

Infrastructureless Wireless Networks Wireless Sensor Networks

Rolland Vida

Budapest University of Technology and Economics Department of Telecommunications and Media Informatics vida@tmit.bme.hu

What does "infrastructure" mean?

For wired networks

- On one hand, the "wire" itself
 - □ Cables, poles, trenches, etc.
- On other hand, dedicated networking devices
 - Routers
 - DHCP server
 - □ AAA (Authentication, Authorization, Accounting) server
 - □ Firewall/NAT
 - SIP server
 - Etc.

For wireless networks

- Access points (AP) or base stations (BTS)
- Internal networking devices (MSC, HLR, SGSN, GGSN, DHCP, AAA, etc.)
- Optical or wireless backbone network

Wireless Networks

Infrastructure-based Networks

- WLAN IEEE 802.11x
- WMAN IEEE 802.16x (WiMax)
- Mobile/cellular networks
 - □ GSM, GPRS, EDGE, UMTS, HSDPA, HSUPA, LTE

Infrastructureless Networks

- WPAN Bluetooth, Zigbee
- Mobile ad hoc networks (MANET)
- Moving networks Network mobility (NEMO)
- Vehicular ad hoc networks (VANET)
- Sensor networks
 - □ WBAN Wireless Body Area Network

Convergent hybrid networks

- Some connection points to the infrastructure
- The operation of the network is "mostly independent" from the infrastructure

Really important and interesting?

- Many research teams all over the world
- IEEE Infocom 2005, Miami, USA
 - One of the largest and strongest conferences in the field of infocommunications and networking
 - Very broad range of topics
 - Optical networks, cellular networks, P2P, multimedia protocols, traffic analysis, networking architectures, security, etc.
 - ... and sensor networks
 - 1600 submitted papers
 - □ More than 400 related to WSNs

Conference dumping

28KU X12 45m

- ASTSA 2012, Third International Workshop on Advances in Sensor Technologies, Systems and Applications, November 2012, Victoria, Canada
- IEEE SenseApp 2012, Seventh IEEE International Workshop on Practical Issues in Building Sensor Network Applications, October 2012, Florida, USA
- IWSSN 2012, The 1st International Workshop on Smart Sensor Networks, October 2012, China
- SN 2012, The Fifth International Workshop on Sensor Networks , july 2012, Munich, Germany
- CAC-WSN 2012, The 2012 International Workshop on Context-Aware Computing Applications and Services via Wireless Sensor Network, Sept. 2012, Korea
- PWSN 2012, 4th International Workshop on Performance Control in Wireless Sensor Networks, May 2012, China
- SESP 2012, 1st ACM International Workshop on Sensor-Enhanced Safety and Security in Public Spaces, June 2012, South Carolina, USA
- MOBISENSOR 2012, 3nd International Workshop on Mobility in Wireless Sensor Networks, May 2012, China
- □ IWSN 2012, Interconnections of Wireless Sensor Networks, May 2012, China
- DMPS 2012, The First International Workshop on Data Management in Participatory Sensing, July 201, Bangalore, India
- RoboSense 2012, The International Workshop on Cooperative Robots and Sensor Networks, August 2012, Ontario, Canada
- SNIGM 2012, The Second International Workshop on Sensor Networks for Intelligence Gathering and Monitoring, August 2012, Niagara Falls
- …and many more

Journal dumping

п

- Dedicated journals
 - ACM Transactions on Sensor Networks
 - Ad Hoc and Sensor Wireless Networks, an International Journal
 - IEEE Communications Magazine Ad hoc and Sensor Networks Series
 - Inderscience International Journal of Sensor Networks IJSNet
 - International Journal of Distributed Sensor Networks
- □ Special issues in journals targeting a broader range of topics
 - Special Issue of Elsevier Ad Hoc Networks Journal on Bio inspired Computing and Communication in Wireless Ad Hoc and Sensor Networks
 - Special Issue of IEEE Wireless Communications on Wireless Sensor Networking
 - Special Issue of Elsevier Computer Networks Journal on Wireless Multimedia Sensor Networks
- … and many more

