Routing in the Internet of Things (IoT)

Rolland Vida

Spring 2016.

IoT challenges

- IoT nodes are heterogeneous
 - Some have important resources
 - Smart phones, cars, coke machines
 - Connected to electricity, or easy to recharge
 - No size limitation
 - Big computing capacity, much memory
 - Many different radio interfaces, direct connection to the Internet
 - Nodes with limited resources
 - Sensors, smart tags
 - Limited CPU, memory, battery life
 - Usually only 1 radio interface, mostly in sleep mode
 - No direct connection to the Internet

IoT routing

- The nodes with limited resources also have to connect somehow to the Internet
 - To send their data (to the cloud)
 - To be queried from distance
- Multi-hop communication and routing
 - Traditional routing solutions are too resource-hungry
 - The goal is the fast and reliable transmission

LLN – Low Power and Lossy Networks

- Connections are by default unreliable, low transmission speed, high packet loss rate
 - Small capacity antennas, unfriendly environment (rain, snow, frost), interferences, mobility
- The goal is energy efficiency, not communication efficiency
 - No problem is no continuous connection or packets are lost
 - Unattended operation for years self-configuration, self-management

IoT routing

- In traditional networks if a connection is broken, a new path has to be found rapidly
 - To minimize packet loss
 - E.g., IP/MPLS Fast Reroute in OSPF
- In LLN, link failures are usual, but transient
 - If we would react to them, the network would become unstable (too much control plane overhead)
- In traditional networks big data traffic (video, VoIP), no possibility for buffering if a link is broken
- In LLNs low data traffic, a transient loss can be easily handled with buffering or local redirection
 - No need to reconfigure the entire topology
- In traditional networks static metrics, to ensure path stability
- In LLNs dynamic metrics, changing in time
 - The networks can adapt

LLN vs. WSN

A wireless sensor network is a special type of LLN

WSN	LLN		
Homogeneous network, similar sensors	Heterogeneous network, different nodes		
Devices deployed with a specific goal, based on the needs of a specific application	Devices with different tasks, cooperating to find a gateway to the Internet		
P2MP or MP2P communication (between sink and sensors)	P2MP, MP2P or P2P communication (between two IoT devices		
Usually no IP support	IP based communication		

RPL – IPv6 Routing Protocol for Low Power Lossy Networks

IETF ROLL WG – Routing Over Low power Lossy (2008)

RPL protocol (say Ripple) – RFC 6550 (2012)

IPv6 distance vector routing protocol

- Builds a DODAG-ot (Destination Oriented Directed Acyclic Graph)
- Using an objective function (OF) that takes into account several metrics and/or constraints
- Several different OFs might be used in the same time, each building its own DODAG E.g.,1) The smallest ETX*, but only over nodes supporting encryption
 2) The lowest delay, but only over nodes that have solar panels

* ETX – Expected Transmission Count

- Shows the quality of a radio connection how many times should I probably send a packet to be sure that it is received
- Value between 1 and ∞, expected value based on past experience

Building a DODAG

- Starts at the root node LBR (LLN Border Router)
 - Gateway to the Internet
 - Many LBRs can exist in the same network

- New ICMPv6 control messages for RPL
 - DIO DODAG Information Object
 - DAO DODAG Destination Advertisement Object
 - DIS DODAG Information Solicitation

- Edges LLN connections
- Values e.g. ETX
 - Can change in time
 - Using an average value some stability can be ensured
- Goal (OF) minimize ETX

- The LBR sends a DIO message to its neighbors
 - Link local multicast
- Nodes A, B, C receive and handle it
 - Many DIOs can be received in the same time, from different LBRs
 - Based on the OF and other criteria, they decide to join the DODAG or not
 - If yes, the LBR is marked as parent

