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Protocols 

 Protocols 

 Controlling Communication 

 Static part  

 Messages 

 Dynamic part 

 Message flow 
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Protocol terminology 

 SAP – Service Access Point 

 PDU – Protocol Data Unit 

 messages between peer entities 

 ASP – Abstract Service Primitive 

 messages between different protocol layers 
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Protocol Engineering 
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Specification 

 Informal 

 Human language 

 Tables 

 Arrow sequences 

 Shall be: 

 Unambiguous 

 Everyone shall understand the same 

 Complete 

 Rules for every possible situation 

 Able to check automatically 

 Able to implement 

 Formal Description Techniques (FDT) 
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FDT 

 Specification Languages, Notations 

 well-defined syntax 

 well-defined semantics 

 Typical models 

 Finite State Machines (FSM) 

 Extended Finite State Machines (EFSM) 

 Communicating FSM/EFSM 

 Graph models (e.g. Petri net) 

 Algebraic models (e.g Calculus of Communicating 

Systems – CCS) 
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FSM 
 FSM = S, I, O, s0, f(s,I), where 

 S: finite set of states 

 I, O: finite set of input/output messages 

 s0  S: start state 

 f(s,i): transition function: if the FSM is in state s  S, recevies an i  I message 

then which o   O message is sent and which s'  S will be the next state 
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EFSM 
 EFSM = S, I, O, V, P, A, s0, f(s,i,p), where 

 S: finite set of states 

 I, O: finite set of input/output messages 

 V: finite set of variables 

 P: finite set of predicates (conditions) 

 A: finite set of  actions (e.g. value assignment) 

 s0  S: start state 

 f(s,i,p): transition function: if the EFSM is in state s  S, recevies an i  I 

message and predicate (condition) p  P satisfies, then which a  A action is 

executed, which o   O message is sent and which s'  S will be the next state 
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if i arrives and p true 

o sent and  

a executed 



 Communicating EFSM 

 Lot of description techniques 

 UML state charts 

 SDL 

 

 Communicating EFSMS 

 output of an EFSM is input of another 
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Net models 

 Two node types 

 Condition 

 Execute 

 Tokens 

 If all condition ha token -> execution fires 

 Good for describing parallelism 

 Good for correctness checking 

 validation 
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Modified Net models 

 More tokens in a condition 

 Coloured tokens  

 Numerical nets 

 tokens have value 

 execution states have memory 

 actions, computations 

 Timed nets 
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CCS 

 Describes only observable events at interfaces 

 no information about how to implement 

 PCO: Point of Control and Observation 

 !: message sending 

 ?: waiting for a message 

 Good for Conformance Testing 

 TTCN-3 
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Data Description 

 Structure only 

 ASN.1 

 Abstract Data Types 

 ACT ONE – in SDL 

 Data structures + operations (~class) 
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Protocol Implementation  

 Env.-dep. part: 

 memory handling 

 buffer handling 

 real-time support 

(timers) 

 scheduling 

 communication 

between units 

 event processing 

 error handling 
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Protocol-dependent 

Environment-dependent 

Interface 

 Manual 

 (Semi-) automatic 

 



Semi-automatic implementation 
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