
1Gregor v. Bochmann, University of Ottawa

SCARE Seminar- Universität Oldenburg
22. Oktober 2013

Originally an invited paper at the SDL Forum (Montréal, June 2013)

Gregor v. Bochmann
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa
Canada

Some Important Concepts
Related to State Machine Modeling

2Gregor v. Bochmann, University of Ottawa

Abstract
After a personal view of the history of state-machine

modeling, we will concentrate on three concepts that are
important for state-machine modeling and have been taken
into account (in one way or another) in the design of
related modeling languages: (1) conflict resolution between
several system components, (2) message buffering, and
(3) the refinement relation used for object-oriented
inheritance. We will discuss some historical milestones that
contributed to clarifying the related issues and providing
solutions to the problems that arise in the context of these
three concepts. We will also discuss how these concepts
impact dependability engineering, and how they are
accommodated in SDL and other specification languages.

3

Perspective on state machine modeling

 State machine modeling is old
 More than 50 years for hardware
 More than 35 years for software
 I have been involved in modeling of communication

protocols since 1975

 Basic concepts are well known, but certain aspects
are often not well understood:
 The impact of different types of message buffering vs.

rendezvous communication
 Conflict resolution in a distributed environment
 Inheritance and the substitution principle

Gregor v. Bochmann, University of Ottawa

4

Outline of talk
 History of modeling languages, concepts

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa

5

History: modeling languages

Gregor v. Bochmann, University of Ottawa

FSM

SDL

(Mealy)1955

X.250 Lotos
State Charts

ROOM

UML-2

UML-1

(ITU)

SDL-92
Object-oriented SDL

many commercial tools

MSC

1980 - 1986 FDTs (ISO)
Estelle

2005

1997

1992

1983

1976

1987

Logical Time 1972

(Harel)

(Lamport)

CCSCSP
(Hoare) (Milner)

1980

(1994 Selic)

6

History: Verification of concurrent
system designs

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

UML-1

SDL-92

2005

1997

1992

1983

1976

1975 - 80

Bit-State representation
for SPIN tool (Holzmann)

1987

First protocol verification
based on FSM specifications

(Bochmann; West, prototype tools at IBM Zurich)

Commercial SDL tool (Telelogic)
including Bit-State verification

Current UML tools
have less verification support

7

History: Code generation from
model specifications

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

UML-1

SDL-92

2005

1997

1992

1983

1976

1982

Paper on code generation
from Estelle models (Bochmann)

1987

First paper on code generation
from extended FSM models (Blumer & Tenney)

Commercial SDL tool
with code generation

Similarly for UML

Umple: a linear representation of UML
embedded into an implementation language (Lethbridge)

8

History:
Object orientation - inheritance

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

SDL-92

2005

1992

1976
1967 Object orientation, inheritance (Simula)

Structural subtyping based on
interfaces (Emerald language)

1987
Substitution principle based on

dynamic behavior (Liskov)

1993 Conformance relations for behavior
(Bochmann, Petrenko, Dssouli)

1995 Substitution principle with assumptions
(Abadi & Lamport)

1991 Behavior specifications with assumptions
(Misra & Chandy)

9

History: Other interesting concepts

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

SDL-92

2005

1992

1976
1972

Conflict resolution by priority (Gouda)1984

Partial order (Lamport)

Service primitives (ISO)1983

Weak sequencing (for MSC)1996
Implied scenarios (Alur et al.)2000

Stuckfreeness (Fournet et al.)2004

Avoiding race conditions by considering
message consumption (Mooij et al.)2005

1980 Rendezvous (Milner, Hoare)

10

Outline of talk
 History of modeling languages, concepts

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa

11

Two perspectives for state machines

A. Actions during transitions
B. Actions in states
Example: The making of a sculpture

states of the sculptured object

states of the artist

Gregor v. Bochmann, University of Ottawa

A

B

12

A more complex example

Gregor v. Bochmann, University of Ottawa

a b

c
n

d e

f

g

h k m

o

n
d e

f
a b

g
h

kc

o

m

A

B

13

Similarity of different notations

The above UML State Machine corresponds exactly to
the following UML Activity Diagram

