Architecture, interaction design

Agile roles

e Architect

— A team member (programmer) who designs
interfaces and data structures

* |nteraction (protocol) designer

— A team member (programmer) who designs
message flows over the internal and external
interfaces

What we want to do

 Get data from one node to another
* |n a network of a set of nodes/computers/

software component
* Taking requirements into account

All at once

—-

(52 5 o i o e R
" A X2 2F BN L5 N A
it e R R RS R
s e ﬁ\'s\

* Sending all pieces of data in one message
 Complex data structure

e Simple protocol

Used in software, computer protocols and higher
layer network protocols

In chunks

* Transfer each data item in a separate message
e Simple data structure

* Complex protocol
e Used in telecommunications networks

Network node model

Upper layer port type $ $ $

“
*
*
*
"
. *
n «*
*
*
*
*
“
*

Port Layer-N

Lower layer port type::(

!

Network node model

* Analogy between network node and software
component

— Layer vs. tier

— Port type vs. interface

— Message vs. function declaration

— Message format vs. formal parameter list

— Ingress port activation vs. function called or return
from a call

— Egress port activation vs. calling a function or
returning a value

— PDU vs. actual parameter value

Network node model

Each node has
— A set of port types
— A set of ports

Each port type has

— Message types

Each message type has
— Message format

Each port has
— A message queue (may be of length 1)
— The queue may be shared

Input for architects and designers

 Requirements from:
— Textual protocol specification
— Customer stories — explained by domain experts

Elements of a protocol specification

* What to look for in the requirements?
— Services of the system, module, component
— Assumptions about the execution environment
— Messages
— Message formats
— Behavior rules

Environment

e What to look for?

— |Is it reliable? = If not, then connection oriented
protocol must be used and data must be protected

with a checksum
— Isis secure? =2 If not, then security and policy
extensions may be necessary
e Differences between network node and software

component

— In software the environment is reliable, in
communications it is nondeterministic

— In communications the frequency of environmental
events is higher

Service

* |Input for both architects and designers

* What to look for?
— Node types = This defines the network architecture

— Is it reliable? = If yes, then flow control must be
adopted

— Is it synchronous? =2 If not, then message
identification is necessary

— Is it symmetric? =2 If yes, then P2P, if not, then client-
server or SOA

— Is it between neighbors? = If not, then addressing is
necessary

Service in networking environment

e Specific to telecommunications architecture
e Service is subdivided into:

— Data plane (Forwarding plane)
— Control plane
— Management plane

e Often different protocols implement the
planes

Service in networking environment

 Data plane
— Forwards incoming requests, user traffic
— Parses protocol headers
— Queueing, QoS, filtering

* Control plane

— Lears what the node should do with incoming
requests -- control traffic

— Maintains resource state and exchanges status
information between peers

* Management plane
— Controls and observes node status

Service examples

* SS7 MTP2

— Historic control plane protocol for ISDN networks

— Service: reliable transfer and delivery of signaling
information between neighboring signaling nodes

* SOAP

— Core protocol of XML web services (data plane,
application layer)

— Service: transfer of XML documents between
neighboring SOAP nodes over a network

Network architecture example

* Network nodes may be on the same computer,
even in the same software component

« SS57 MTP2

« SOAP

SOAP

(B)

|

- Signalling link set

SOAP

- Signalling link: to
convey the signalling
messages between
two signalling points

sender

SOAP message

intermediary

SOAP message

SOAP
receiver

Multilayer and multitier

 Multilayer architecture
— In communication networks
— Usually between symmetric peers

— Service is functionally decomposed into layers
e Each layer has a small, well-defined task

e Each layer has a unige language, a small set of
functions

* Higher layers are transparent to lower layers
* Each layer has an overlay network
* Layer protocols are componens and hence replaceable

Multilayer and multitier

* Overlay network

X
/ - \ voice network
:
X ,
T |
1 |
|
|
|
|
| I
|
|
|
: ! i /sgnangnetwork
|

Multilayer and multitier

 Multitier (or N-tier) architecture
— In software systems
— Usually in client-server communication

— Usually each tier is a separate network/
infrastructure node

* Internal data representation
* Unbounded number of data access functions
* Data is not encapsulated but translated on tier borders

Multilayer and multitier

e Three-tier architecture

=
S

Presentation —3 Lc?glc >

tier tier Database

~_

Ul application Application server Database server

Multilayer and multitier

Layer/tier elements

— Client/transmitter

— Server/receiver

— Encoder-decoder - data serialization
— Control, management

If P2P, same transmitter and receiver in all
nodes

If client-server or SOA, unique transmitter and
receiver in each node

Example

* |nternal structure of a telecom protocol

Signaling Ink control
(avel 2)
Msu*
-+ - — —
L8sSu»
‘ ‘ Roco.?:on ‘
— — — P syuv
‘ — — — ‘_'
| |)
—_— | * | Ermor
Signalling Link state Congestion Transmitted Sianalin
network control part | control | d::::::'::n and raceived ;21. .‘ko
functions | o _ _ | part | and bits (level 1)
{leval 3) J i | alignment
— — — sSy=
] — — -
Transmission >
< Reotrioved MSU part
. — —
MSU > -
Tises20-0
Signalling message flows
— = =— Controls and Indications
MSU Mnn%o Signal Unit
su Signal Unit
LSSV Link Status Signal Units
* These signal units do not Include all @rror contral Inform ation.

