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Abstract
After a personal view of the history of state-machine 

modeling, we will concentrate on three concepts that are 
important for state-machine modeling and have been taken 
into account (in one way or another) in the design of 
related modeling languages: (1) conflict resolution between 
several system components, (2) message buffering, and 
(3) the refinement relation used for object-oriented 
inheritance. We will discuss some historical milestones that 
contributed to clarifying the related issues and providing 
solutions to the problems that arise in the context of these 
three concepts. We will also discuss how these concepts 
impact dependability engineering, and how they are 
accommodated in SDL and other specification languages.
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Perspective on state machine modeling

 State machine modeling is old
 More than 50 years for hardware
 More than 35 years for software
 I have been involved in modeling of communication 

protocols since 1975

 Basic concepts are well known, but certain aspects 
are often not well understood:
 The impact of different types of message buffering vs. 

rendezvous communication
 Conflict resolution in a distributed environment
 Inheritance and the substitution principle

Gregor v. Bochmann, University of Ottawa
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Outline of talk
 History of modeling languages, concepts 

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state 

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa
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History: modeling languages

Gregor v. Bochmann, University of Ottawa

FSM

SDL

( Mealy )1955

X.250 Lotos
State Charts
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UML-1
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Object-oriented SDL

many commercial tools

MSC

1980 - 1986  FDTs (ISO)
Estelle

2005
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Logical Time 1972

( Harel)
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1980

(1994  Selic )



6

History: Verification of concurrent 
system designs

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

UML-1

SDL-92

2005

1997

1992

1983

1976

1975 - 80

Bit-State representation 
for SPIN tool (Holzmann)

1987

First protocol verification 
based on FSM specifications

(Bochmann; West, prototype tools at IBM Zurich)

Commercial SDL tool (Telelogic)
including Bit-State verification

Current UML tools
have less verification support
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History: Code generation from 
model specifications

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

UML-1

SDL-92

2005

1997

1992

1983

1976

1982

Paper on code generation 
from Estelle models (Bochmann)

1987

First paper on code generation
from extended FSM models (Blumer & Tenney)

Commercial SDL tool
with code generation

Similarly for UML

Umple: a linear representation of UML
embedded into an implementation language (Lethbridge)



8

History: 
Object orientation - inheritance

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

SDL-92

2005

1992

1976
1967 Object orientation, inheritance (Simula)

Structural subtyping based on 
interfaces (Emerald language)

1987
Substitution principle based on 

dynamic behavior (Liskov)

1993 Conformance relations for behavior 
(Bochmann, Petrenko, Dssouli)

1995 Substitution principle with assumptions
(Abadi & Lamport)

1991 Behavior specifications with assumptions
(Misra & Chandy)
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History: Other interesting concepts

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

SDL-92

2005

1992

1976
1972

Conflict resolution by priority (Gouda)1984

Partial order (Lamport)

Service primitives (ISO)1983

Weak sequencing (for MSC)1996
Implied scenarios (Alur et al.)2000

Stuckfreeness (Fournet et al.)2004

Avoiding race conditions by considering 
message consumption (Mooij et al.)2005

1980 Rendezvous (Milner, Hoare)
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Outline of talk
 History of modeling languages, concepts 

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state 

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa
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Two perspectives for state machines

A. Actions during transitions
B. Actions in states
Example: The making of a sculpture

states of the sculptured object

states of the artist

Gregor v. Bochmann, University of Ottawa

A

B
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A more complex example

Gregor v. Bochmann, University of Ottawa
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Similarity of different notations

The above UML State Machine corresponds exactly to 
the following UML Activity Diagram

Gregor v. Bochmann, University of Ottawa
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Similarity of different notations (ii)

The above UML Activity Diagram corresponds exactly 
to the following Use Case Map

Gregor v. Bochmann, University of Ottawa

a b

c

d

f

e

g

h
k m

n
o

a b

c
g

h

d
n

o

mk

f

e

Note: An arrow represents control + data flow

D

C



15

Conclusion (1)
 Do we really need so many different 

notations ??

 Hierarchical State Machines may be 
used to represent “well-structured” 
Activity Diagrams or Use Case Maps.