Gregor v. Bochmann, University of Ottawa

a b

c

d

f

e

g

h
k m

n
o

n
d e

f
a b

g
h

kc

o

m
B

C

14

Similarity of different notations (ii)

The above UML Activity Diagram corresponds exactly
to the following Use Case Map

Gregor v. Bochmann, University of Ottawa

a b

c

d

f

e

g

h
k m

n
o

a b

c
g

h

d
n

o

mk

f

e

Note: An arrow represents control + data flow

D

C

15

Conclusion (1)
 Do we really need so many different

notations ??

 Hierarchical State Machines may be
used to represent “well-structured”
Activity Diagrams or Use Case Maps.

Example of non well-structured Activity Diagram:

Gregor v. Bochmann, University of Ottawa

d

f
e

n

16

Outline of talk
 History of modeling languages, concepts

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa

17

Distributed system design
– an example

Gregor v. Bochmann, University of Ottawa

Global behavior spec System architecture

A draft solution by projection:

18

Distributed system design
– an example

Gregor v. Bochmann, University of Ottawa

Global behavior spec System architecture

A draft solution by projection:

Desired global behavior (as an LTS):

Leads to invalid behavior (red)

19

Rendezvous communication
 Note: Rendezvous communication is

more abstract than message passing
 Synchronous communication

Here is a solution to the example:

 Avoids cross-over of messages over the interface
 This is important for competing initiatives

Gregor v. Bochmann, University of Ottawa

b-done

20

Competing initiatives
Different cases:

 Actions b and c initiated by the same
system component: “local choice”

 Actions b and c initiated by different system
component: “competing initiatives” or “non-
local choice”
 Example: Telephone call collision (simultaneous

incoming and outgoing call)

b

c
1 2

3

Rendezvous communication:
 No problem at the level of behavior specification
 However, non-local choice requires some protocol

between the different parties at the implementation level
(e.g. circulating token)

21

Competing initiatives and message passing
!b

?c
1 2

3

Possible joint behavior
 Both components will be in

different states
 Non-specified receptions

Component A

Component B ?b

!c
1 2

3

A B
b c

Concept: Non-specified reception (a process
receives a message for which there is no explicit behavior
specified) – three different interpretations:

1. Undefined behavior (design error if it occurs)
2. Machine goes into an error state (design error if it occurs)
3. Message will be dropped (SDL)

22

Competing initiatives and message passing
!b

?c
1 2

3

Possible joint behavior
 Both components will be in

different states
 Non-specified receptions

Component A

Component B ?b

!c
1 2

3

A B
b c

Gouda’s solution (1984):
 One side obtains priority (a design choice)
 e.g. priority for A: !b

?c
1 2

3A
?c ?b

!c
1 2

3B ?b

23

Important concept: Service primitives
(synchronous message passing, like in CSP - 1980)

 Layered protocol architecture (Pouzin et al. 1973)

 Formalization of protocol architecture
(Bochmann 1978)
 zero-queue communication at service interfaces, called

direct coupling (like in CSP or in Input-Output Automata
(IOA), Lynch 1989)

 asynchronous message passing for communication
through network

 OSI: Service Primitives (early 1980ies)

 Spin tool with zero-queue option (Holzmann)

Gregor v. Bochmann, University of Ottawa

24

Distributed system design with
message passing – the same example

Gregor v. Bochmann, University of Ottawa

Global behavior spec System architecture

Assumption: Each action (a, b, c, d) implies a message sent to
the other party. We assume the following sequence diagram:

25

Distributed system design with
message passing – the same example

Gregor v. Bochmann, University of Ottawa

Global behavior spec System architecture

Assumption: Each action (a, b, c, d) implies a message sent to
the other party. We assume the following sequence diagram:

Design method: by projection, we
obtain the following behaviors for A and B:

26

Verifying the design
Verifying the obtained agent behaviors by reachability
analysis (Bochmann or West, 1978), one finds the following
global reachability graph which shows non-specified
receptions (in rose):

Gregor v. Bochmann, University of Ottawa

27

Verifying the design
Verifying the obtained agent behaviors by reachability
analysis (Bochmann or West, 1978), one finds the following
global reachability graph which shows non-specified
receptions (in rose):

Gregor v. Bochmann, University of Ottawa

We extend the behaviors to allow for the
non-specified receptions, e.g. as follows:

28

Implied scenarios
 The revised design results in the following graph:

Gregor v. Bochmann, University of Ottawa

29

Implied scenarios
 The revised design results in the following graph:

Gregor v. Bochmann, University of Ottawa

This global behavior
includes other
sequence diagrams,
such as:

Observation (Alur et al., 2000):
The minimal protocol behavior required
to realize a given scenario (sequence
diagram) will often also realize other
scenarios, so-called “implied
scenarios”.

30

Weak sequencing
Weak sequencing is the natural sequencing
operator for sequence diagrams

Gregor v. Bochmann, University of Ottawa

It often leads to so-called
race conditions

In this example, A may send c
immediately after sending a – therefore

B may receive message c before b

A
a

c

b

CB

; (weak)

Ordering is enforced
only locally

31

Different semantics of state machines

 FSM: Input/output transitions – larger atomic
actions – simpler understanding

 Common queue or separate queues
 Different interpretations of non-specified reception
Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (weak)

d
?b / !d

B (as FSM)
?c

?c

?b !d

?c

B (as LTS or IOA)
?c

?c non-specified receptions

32

Difficulty of dealing with
race conditions

Hypothesis for traditional reachability analysis
(definition of non-specified reception) and for race
conditions:

 A message must be consumed when it is received.
This is the cause for race conditions !

There has been much work on dealing with
race conditions (including ours)
– no simple solution !

Gregor v. Bochmann, University of Ottawa

33

Message consumption vs. reception

Hypothesis for traditional reachability analysis
(definition of non-specified reception) and for race
conditions:

 A message must be consumed when it is received.

But: here is a solution to race conditions:
A message is consumed when the receiver is
ready [Mooij – 2005] - This avoids race conditions

 Distinguish between message reception and consumption
 Hypothesis: There is a message pool where received

messages are stored until they are consumed.
Gregor v. Bochmann, University of Ottawa

34

Specifying message consumption
 Hypothesis: There is a message pool
 Notation: “Message reception” means consumption

Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (weak)

This means the consumption of the
message, it may have been received
earlier

Example: B will consume message b
before message c, although c may arrive
before b.

35

Our earlier example

Design method: By projection, we obtain
the following behaviors for A and B:

Assuming message pools - “?” means consumption:
• There are no non-specified receptions, and no implied

scenarios.
• The design method appears to be perfect.

• Note: Khendek (2005) used a similar method to obtain SDL
component specifications from sequence diagrams. He used the
SDL Save construct to obtain the equivalent of a message pool.

36

Can these things be modeled with
rendezvous communication ?

Process algebra languages usually use
rendezvous communication.
 How to model message passing

communication ?
 In the context of LOTOS (developed in the

1980ies), explicit input queues were proposed
(similar to SDL).

 In the context of “stuck-free conformance”,
Fournet (2005) models a message pool.

 See next slide

Gregor v. Bochmann, University of Ottawa

37

Modeling a message pool in process algebra

 Rendezvous communication à la CSP:
 A rendezvous takes place when an action a and

a complementary action ã are executed jointly.
 If a represents sending message “a” and ã

represents the consumption of message “a” we
may write as follows:
 Sender process: a || P where P are the next actions

 Receiver process: ã ; Q where Q are the next actions
 The rendezvous between a and ã will occur when the receiver is

ready to execute ã (it represents the consumption of the
message), while the sender has already continued with P.