Features of sensors

- Small devices with <u>sensing</u>, <u>processing</u> and (radio) <u>transmitting</u> capabilities..
- Limited resources
 - CPU: (< 10 MIPS);</p>
 - memory: (~ 4 kbyte)
 - limited energy
 - (e.g., AAA batteries)

- п
 - <u>Task</u>: Collecting and forwarding data from a given territory towards the "sink" (base station)

Features of sensor nets

- <u>Many</u>, <u>small</u>, <u>cheap</u> sensors.
- Wireless communication
 - ad-hoc network formation, communication with slow bitrate (~10-100 kbps)
- Other requirements:
 - Iong lifetime
 - unattended operation
 - robustness

Typical areas of applications

п

28KU X12 45m

- Healthcare
 - hospital management, disaster recovery, support of elderly or disabled, home medication
- Manufacturing, storage
 - Manufacturing process monitoring, stock monitoring
 - Environment
 - habitat monitoring, disaster forecast
 - Agriculture
 - "precision" farming
- Engineering applications
 - static monitoring of buildings, traffic monitoring
- Intelligent buildings
 - intelligent home, intelligent office
- Defense
 - monitoring, tracking, detection, sniper localization
- □ Space research
 - Mars probes

Classification of sensor networks

П

28KU X12 45

Based on the nature of communication

- Single-hop networks
 - □ Sensors communicate directly with the sink
 - □ Small size networks
 - □ Sink within radio range
- Multi-hop networks
 - □ Sensors forward (route) each other's packets towards the sink
 - Routing algorithm is needed
 - □ Larger size networks

□ Based on the data reporting mode

- Time-driven networks
 - □ Each sensor periodically sends its data to the sink
 - E.g., sensors embedded in the road, counting the vehicles on that road segment
- Event-driven networks
 - □ Sensors alert the sink only if something unusual happens
 - □ E.g., temperature goes above 45 °C
- Query-driven networks
 - □ A sensor sends its measurement data to the sink only when it is explicitly asked to do so
 - E.g., the sink asks for the currently highest humidity area inside the monitored region

Problems to solve

Sensor deployment

- How many sensors to deploy, and where?
- Ensuring (redundant) coverage
 - Monitoring the entire region
 - If a sensor('s battery) dies, the area should not remain uncovered
- Ensuring (redundant) connectivity
 - From any sensor, there is at least one (or more) path(s) to the sink
- Graph theory issues

Energy efficiency

- One of the most important and studied areas
- Low energy hardware design
- Energy efficient software modules
- Energy efficient communication

Energy efficient communication

Send the lowest amount of data

- Data aggregation
 - Several sensors detect the same event, redundancy has no added value
 - Special data
 - Only the maximum, or the average value is interesting
 - Where to aggregate? How long should we wait for new data?

Clustering

- Hierarchical structure
 - Sensors communicate with the cluster-head (CH)
 - The CH communicates with the sink
- Dedicated CH, with more resources
- □ Alternating CH role among the sensors
- □ Who should be the next CH, and when? How many clusters to form? To which cluster should a given sensor belong?

Energy efficient communication

Shorten the communication distances

- Optimal placement of sink nodes
 - Minimizing the distance between the sensors and the closest sink
 - How many sinks are needed, in case of a given network size and specific application requirements (e.g., delay bound)?

Moving the sink node

- □ Random mobility
 - The sink collects data from sensors it passes by
 - Used for non-real time applications
 - The sensor network does not have to be connected
- Predictable mobility
 - The sink moves along a predefined path
 - The sensor send its data only when the sink is in the closest position
 - How long should a sink stay at a given place (sojourn time)?
- □ Adaptive mobility
 - The sink moves close to the current events
 - The sink moves away, if neighboring sensors depleted their battery
 - When to move, where to go?

Increasing network lifetime

- What we mean by network lifetime depends on the application
 - Until the first sensor dies
 - Until x% of the sensors die
 - Until complete coverage is not ensured anymore
 - Until coverage drops below x%
 - Until the sink becomes unreachable, etc.