Example of non well-structured Activity Diagram:

Gregor v. Bochmann, University of Ottawa
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Outline of talk
 History of modeling languages, concepts 

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state 

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa
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Distributed system design 
– an example

Gregor v. Bochmann, University of Ottawa

Global behavior spec               System architecture

A draft solution by projection:
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Distributed system design 
– an example

Gregor v. Bochmann, University of Ottawa

Global behavior spec               System architecture

A draft solution by projection:

Desired global behavior (as an LTS):

Leads to invalid behavior (red)
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Rendezvous communication
 Note: Rendezvous communication is 

more abstract than message passing
 Synchronous communication

Here is a solution to the example:

 Avoids cross-over of messages over the interface
 This is important for competing initiatives

Gregor v. Bochmann, University of Ottawa

b-done
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Competing initiatives
Different cases:

 Actions b and c initiated by the same 
system component: “local choice”

 Actions b and c initiated by different system 
component: “competing initiatives” or “non-
local choice”
 Example: Telephone call collision (simultaneous 

incoming and outgoing call)

b

c
1 2

3

Rendezvous communication:
 No problem at the level of behavior specification 
 However, non-local choice requires some protocol 

between the different parties at the implementation level 
(e.g. circulating token)
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Competing initiatives and message passing
!b

?c
1 2

3

Possible joint behavior
 Both components will be in 

different states
 Non-specified receptions 

Component A

Component B ?b

!c
1 2

3

A B
b c

Concept: Non-specified reception (a process 
receives a message for which there is no explicit behavior 
specified) – three different interpretations:

1. Undefined behavior (design error if it occurs)
2. Machine goes into an error state (design error if it occurs)
3. Message will be dropped (SDL) 
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Competing initiatives and message passing
!b

?c
1 2

3

Possible joint behavior
 Both components will be in 

different states
 Non-specified receptions 

Component A

Component B ?b

!c
1 2

3

A B
b c

Gouda’s solution (1984): 
 One side obtains priority (a design choice)
 e.g. priority for A: !b

?c
1 2

3A
?c ?b

!c
1 2

3B ?b
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Important concept: Service primitives
(synchronous message passing, like in  CSP - 1980)

 Layered protocol architecture (Pouzin et al. 1973)

 Formalization of protocol architecture 
(Bochmann 1978) 
 zero-queue communication at service interfaces, called 

direct coupling (like in CSP or in Input-Output Automata 
(IOA), Lynch 1989) 

 asynchronous message passing for communication 
through network

 OSI: Service Primitives (early 1980ies)

 Spin tool with zero-queue option (Holzmann)

Gregor v. Bochmann, University of Ottawa
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Distributed system design with 
message passing – the same example

Gregor v. Bochmann, University of Ottawa

Global behavior spec               System architecture

Assumption: Each action (a, b, c, d) implies a message sent to 
the other party. We assume the following sequence diagram:
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Distributed system design with 
message passing – the same example

Gregor v. Bochmann, University of Ottawa

Global behavior spec               System architecture

Assumption: Each action (a, b, c, d) implies a message sent to 
the other party. We assume the following sequence diagram:

Design method: by projection, we 
obtain the following behaviors for A and B:
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Verifying the design
Verifying the obtained agent behaviors by reachability 
analysis (Bochmann or West, 1978), one finds the following 
global reachability graph which shows non-specified 
receptions (in rose):

Gregor v. Bochmann, University of Ottawa
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Verifying the design
Verifying the obtained agent behaviors by reachability 
analysis (Bochmann or West, 1978), one finds the following 
global reachability graph which shows non-specified 
receptions (in rose):

Gregor v. Bochmann, University of Ottawa

We extend the behaviors to allow for the 
non-specified receptions, e.g. as follows:
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Implied scenarios
 The revised design results in the following graph:

Gregor v. Bochmann, University of Ottawa
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Implied scenarios
 The revised design results in the following graph:

Gregor v. Bochmann, University of Ottawa

This global behavior 
includes other 
sequence diagrams, 
such as:

Observation (Alur et al., 2000):
The minimal protocol behavior required 
to realize a given scenario (sequence 
diagram) will often also realize other 
scenarios, so-called “implied 
scenarios”.
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Weak sequencing
Weak sequencing is the natural sequencing 
operator for sequence diagrams

Gregor v. Bochmann, University of Ottawa

It often leads to so-called 
race conditions

In this example, A may send c 
immediately after sending a – therefore 

B may receive message c before b

A
a

c

b

CB

; (weak)

Ordering is enforced 
only locally 
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Different semantics of state machines

 FSM: Input/output transitions – larger atomic 
actions – simpler understanding

 Common queue or separate queues
 Different interpretations of non-specified reception
Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (weak)

d
?b / !d

B (as FSM)
?c

?c

?b !d

?c

B (as LTS or IOA)
?c

?c non-specified receptions
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Difficulty of dealing with 
race conditions

Hypothesis for traditional reachability analysis 
(definition of non-specified reception) and for race 
conditions:

 A message must be consumed when it is received.
This is the cause for race conditions !