Gregor v. Bochmann, University of Ottawa

38

Decision power of the receiver
Different cases
 Single FIFO input queue - No power of deciding

the order of message consumption (e.g. SDL)
 Multiple input queues – decide which input queue

to consider - possibly several (e.g. Estelle)
 Typed message pool – decide which type(s) of

message to receive (e.g. SDL with Save, IBM’s
BPEL execution environment, stuck-free formalism)

 General message pool – as above, but decision
may depend on parameter values of messages

Gregor v. Bochmann, University of Ottawa

39

Outline of talk
 History of modeling languages, concepts

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa

40

Distributed System Design
from Global Requirements

Collaboration with Rolv Braek, Trondheim (2006) [Castejòn 2011]

Gregor v. Bochmann, University of Ottawa

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

41

Design method: by projection
A general method: Deriving a distributed system design
from the global behavior specification by projecting the global
behavior on each component (we assume message pools)

Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (weak)

Col1

Col2

Projection on A:
ProjA(Col1 ;W Col2) =

ProjA(Col1) ; ProjA(Col2)

Resulting behaviors
for A: a!; c!
for B: b?; c?
for C: a?; b!

Hierarchical specification:
weak sequence

of two collaborations, Col1 and Col2

42

The case of strict sequence

This case was discussed in Gotzhein & Bochmann in 1986

Gregor v. Bochmann, University of Ottawa

A
a

c

b

CB

; (strict)

Col1

Col2

Projection on A:
ProjA(Col1 ;s Col2) =

ProjA(Col1) ;
exchange of required coordination messages ;
ProjA(Col2)

for A: a!; coord?; c!
for B: b?; coord!; c?
for C: a?; b!

Hierarchical specification:
strict sequence

of two collaborations, Col1 and Col2

The required coordination messages
depend on the terminating actions of Col1
and the initiating actions of Col2.
In this example we need a message from B to A.

Resulting behaviors:

43

Design method by projection:
further complications

 Choice: No problem for local choice
 However, need for coordination message (“choice indication”) for

components not involved in one of the alternatives (Bochmann 2008)

 Weak loop: Problem example : Process B does not know
how many b messages to expect.

Gregor v. Bochmann, University of Ottawa

A

a

c

b

CB

; (weak)

Col1

Col2

loop
A

a

c

b

CB

a

b

Example
scenario:

44

Design method by projection:
further complications

 Choice: No problem for local choice
 However, need for coordination message (“choice indication”) for

components not involved in one of the alternatives (Bochmann 2008)

 Weak loop: Need for message parameters
representing the number of repetitions

Gregor v. Bochmann, University of Ottawa

Example: messages b and c include
repetition parameter, allowing component
B to decide whether message c can be
consumed (only if its repetition parameter
is equal to the value in the last b
message)
This means a “general message pool” is
required (wait for messages with
particular parameter values)

A
a(1)

CB

a(2) b(1)

b(2)c(2)

45

Outline of talk
 History of modeling languages, concepts

and tools
 Similarity of notations
 Distributed system design – an example
 Systematic design of distributed systems
 Substitution principle (inheritance) for state

machines
 Concluding remarks

Gregor v. Bochmann, University of Ottawa

46

History:
Object orientation - inheritance

Gregor v. Bochmann, University of Ottawa

FSM

SDL

1955

UML-2

SDL-92

2005

1992

1976
1967 Object orientation, inheritance (Simula)

Structural subtyping based on
interfaces (Emerald language, Black)

1987
Substitution principle based on

behavior (Liskov)

1993 Conformance relations for behavior
(Petrenko, Bochmann, Dssouli)

1995 Substitution principle with assumptions
(Abadi & Lamport)

1991 Behavior specifications with assumptions
(Misra & Chandy)

47

Substitution principle (Liskov 1987)

Principle: Where the system design asks for an
instance of a class A, the implementation of a
subclass B may be used.
 Assuming that component properties are defined in some

logic language:
 PI are the properties of the implementation I.
 PA are the properties of all instances of class A.
 PB are the properties of all instances of class B.

