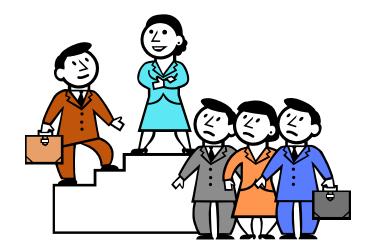
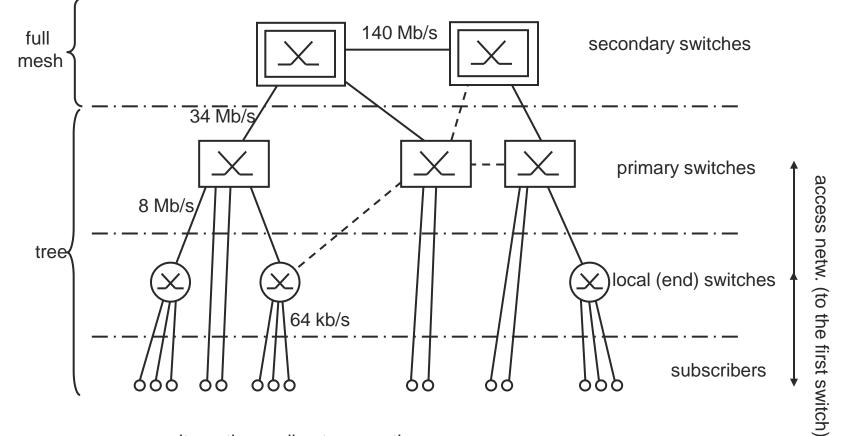
Networking technologies and applications

Gusztáv Adamis


BME TMIT 2015

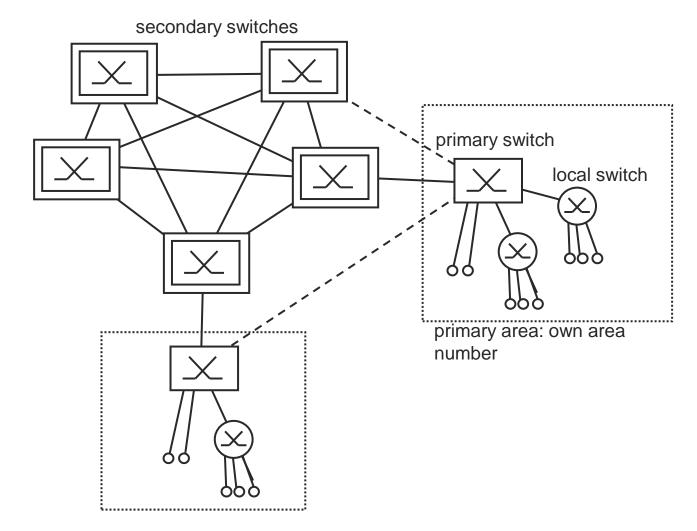
Introduction


Basics of telecommunication networks

- Topological overview of telecomm. networks
- Numbering
- ISDN

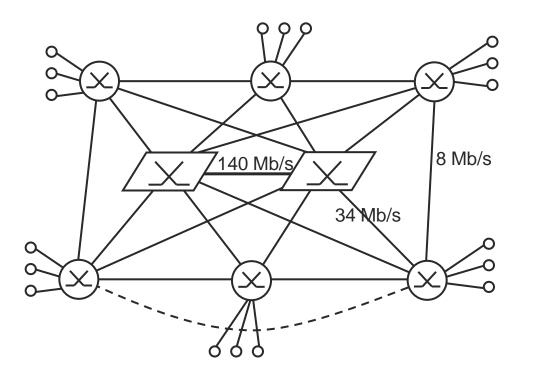
Topological overview of telecomm. networks

Topology of Public Switched Telephony Network (Hungary)



---- : alternative or direct connection:

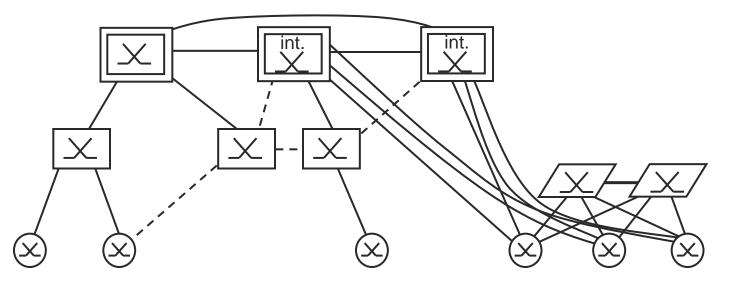
3


goal: to optimize routing, make the network more reliable (redundancy!) Bit speeds are (typical) examples, other solutions are also possible

Geographical topology - example

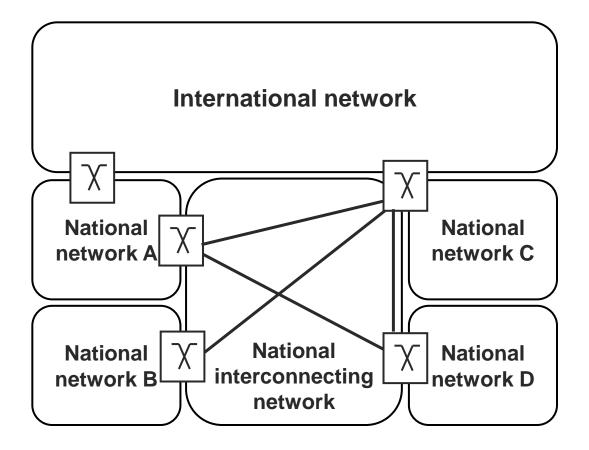
– – – – – : alternative or direct connection

Metropolitan network architecture

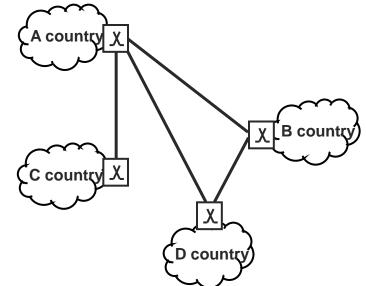


- - - - - : alternative or direct connection

- E.g.. Topology in Budapest:
 - approx. 30 local switches
 - o 2 tandem switches
- Tandem switches:
 - at the hierarchial level of the local switches
 - Bp.: Városmajor, Angyalföld (local + tandem switch)
- Special primary area:
 - Metropolitan network (local switches + tandem switches) = primary area, without a primary switch


Nationwide & metropolitan network (integrtd)

- There are 2 international gateway switches in 2 secondary switches in Budapest
 - Kelenföld, Józsefváros (local, secondary, international switch)
- Integrated topology (simplified):


int. = international

Structure of the telephony network of a country – competitive service providers

International telephony network

- Larger service providers have international gateways
- Several competiting international service providers
- No need for direct connections between any two countries
- ... but 1 international connection may contain maximal 6 trunks (7 switches)
 - (including national parts)

Introduction

Basics of telecommunication networks

- Topological overview of telecomm. networks
- o Numbering
- o ISDN

Numbering (addressing)

- Called party's number: identified originally the location (address)
- Now tendency: identifies the subscriber itself (name)
 - o mobile networks obviously
 - examples in fixed networks:
 - number portability
 - premium rate, freephone (green), shared cost (blue) numbers
- E.164 Recommendation (ITU-T, http://www.itu.int/rec/T-REC-E.164/en)
- An international number: max. 15 digits
 - country code (1-3 digits) + national destination code (area code, service or network identifier) + subscriber number

1	North America
2	Africa (+Greenland)
3,4	Europe
5	Middle and south America
6	Australia Oceania
7	Russia, Kazakhstan
8	Far East (+Inmarsat, Internat. green number: 800)
9	Middle and Near East

Numbering (addressing)

National Destination Code:

- Area code, e.g.: 33: Esztergom
- Network Code, e.g.: 30: t-mobile
- Service Code, e.g.: 80: green number
- Subscriber Number
- National Destination Number = NDC + SN
- Connection between the network and numbering hierarchies

Numbering (addressing)

Open numbering scheme:

- Two forms: national/local number
- Local numbers shorter, but national prefix (
 - 06 in Hungary,
 - 0 in other European countries)
- Closed numbering scheme :
 - Always national destination number
 - Simple, unambigous
 - Same length, independently where to start the call from
 - Tendency in Europe (Norway, France, Italy, UK....)