There has been much work on dealing with 
race conditions (including ours) 
– no simple solution !

Gregor v. Bochmann, University of Ottawa
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Message consumption vs. reception 

Hypothesis for traditional reachability analysis 
(definition of non-specified reception) and for race 
conditions:

 A message must be consumed when it is received.

But: here is a solution to race conditions:
A message is consumed when the receiver is 
ready [Mooij – 2005] - This avoids race conditions

 Distinguish between message reception and consumption
 Hypothesis: There is a message pool where received 

messages are stored until they are consumed.
Gregor v. Bochmann, University of Ottawa
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Specifying message consumption
 Hypothesis: There is a message pool
 Notation: “Message reception” means consumption

Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (weak)

This means the consumption of the 
message, it may have been received 
earlier

Example: B will consume message b 
before message c, although c may arrive 
before b.
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Our earlier example

Design method: By projection, we obtain 
the following behaviors for A and B:

Assuming message pools - “?” means consumption: 
• There are no non-specified receptions, and no implied 

scenarios. 
• The design method appears to be perfect. 

• Note: Khendek (2005) used a similar method to obtain SDL 
component specifications from sequence diagrams. He used the 
SDL Save construct to obtain the equivalent of a message pool.
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Can these things be modeled with 
rendezvous communication ?

Process algebra languages usually use 
rendezvous communication.
 How to model message passing 

communication ?
 In the context of LOTOS (developed in the 

1980ies), explicit input queues were proposed 
(similar to SDL).

 In the context of “stuck-free conformance”, 
Fournet (2005) models a message pool.

 See next slide

Gregor v. Bochmann, University of Ottawa
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Modeling a message pool in process algebra

 Rendezvous communication à la CSP:
 A rendezvous takes place when an action a and 

a complementary action ã are executed jointly.
 If a represents sending message “a” and ã

represents the consumption of message “a” we 
may write as follows:
 Sender process: a || P    where P are the next actions

 Receiver process: ã ; Q   where Q are the next actions
 The rendezvous between a and ã will occur when the receiver is 

ready to execute ã (it represents the consumption of the 
message), while the sender has already continued with P. 

Gregor v. Bochmann, University of Ottawa
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Decision power of the receiver
Different cases
 Single FIFO input queue - No power of deciding 

the order of message consumption (e.g. SDL)
 Multiple input queues – decide which input queue 

to consider - possibly several (e.g. Estelle)
 Typed message pool – decide which type(s) of 

message to receive (e.g. SDL with Save, IBM’s 
BPEL execution environment, stuck-free formalism)

 General message pool – as above, but decision 
may depend on parameter values of messages

Gregor v. Bochmann, University of Ottawa
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Outline of talk
 History of modeling languages, concepts 

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state 

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa
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Distributed System Design 
from Global Requirements

Collaboration with Rolv Braek, Trondheim (2006) [Castejòn 2011]

Gregor v. Bochmann, University of Ottawa

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation
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Design method: by projection
A general method: Deriving a distributed system design 
from the global behavior specification by projecting the global 
behavior on each component (we assume message pools)

Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (weak)

Col1

Col2

Projection on A:
ProjA(Col1 ;W Col2) = 

ProjA(Col1) ; ProjA(Col2)

Resulting behaviors 
for A:  a!; c!
for B:  b?; c?
for C:  a?; b!

Hierarchical specification:
weak sequence 

of two collaborations, Col1 and Col2
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The case of strict sequence

This case was discussed in Gotzhein & Bochmann in 1986 

Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (strict)

Col1

Col2

Projection on A:
ProjA(Col1 ;s Col2) = 

ProjA(Col1) ; 
exchange of required coordination messages ; 
ProjA(Col2)

for A:  a!; coord?; c!
for B:  b?; coord!; c?
for C:  a?; b!

Hierarchical specification:
strict sequence 

of two collaborations, Col1 and Col2

The required coordination messages
depend on the terminating actions of Col1
and the initiating actions of Col2. 
In this example we need a message from B to A. 

Resulting behaviors:
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Design method by projection: 
further complications

 Choice: No problem for local choice
 However, need for coordination message (“choice indication”) for 

components not involved in one of the alternatives (Bochmann 2008) 

 Weak loop: Problem example : Process B does not know 
how many b messages to expect.