 Then: PI => PB means that I is an instance of class B

 If we define “B is a subclass of A” iff PB => PA then
the substitution principle holds:
 PI => PB and PB => PA implies PI => PA

Gregor v. Bochmann, University of Ottawa

48

Assumptions and Guarantees
Principle: A specification of a system component
includes assumptions about its environment and
guarantees that the component should satisfy (see for

instance Abadi & Lamport 1995). Example: Method pre- and post-conditions.

 The specification of class A has the form:
 PA = AssA => GuaA (if the assumptions Ass are satisfied then the

behavior of the component satisfies the guarantees Gua)

 Proposition: GuaB => GuaA and AssA => AssB implies
PB => PA (B is a subclass of A)
 E.g. method pre-conditions for B are weaker than for A and post-conditions

for B are stronger than for A

 This principles was nicely applied to interface signatures in
the Emerald language (1987)

Gregor v. Bochmann, University of Ottawa

49

How does this apply to state machines ?

 What is the behavior of machine A if in state 2 the
message c is received ? – Three interpretations:

1. Undefined behavior (Assumption: this will never happen)

2. Machine goes into an error state (No assumption)

3. Message will be dropped (SDL) (No assumption)

Gregor v. Bochmann, University of Ottawa

Design method: By projection, we obtain
the following behaviors for A and B:

Our old example

50

Subclass relationship for state machines

Gregor v. Bochmann, University of Ottawa

A’

 Does the behavior of A’ represent a subclass of A ?
Answer: This depends on the interpretation:

1. Undefined behavior: YES
Assumptions of A’ are weaker, and guarantees are stronger (A’ has an extended
behavior)

2. Machine goes into an error state: NO
Guarantees are contradicting (behavior for reception of c in state 2 has been
modified)

3. Message will be dropped (SDL): NO (similarly)

A’ defines the behavior for
the reception of c in state 2:

51

Conclusions on state machine inheritance

If the substitution principle should hold,
the modeling language should include the
following features:
 Inheritance of messages and their

parameters: follow the approach of Emerald
 Inheritance for state machine behavior: a

non-specified reception means “undefined
behavior” (assumption that such a message
would not be received in this state)

Gregor v. Bochmann, University of Ottawa

52Gregor v. Bochmann, University of Ottawa

Conclusions
 System modeling using state machines goes back to the 1960ies
 Similarity of notations (UML state machines, activity diagrams and Use Case

Maps) : do we really need so many different notations ???
 Non-local choice requires some protocol for resolving competing initiatives

 Gouda’s approach with different priorities; circulating token; or application-
dependent solutions

 Rendezvous communication is an important abstract modeling paradigm
 Modeling message consumption with a message pool appears to be

preferable to processing input messages in FIFO order
 Avoidance of race conditions and non-specified receptions; reduction of implied

scenarios

 With message consumption, a method for deriving distributed designs from a
global behavior specification, based on projection, can deal with strict and
weak sequencing.

 To validate the substitution principle of inheritance, an unspecified reception
(partial definition) should mean that the behavior is undefined in such a case
(formally an assumption about the behavior of the environment that such a
case will never occur).

