
Protocol Technology

Protocol Engineering

Gusztáv Adamis

BME TMIT

2016

Protocols

 Protocols

 Controlling Communication

 Static part

 Messages

 Dynamic part

 Message flow

2

Protocol terminology

 SAP – Service Access Point

 PDU – Protocol Data Unit

 messages between peer entities

 ASP – Abstract Service Primitive

 messages between different protocol layers

3

Protocol Engineering

4

Informal

Protocol

Specification

Formal

Protocol

Specification

Protocol

Implemen-

tation

Simulation

Implementation

Verification,

Validation

Modeling

Conformance Testing

Specification

 Informal

 Human language

 Tables

 Arrow sequences

 Shall be:

 Unambiguous

 Everyone shall understand the same

 Complete

 Rules for every possible situation

 Able to check automatically

 Able to implement

 Formal Description Techniques (FDT)

5

FDT

 Specification Languages, Notations

 well-defined syntax

 well-defined semantics

 Typical models

 Finite State Machines (FSM)

 Extended Finite State Machines (EFSM)

 Communicating FSM/EFSM

 Graph models (e.g. Petri net)

 Algebraic models (e.g Calculus of Communicating

Systems – CCS)

6

FSM
 FSM = S, I, O, s0, f(s,I), where

 S: finite set of states

 I, O: finite set of input/output messages

 s0  S: start state

 f(s,i): transition function: if the FSM is in state s  S, recevies an i  I message

then which o  O message is sent and which s'  S will be the next state

7

EFSM
 EFSM = S, I, O, V, P, A, s0, f(s,i,p), where

 S: finite set of states

 I, O: finite set of input/output messages

 V: finite set of variables

 P: finite set of predicates (conditions)

 A: finite set of actions (e.g. value assignment)

 s0  S: start state

 f(s,i,p): transition function: if the EFSM is in state s  S, recevies an i  I

message and predicate (condition) p  P satisfies, then which a  A action is

executed, which o  O message is sent and which s'  S will be the next state

8

si (V) sk(V)

if i arrives and p true

o sent and

a executed

 Communicating EFSM

 Lot of description techniques

 UML state charts

 SDL

 Communicating EFSMS

 output of an EFSM is input of another

9

o i

i o

Net models

 Two node types

 Condition

 Execute

 Tokens

 If all condition ha token -> execution fires

 Good for describing parallelism

 Good for correctness checking

 validation

10

Modified Net models

 More tokens in a condition

 Coloured tokens

 Numerical nets

 tokens have value

 execution states have memory

 actions, computations

 Timed nets

11

CCS

 Describes only observable events at interfaces

 no information about how to implement

 PCO: Point of Control and Observation

 !: message sending

 ?: waiting for a message

 Good for Conformance Testing

 TTCN-3

12

Data Description

 Structure only

 ASN.1

 Abstract Data Types

 ACT ONE – in SDL

 Data structures + operations (~class)

13

Protocol Implementation

 Env.-dep. part:

 memory handling

 buffer handling

 real-time support

(timers)

 scheduling

 communication

between units

 event processing

 error handling

14

Protocol-dependent

Environment-dependent

Interface

 Manual

 (Semi-) automatic

Semi-automatic implementation

15

Protocol

specification

in FDT

Intermediate

high-level

code (C, C++)

cross compiler Environment-

related

routines

(memory,

timer, etc.)

Executable

code

general purpose compiler

and linker