Ensuring load balancing

- Sensors continuously deplete their batteries
 - □ In a single-hop network, remote sensors die first
 - If nodes close to the sink can adjust their transmit power
 - □ In a multi-hop network sensors around the sink die first
 - They forward the traffic from all the other sensors towards the sink
 - In an event-driven network, nodes in "busy areas", and nodes along the paths linking those areas to the sink die first

Increasing network lifetime

Ensuring load balancing

- Intelligent routing algorithms
 - It is worth choosing a longer path, if there is more energy available along that path
 - It is worth sending the data to a more distant sink, if there is more energy available at that sink

Sleep scheduling solutions

- Redundant deployment, sensors near to each other will measure similar values
 - Depends much on the measured parameter
 - □ Light or noise level has much higher variance than temperature
 - Some of the sensors might go to sleep
- Static sleep scheduling
 - sensors take turns in a deterministic fashion
- Dynamic, adaptive sleep scheduling
 - □ battery level or prediction accuracy influence the scheduling
- Trade-off between accuracy and network lifetime

Security and reliability

- Solutions developed for traditional networks cannot be applied here
- No resources for complex authentication and encryption schemes

- □ (Usually) no resources for retransmissions
 - Minimize the possibility of collisions
 - Efficient medium access control (MAC) protocols

Other issues to tackle...

- Integration with other types of networks (wired and wireless)
- Simulation and modeling
 - Experiments should be done on large networks, but this is not trivial
- Providing Quality of Service (QoS)
- Localization and synchronization
- □ Sensor mobility
 - Blown by the wind, floating in the water, or sticked on people's clothes, shoes
 - Continuously changing topology, dynamic network
- Heterogeneous sensors, heterogeneous environment
- Networks operating in special conditions
 - E.g., underwater wireless sensor networks
- … and many more

IoT-Lab (https://www.iot-lab.info/community/)

Large-scale wireless sensor network testbed

- 6 testbeds in French cities (Grenoble, Lille, Paris, Strasbourg, etc)
- Real measurements instead of simulations
 - Routing algorithms, energy-efficient communication, data aggregation
- Fixed and mobile sensors and sink nodes

One example – Volcano monitoring

- G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz and J. Lees, "Deploying a wireless sensor network on an active volcano", IEEE Internet Computing 10 (2006) (2), pp. 18–25.
- Participants
 - Harvard University
 - University of North Carolina
 - University of New Hampshire
 - Instituto Geofisico, Ecuador
- Test networks

- Tungurahua volcano (5023 m), Ecuador, 2004
 - □ 3 sensors gather data for 3 days
- Reventador volcano (3562 m), Ecuador, 2005
 - □ 16 seismo-accoustic sensors, 3 km area, multi-hop
 - noticed 230 volcanic events during 3 weeks

Volcano monitoring

Sensors

П

- Seismic movements
- Infrasound microphones
 - □ Sounds not perceived by humans
 - Below 16-20 Hz frequency
 - Whales, elephants emit such sounds, can be heard for hundreds of kilometers
- Monitor larger areas, observe the propagation of seismic and infrasound signals
 - □ Sparse network, long but narrow branches in the topology

Volcano monitoring

© 2005 Matt Welsh – Harvard University

Sensors

- Geospace Industrial GS-11 geophone
 - □ cheap (below 80 USD)
- Geospace Industrial GS-1
 - Expensive, but more precise, only on two nodes
- Panasonic infrasound microphone

- Antenna
 - 8,5 dbi omnidirectional
 - 400m+ range
 - On a 1,5 m PVC tube
 - To avoid ground reflections
- Microphone on the tube
- Seismometer buried in the ground

- The deployed network is far from the research center (4 km)
 - No direct line of sight, no direct radio communication
- Connectivity ensured through three FreeWave radio modems
 - One in the observatory, one at the deployment site, and one on a high hill, serving as relay
 - Each one uses a car battery that is recharged with solar panels