Gregor v. Bochmann, University of Ottawa

A

a

c

b

CB

; (weak)

Col1

Col2

loop
A

a

c

b

CB

a

b

Example 
scenario:
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Design method by projection: 
further complications

 Choice: No problem for local choice
 However, need for coordination message (“choice indication”) for 

components not involved in one of the alternatives (Bochmann 2008) 

 Weak loop: Need for message parameters 
representing the number of repetitions

Gregor v. Bochmann, University of Ottawa

Example: messages b and c include 
repetition parameter, allowing component 
B to decide whether message c can be 
consumed (only if its repetition parameter 
is equal to the value in the last b 
message)
This means a “general message pool” is 
required (wait for messages with 
particular parameter values)

A
a(1)

CB

a(2) b(1)

b(2)c(2)
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Outline of talk
 History of modeling languages, concepts 

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state 

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa
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History: 
Object orientation - inheritance

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

SDL-92

2005

1992

1976
1967 Object orientation, inheritance (Simula)

Structural subtyping based on 
interfaces (Emerald language, Black)

1987
Substitution principle based on 

behavior (Liskov)

1993 Conformance relations for behavior 
(Petrenko, Bochmann, Dssouli)

1995 Substitution principle with assumptions
(Abadi & Lamport)

1991 Behavior specifications with assumptions
(Misra & Chandy)
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Substitution principle (Liskov 1987)

Principle: Where the system design asks for an 
instance of a class A, the implementation of a 
subclass B may be used.
 Assuming that component properties are defined in some 

logic language:
 PI are the properties of the implementation I. 
 PA are the properties of all instances of class A. 
 PB are the properties of all instances of class B.

 Then: PI => PB means that I is an instance of class B

 If we define “B is a subclass of A”  iff PB => PA then 
the substitution principle holds: 
 PI => PB and PB => PA    implies    PI => PA 

Gregor v. Bochmann, University of Ottawa
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Assumptions and Guarantees
Principle: A specification of a system component 
includes assumptions about its environment and 
guarantees that the component should satisfy (see for 

instance Abadi & Lamport 1995). Example: Method pre- and post-conditions.

 The specification of class A has the form:
 PA = AssA => GuaA ( if the assumptions Ass are satisfied then the 

behavior of the component satisfies the guarantees Gua )

 Proposition: GuaB => GuaA and AssA => AssB implies    
PB => PA  (B is a subclass of A)
 E.g. method pre-conditions for B are weaker than for A and post-conditions 

for B are stronger than for A

 This principles was nicely applied to interface signatures in 
the Emerald language (1987)

Gregor v. Bochmann, University of Ottawa
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How does this apply to state machines ?

 What is the behavior of machine A if in state 2 the 
message c is received ? – Three interpretations:

1. Undefined behavior (Assumption: this will never happen)

2. Machine goes into an error state  (No assumption)

3. Message will be dropped (SDL) (No assumption)

Gregor v. Bochmann, University of Ottawa

Design method: By projection, we obtain 
the following behaviors for A and B:

Our old example
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Subclass relationship for state machines

Gregor v. Bochmann, University of Ottawa

A’

 Does the behavior of A’ represent a subclass of A ?
Answer: This depends on the interpretation:

1. Undefined behavior: YES
Assumptions of A’ are weaker, and guarantees are stronger (A’ has an extended 
behavior)

2. Machine goes into an error state: NO 
Guarantees are contradicting (behavior for reception of c in state 2 has been 
modified)

3. Message will be dropped (SDL): NO (similarly)

A’ defines the behavior for 
the reception of c in state 2:



51

Conclusions on state machine inheritance

If the substitution principle should hold, 
the modeling language should include the 
following features:
 Inheritance of messages and their 

parameters: follow the approach of Emerald
 Inheritance for state machine behavior: a 

non-specified reception means “undefined 
behavior” (assumption that such a message 
would not be received in this state)

Gregor v. Bochmann, University of Ottawa
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Conclusions
 System modeling using state machines goes back to the 1960ies
 Similarity of notations (UML state machines, activity diagrams and Use Case 

Maps) : do we really need so many different notations ???
 Non-local choice requires some protocol for resolving competing initiatives 

 Gouda’s approach with different priorities; circulating token;  or application-
dependent solutions

 Rendezvous communication is an important abstract modeling paradigm
 Modeling message consumption with a message pool appears to be 

preferable to processing input messages in FIFO order
 Avoidance of race conditions and non-specified receptions; reduction of implied 

scenarios

 With message consumption, a method for deriving distributed designs from a 
global behavior specification, based on projection, can deal with strict and 
weak sequencing.

 To validate the substitution principle of inheritance, an unspecified reception 
(partial definition) should mean that the behavior is undefined in such a case 
(formally an assumption about the behavior of the environment that such a 
case will never occur).
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Thanks !

Any comments 
or questions ??

For copy of slides, see

http://www.eecs.uottawa.ca/~bochmann/talks/StateMachineConcepts.pdf 