Example

e The CORBA distributed communications model

Directory
service
Lookup/Search Pub lish
Interface
, Call 1
Client > Server

Client stub Server stub
Framework Framework

Transport

Message type

Task of the architect

Message = function identifier on an interface

What to decide?

— Synchronous or asynchronous

— One-way, request-response, solicitation-
acknowledgement, notification

— What errors can occur?

Functional decomposition: subservices =2
layered model

Message type

* How many message types should be defined?
— As less as possible

— All message types that appear on a public
interface must be supported throughout the life
cycle of the product — that can be expensive

— Alternative: optional headers as key-value pairs

Message format

e Task of the architect

 Message format = function signature or return
type

 What fields to include?
— User data

— Header data
* Message number if asynchronous

e Sequence numbers and fault and acknowledgement
request indicators if reliable

e Address if network of similar nodes exists

Example

* MTP2 message types and message format

.'\ . B
2 CK SIF sio [\| u || FSN [!]| BSN
\“.' 8 B
: First bit
8 16 8n,nx2 8 2 6 1 7 1 7 transmitted
a) Basic format of a Message Signal Unit (MSU) >
\ F B
F CK SF N u [!'] Fsn | 1] BSN
"..‘ &) B
\I
First bit
8 16 8or 16 2 6 1 7 1 7 transmitted
b) Formatofa LinkStatus Signal Unit (LSS U)
\ F B
F CK \ Ll | | FSN 1| BSN
"..\ B B
: el L o= First bit
8 16 x B i1 7T M 7 ity FO
—

c) Format of a Fill-In Signal Unit (FISU)

T1156540.93

Example

 SOAP message type and format

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/socap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding”>
<soap:Header>
control data
</soap:Header>
<soap:Body>
user data
<soap:Fault>
</soap:Fault>
</soap:Body>
</soap:Envelope>

Message queue

* Each port of a component is associated with a
gueue

* Queue types:
— Single FIFO — ordering of arrivals are lost

— Multiple (per port) FIFO — which input queue to
consider next

— Typed message pool — which type of message to look
for in the queue

— General message pool — reception may depend on
message parameters (TTCN-3 — later)

* A delaying network link itself is a queue

Behavior modeling

* Mealy finite state machine

— Set of input events

* Incoming port activations

* Internal timeouts — not observable from the outside
— Set of output events

* Outgoing port activations
— Set of states

 Variables dedicated to remember 1/O event history
* Not observable from the outside

— State transition rules

 What is the next state and the output event upon an input
event in a certain state

Problems from the environment

* Transport medium is not reliable

— modeled as a non-deterministic function

* Messages may be
— delayed
— lost, corrupted
— inserted, duplicated
— reordered

Example

* Protocol layer with two ports
e Components A and B may be local or distributed

ab c. d

Example

* A behavior expressed with state machine

. a—b -
) C |
@ 1 d 2 3 @
o1 ¢ 2 -3 @

Example

e Desired and invalid behaviors

.- aib—
C C
SIS

Example

* How to fix?
— Rendezvous communication
— Avoids cross-over of messages over the interface

* |f the synchronization message is lost, the
system deadlocks, hence must be protected
with timers

a’bT CJdT
' :

b-done

o @@

A
""“"4 2 @ H@ e

Synchronous, asynchronous

 Rendezvous communication
— Synchronous
— Remote procedure call
— Caller must wait for the called — return
— Queue of one element

* Message passing communication
— Non-blocking
— Multiple messages can be on route — queuing
— Callback instead of return type
— Message identification necessary

Addressing

* Endpoint addressing is necessary if the
communication is not P2P

— Communication is asynchronous

* The request P2P session is terminated once delivered,
and the peer must know where to send the callback

message
— Next-hop routing is used
* Over a link layer service or WS-Addressing

* Each node along the path examines the destination
endpoint address, and forwards the message to a node
closer to the destination

Connectionless, connection oriented

* If messages must arrive exactly or at least once
or in order a P2P connection must be set up
between the two nodes

e Connectionless
— Example: HTTP

 Connection oriented
— Connection/session id
— Tracking delivery of messages

— Extra message types for connection setup,
termination and management

Example

* Connection orientation with primitives

T T T
ICONreq \ LcoNind ICONrec\ Iconing ICONreq
\\\\; \\\\;
|« -—
. |1conresp . |ipIsreq
ICONconf IDISind IDISind
ICONreq \ LCONind ICONreq\ LcoNind IDATreq\
\\\\;, \\\\;, \\\\;
. IDATind
_— |1conresp
-— | -
IDISind IDISind
\
IDATreq
IDISreq IDISreq
/ /

IDISind/

-— | -
IDISind

Example

* SOAP is unreliable: WS-ReliableMessaging
extension

Initial Ultimate
Sender Receiver

1: Send T
l 4: Deliver

2:Send —» o
Source Destination
<+—— 3: Acknowledge

Example

* SOAP connection control

CreateSequence (s—2d)
CreateSequenceResponse(id) (d—=2s)
Sequence(id, msgld) (s—=>d)
SequenceAcknowledgement — optional (d—2s)
AckRequested (s—=>d)

TerminateSequence(id) (s—=>d)

o A W PE

* Connections and messages have id

Racing messages

* |f the source of b and c is the same
component, the ordering is a local choice

 |f different component initiate b and ¢, then
those are competing

Racing messages

 Both components will be in different states

* Possible solutions: A B

— Coordination protocol i b
— Priority for one side .