- The DIO timer of node C expires
- C sends a multicast DIO message to its neighbors
- The LBR ignores it, as it come from a higher ranked node
 - Rank(LBR) = 0, Rank(C) = 1
 - Needed to avoid loops
- B marks C as an alternative parent
- E joins the DODAG, marks C as a parent

- The DIO timer of node A expires
- Sends a multicast DIO message to its neighbors
- The LBR ignores it
- B marks A as an alternative parent
- As the OF (ETX) value is better if B connects through A, B deletes the LBR and C from its parents

 The construction of the DODAG is continuous

 The DODAG is continuously maintained

MP2P (Multi-Point to Point) traffic

- MP2P traffic along the DODAG, from each node to the LBR
 - UPWARD routing
- The LBR connects to the Internet
- A node can participate in parallel in several DODAGs

P2MP (Point to Multi-Point) traffic

DOWNWARD routing

Routing information has to be built

DAO (DODAG Destination Advertisement) messages

- If a node joins a DODAG, sends a DAO to its parents
- Can be initiated by the LBR as well, or any intermediate node in the DODAG
 - Marked in the DIO message going downwards
 - The DAO timers (DelayDAO) are set so as to expire first at higher ranked nodes in the DODAG
- The advertise in the DAO message the network prefix reachable through them

P2MP (Point to Multi-Point) traffic

LLN nodes sometimes are not able to store routing entries

If yes – storing mode

 If possible, it aggregates the prefix of its children with his own prefix, and send this aggregated value forward

If not – non-storing mode

- Source-routing: the DAO message contains the path
- Either storing mode or non-storing, the hybrid solution was not standardized
 - Even if it was included in the first drafts
- Advantages end drawbacks
 - In storing mode routing entries have to be stored, but short messages
 - In non-storing mode nothing has to be stored but long messages, increased energy consumption

P2P (Point-to-Point) traffic

- Between any two S (Source) and D (Destination) nodes
 - If non-storing mode:
 - From S, we have to go towards the LBR along the DODAG
 - Then source routing from the LBR to D
 - If storing mode:
 - Shortcut at the first common ancestor

Grounded DODAG

A DODAG that corresponds to an OF and the given constraints

Floating DODAG

- A DODAG that does not meet the necessary criteria
- Transient state, marked in the DIO message by setting the G (Grounded) bit
- What happens if the connection breaks between B and D?
- D deletes B from its parents
- As D does not have other parents, it becomes the root of a floating DODAG

- D sends a multicast DIO message to its neighbors, letting them know about the change
- Node I has an alternative parent (E), still connected through it to the grounded DODAG
- As D is not part of the DODAG anymore, I deletes it from its parents

- F does not have an alternative parent, so it stays in the floating DODAG of D
- F sends a multicast DIO message to its neighbors
- G and H do the same and follow F in the floating DODAG of D

- A floating DODAG was formed, with D being the root
- They delete all the paths related to LBR
- The floating DODAG tries to rejoin the grounded DODAG...

I sends a multicast DIO message

 D receives it, learns that it could join the LBR DODAG through I

- D starts a timer related to node I
 - The setting of the timer depends on the rank of node I
 - D wants to be as close to LBR as possible

- Suppose that A radio link is established between A and F
- A sends a multicast DIO message
- F receives it, starts a timer related to node A

- The timer of node F expires
- F joins the grounded DODAG through A, deletes D from its parents
- F sends a multicast DIO message
- G and H join the grounded DODAG through F

- D sees that it could join the grounded DODAG through F
- D starts a timer related to F, besides the already running time related to I

- The timer related to F expires first
- D joins the grounded DODAG through F
- The floating DODAG disappears, the problem was handled without forming cycles

- When a node appears (it is switched on, or it moves the the given area), it starts listening to DIO messages
 - If it receives such messages, it decides which DODAG to join
 - If it receives nothing, or if it wants to speed up the process, it sends a DIS message
 - DODAG Information Solicitation
 - Triggers the sending of DIO messages from its neighbors
 - If still no DIO is received, it has the choice to become the root of a floating DODAG
 - Starts sending its own multicast DIO messages

