptions get triggered

© Ericsson AB 2017 86

White-box testing 2017-04-19

HOW TO SPeeD-UP

W\

» Let a senior create a sample test for every
function

» For a few tests, senior and junior developers
must do pair test automation

» Then junior takes care of rest of the unit tests
for automation

» Senior reviews the unit test code
» Lead runs all tests every day

© Ericsson AB 2017 87

White-box testing 2017-04-19

GeT READY TO TAKE BLAME z

» Unit tests are code; hence they may also have
bugs. Developers may start blaming the tests
themselves

» Sequence of unit tests must be carefully done.
Always use bottom up approach on unit tests —
test the smallest one first

» Run unit tests soon after build is released, and
before Build Verification Test starts by the black
box team

build verification test (BVT)
See Also: regression testing, smoke test

A set of automated tests which validates the integrity of each new build and
verifies its key/core

functionality, stability and testability. It is an industry practice when a high
frequency of build

releases occurs (e.g., Agile projects) and it is run on every new build before the
build is released

for further testing.

© Ericsson AB 2017

88

White-box testing 2017-04-19

ERICSSON

TAKE AWAYS

© Ericsson AB 2017 89

White-box testing 2017-04-19

CHALLENGES

> White box testers must be developers

» Companies use them to do core development work and
ignore writing white box tests

\\

» White box tests need tools and sometimes they are expensive

» Main challenge comes in not documenting design. Since
design is the basis, and if that is not present or incomplete,
white box tests do not yield good results

» Project planning never considers the time for white box
testing

» When changes are made to the programs being tested, the
changes are not documented well and hence unit tests go out
of gear

» Results can be seen only after 1 or 2 quarters. Many
management teams do not have patience to wait for such a
long time

© Ericsson AB 2017 90

White-box testing 2017-04-19

NEVER GIVE UP

W\

» Teams give up white box tests after a quarter or
SO

- This is because, they do not see visible returns

» Most of the times, great systems are brought
down due to missing white box tests and not
black box functionality

» It may take years to find out, one great bug — but
it is essential for long term products

» If you are in product company, be patient and
white box will pay back

© Ericsson AB 2017 92

White-box testing 2017-04-19

SUMMARY: VIDEO

W\

WHAT IS WHITE BOX TESTING

https://www.youtube.com/watch?v=3bJcvBLJViQ

© Ericsson AB 2017 93

White-box testing 2017-04-19

ERICSSON

© Ericsson AB 2017 94