— Non-specified reception
* Undefined behavior
* Error state
* Message is ighored

Racing messages

 Two messages sent from a component arrive
at different ports of another component

* Ordedi f dinA

rdeding enforced in A - C
 That has no influenceonB 7 5
* Coordination is necessary 5
* Problemabisaloop | ; (weak)

— When does the loop end? c\~

Flow control

* The sender produces data faster than the
receiver could process them

* Protects against: message deletion, insertion,

duplication and reordering, racing conditions,
deadlock

e Elements:

— Sequence numbers
— Control messages
— Timers

No flow control

* The receiver process must be faster than the
sender

idle
idle

none

msg (i)

'next’

msg (0)

idle

Y

idle

On/off

* The receiver sends suspend if its buffer is full and resume if it
IS empty

* Problem: loss or delay of control message

SENDER

‘IIIHIEIII’

\
suspend <state=go> resume

state:= state:=
wait ‘next’ go

< idle > msg (o) n:=n+1 n:=n-—1
. (fal
idle

BUFFER RECEIVER

"accept”’

(fal

Stop and wait

* The receiver acknowledges each message, the
sender must wait for the acknowledgement

* Deadlock if a control message is lost

SENDER RECEIVER

Windowing

* The receiver acknowledges each message, the sender knows
the buffer size of the receiver

* Problem: lost, inserted reordered, duplicated messages

SENDER RECEIVER

_ W: window
idle size idle
< go > ack msg(j)

"next’ n:=n-1 "accept’

false
msg (o) ack

true

idle go:=true go:=false idle

SENDER

F‘IIHHHEIII"

T ack

'next’

msg (o)

set (NOW
+d,T)

“IIHEHEIII}

Timeout

Protection against message loss

RECEIVER

"III!E!IIID'T

msg(j)

T

'accept’

ack

set (NOW
+d,T)

{IIHHEEIII’

next

timeout |

next

next

..msg

b

- msg

msg.

error

ack-

Only one of the processes may initiate the retransmission

| timeout

"N accept

”,ack

'~ accept

Sequence numbering

* Provides retransmission of lost messages

SENDER RECEIVER

s: last sequence
number sent

r: last sequence
number received
e: next expected
number to arrive

idle

0

T ack(r) msg(J,a) a: last actual
sequence number
received

false
true
s:=1-s
‘next’ e:=e-1

M

msg(o,s) "accept’
set (NOW i
+d,T) idle

idle

t

Sliding window

* Provides the restransmission of lost messages

* Elements:
— Larger sequence numbers, total M
— Window size: W <= M/2

— Sent but not yet ackd messages are stored on the
sender side

— Received but not yet accepted messages are
stored on the receiver side

— Receiver side buffer

Sliding window

* The window:
— Next message to be sent (s)
— Number of unacknowdledged messages (window)
— Oldest unacknowledged message (n)
— Latest unacknowledged message (m)
— Next message to accept (p)

Sliding window

Transmission Process Acknowledgement Process Retransmission Process

idle idle idle
window<WwW ack(m) window>0

"'next’ busy [m]=

false false
v window:=

. window—-1,
window:= set (NOW n:=(n+1)
window+1, idle +d, T) MOD M
busy[s]=
true, -
store[s]

=0 msg

(store[n],
n)
msg(o,s) Y
idle
t=(s+1)
MOD M
]

Sliding window

Receiver Process Accept Process

' '

valid[m] =
idle (0<p—m<=W)
OR (O0<p—M-—-m<=W)

idle

. recvd
msg(i,m) empty

"accept’

ack(p)

ack (m) p:=(pt+l)
MOD M

Negative acknowledgement

* The receiver forces the retransmission of damaged messages
instead of sender timeouts
* Block acknowledgement

EEEEEE

nak

T, erxr,

ack(xr)

false
true

s:=1—s

‘next ”’

EEEEEEEE

msg(Jj,a)

erxr

ack(a)

nak

true

e:=e—1

raccept’

[

Example

FSN,FIB BSN,BIB
1,0
2’0 A
1,0 ..
3,0 positive
2,0 ack.
4,0 2,0 v
5,0 N
2,1
6,0 negative
2,1 ack.
3,1
2’1 v
4,1
3,1 .
5,1 positive
ack.

4,1

Policy

Rules for participating in communication sessions

Must be agreed upon before the communication takes
place

Policy consists of:

— Subject

— Domain

— Rules, assertions
* Required, optional, observed etc.

— Decision points

Examples:

— In networking: SNMP

— In software: Java Security Policy or WS-Policy