53Gregor v. Bochmann, University of Ottawa

References
o M. Abadi and L. Lamport, Conjoining specifications, ACM Transactions on Programming Languages & Systems, vol.17, no.3, May 1995, pp. 507-34.
o R. Alur, K. Etessami and M. Yannakakis, ”Inference of Message Sequence Charts”, Proc. 22nd Intl. Conf. on Software Engineering (ICSE’00), 2000.
o T. P. Blumer and R. Tenney, A formal specification technique and implementation method for protocols, Computer Networks 6,3 (July 1982), pp. 201-217.
o A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, Distribution and Abstract Types in Emerald, IEEE Trans. on Software Engineering, Vol. SE-13, no. 1, January 1987,

pp.65-76.
o A. Black, N. Hutchinson, E. Jul, H. Levy, The development of the Emerald programming language. Proceedings of the third ACM SIGPLAN conference on History of

programming languages, 2007, Pages 11-1-11-51.
o G. v. Bochmann, Communication protocols and error recovery procedures, Proceedings ACM Symposium on Interprocess Communication, SIGOPS Review, 9, No.3, 45-50

(1975).
o G. v. Bochmann, Finite State Description of Communication Protocols, Computer Networks, Vol. 2 (1978), pp. 361-372.
o G. v. Bochmann, G. Gerber and J.-M. Serre, Semiautomatic implementation of communication protocols, IEEE Tr. on SE, Vol. SE-13, No. 9, September 1987, pp. 989-

1000.
o G. v. Bochmann, Deriving component designs from global requirements, Proc. Intern. Workshop on Model Based Architecting and Construction of Embedded Systems

(ACES), Toulouse, Sept. 2008.
o G. v. Bochmann, D. Rayner and C. H. West, Some notes on the history of protocol engineering, Computer Networks journal, 54 (2010), pp 3197–3209.
o H. N. Castejòn, G. v. Bochmann and R. Braek, On the realizability of collaborative services, Journal of Software and Systems Modeling, Vol. 10 (12 October 2011), pp. 1-

21.
o C. Fournet, T. Hoare, S. K. Rajamani, and J. Rehof, ”Stuck-free Conformance”, Proc. 16th Intl. Conf. on Computer Aided Verification (CAV’04), LNCS, vol. 3114, Springer,

2004
o M. G. Gouda and Y.-T. Yu, Synthesis of communicating Finite State Machines with guaranteed progress, IEEE Trans on Communications, vol. Com-32, No. 7, July 1984,

pp. 779-788.
o D. Harel, State charts: A visual formalism for complex systems, Science of Computer Programming 8, 19987, pp. 231-274.
o G. J. Holzmann, Limits and possibilities of protocol analysis, Proc. IFIP Symp. on Protocol Specification, Testing and Verification: VII, North Holland, 1987, pp. 339-346.
o F. Khendek, X.J. Zhang, From MSC to SDL: Overview and an Application to the Autonomous Shuttle Transport System, LNCS Vol. 3466, 2005, pp 228-254.
o L. Lamport, Time, clocks and the ordering of events in a distributed system, Comm. ACM 21, 7 (July 1978), pp. 558-565.
o J. Misra and K. M. Chandy, Proofs of networks of processes, IEEE Tr. on SE, Vol. SE-7 (July 1991), pp. 417-426.
o A. J. Mooij, N. Goga and J. Romijn, ”Non-local choice and beyond: Intricacies of MSC choice nodes”, Proc. Intl. Conf. on Fundamental Approaches to Software

Engineering (FASE'05), LNCS, 3442, Springer, 2005
o L. Pouzin, Presentation and major design aspects of the CYCLADES computer network, in Proc. 3rd ACM-IEEE Commun. Symp. Tampa, FL, Nov. 1973, pp. 80-87.
o A. Petrenko, G. v. Bochmann and R. Dssouli, Conformance relations and test derivation, (invited paper), Proc. Int. Workshop on Protocol Test Systems (IFIP), O. Rafiq

(ed.), North Holland Publ. 1993, pp.157-178.
o C. H. West, An automated technique of communications protocol validation, IEEE Trans. COM-26 (1978), pp. 1271-1275.

54Gregor v. Bochmann, University of Ottawa

Thanks !

Any comments
or questions ??

For copy of slides, see

http://www.eecs.uottawa.ca/~bochmann/talks/StateMachineConcepts.pdf