Further details

Add	Document	Title	Date	Status				
Active Internet-Drafts								
	draft-ietf-roll-admin-local-policy-03	Forwarder policy for multicast with admin-local scope in the Multicast Protocol for Low power and Lossy Networks (MPL)	2015-02-06	RFC Ed Queue (for 25 days) RFC Editor State: <u>MISSREF</u> Submitted to IESG for Publication				
	draft-ietf-roll-applicability-ami-10	Applicability Statement for the Routing Protocol for Low Power and Lossy Networks (RPL) in AMI Networks	2015-01-30	I-D Exists In WG Last Call Oct 2012				
	draft-ietf-roll-applicability-home-building-09	Applicability Statement: The use of the RPL protocol suite in Home Automation and Building Control	2015-03-25 new	IESG Evaluation (for 9 days) IESG Telechat: 2015-04-09 Submitted to IESG for Publication Oct 2012				
	draft-ietf-roll-applicability-template-06	ROLL Applicability Statement Template	2014-11-10	I-D Exists WG Document Jan 2013				
	draft-ietf-roll-mpl-parameter-configuration-03	MPL Parameter Configuration Option for DHCPv6	2015-01-20	I-D Exists In WG Last Call				
	draft-ietf-roll-trickle-mcast-11	Multicast Protocol for Low power and Lossy Networks (MPL)	2014-11-24	IESG Evaluation::Revised I-D Needed (for 57 days) Submitted to IESG for Publication				

RFCs

RFC 5548 (was draft-ietf-roll-urban-routing-reqs)	Routing Requirements for Urban Low-Power and Lossy Networks	2009-05	RFC 5548 (Informational)
RFC 5673 (was draft-ietf-roll-indus-routing-reqs)	Industrial Routing Requirements in Low-Power and Lossy Networks	2009-10	RFC 5673 (Informational)
RFC 5826 (was draft-ietf-roll-home-routing-reqs)	Home Automation Routing Requirements in Low-Power and Lossy Networks	2010-04	RFC 5826 (Informational) Errata
RFC 5867 (was draft-ietf-roll-building-routing-reqs)	Building Automation Routing Requirements in Low-Power and Lossy Networks	2010-06	RFC 5867 (Informational)
RFC 6206 (was draft-ietf-roll-trickle)	The Trickle Algorithm	2011-03	RFC 6206 (Proposed Standard)
<u>RFC 6550</u> (was draft-ietf-roll-rpl)	RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks	2012-03	RFC 6550 (Proposed Standard) Errata
RFC 6551 (was draft-ietf-roll-routing-metrics)	Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks	2012-03	RFC 6551 (Proposed Standard) Errata
RFC 6552 (was draft-ietf-roll-of0)	Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)	2012-03	RFC 6552 (Proposed Standard)
RFC 6719 (was draft-ietf-roll-minrank-hysteresis-of)	The Minimum Rank with Hysteresis Objective Function	2012-09	RFC 6719 (Proposed Standard)
RFC 6997 (was draft-ietf-roll-p2p-rpl)	Reactive Discovery of Point-to-Point Routes in Low-Power and Lossy Networks	2013-08	RFC 6997 (Experimental)
RFC 6998 (was draft-ietf-roll-p2p-measurement)	A Mechanism to Measure the Routing Metrics along a Point-to-Point Route in a Low-Power and Lossy Network	2013-08	RFC 6998 (Experimental)
RFC 7102 (was draft-ietf-roll-terminology)	Terms Used in Routing for Low-Power and Lossy Networks	2014-01	RFC 7102 (Informational)
RFC 7416 (was draft-ietf-roll-security-threats)	A Security Threat Analysis for the Routing Protocol for Low-Power and Lossy Networks (RPLs)	2015-01	RFC 7416 (Informational)