Short codes

Short numbers:

104, 105, 107, 112	emergency numbers
116c(d)	
118de	
12cd	
140d-144d, 145de-149de	
17c(d(e))	
18c(d)	
190-194, 197-199	operator services

Prefixes:

00	internat. prefix
06	nat. prefix
130	number presentation allowance prefix
131	number presentation disabling prefix
15cd	carrier selection prefix

National Destination Codes in Hungary

Area codes

A\B	2	3	4	5	6	7	8	9
2	Székesfehérvár	Biatorbágy	Szigetszentmiklós	Dunaújváros	Szentendre	Vác	Gödöllő	
3	Salgótarján	Esztergom	Tatabánya	Balassagyarmat	Eger	Gyöngyös	-	-
4	Nyíregyháza	-	Mátészalka	Kisvárda	Miskolc	Szerencs	Ózd	Mezőkövesd
5	Debrecen	Cegléd	Berettyóújfalu	for test purposes	Szolnok	Jászberény	-	Karcag
6	Szeged	Szentes	-	-	Békéscsaba	-	Orosháza	Mohács
.7	Pécs	Szigetvár	Szekszárd	Paks	Kecskemét	Kiskunhalas	Kiskőrös	
¹⁴ 8	Kaposvár	Keszthely	Siófok	Marcali	-	Tapolca	Veszprém	Pápa
9	Zalaegerszeg	Nagykanizsa	Szombathely	Sárvár	Győr			

National Destination Codes in Hungary

Service and Network Codes:

A\B	0	1		
2	GSM (Telenor)	Nomadic service		
3	GSM (T-Mobile)	GSM (Other operators)		
4	Shared cost service ("blue" number)	-		
5	Reserved for new GSM operator	Internet access		
6	-	-		
7	GSM (Vodafone)	Machine to machine communication (M2M)		
8	Freephone ("green" number)	-		
9	Premium rate service	Premium rate service (restricted content and price)		

Introduction

Basics of telecommunication networks

- Topological overview of telecomm. networks
- Numbering
- ISDN

ISDN

- ISDN = Integrated Services Digital Network
- Improvement of PSTN
 - Public Switched Telephone Network,
 - or POTS: Post Office Telephone Service -> Plain Old Telephone Service
- since 1987, more than 25 years old!
- IS-: integrated service: several services on one network, e.g.:
 - voice (POTS), videoconference, data transfer
- **-DN**: full digital: voice codec in terminal
- switches, transmission paths are digital
 - (UNI: user-network interface, NNI: netwrok-network interface)

ISDN – motivation

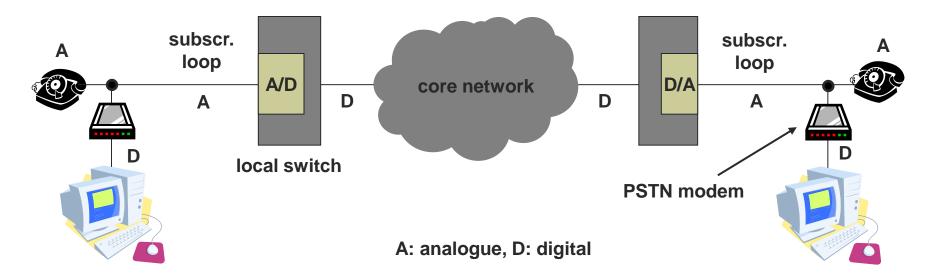
- A bit of history:
 - C64 is the computer of the year in 1982!

In those days the high-tech in telephony was still something like this ⁽²⁾

ISDN – motivation

Need for improved services

- Better voice quality than in PSTN
- Value added supplementary servition
 - number presentation
 - conference call
 - call forwarding
 - call waiting
- o videotelephony (!)
- faster data transmission
- Solution: digitalisation that is ISDN



ISDN – motivation

- Producer side: digital trunks (PCM), digital switches
 - easier to sell if there are new services... → ISDN
- Not sure that the new services would have been enough:
 - 2 "telepone lines" on one wire pair
 - that is the real benefit!


PSTN – analogue/digital transmission

PSTN data transmission with modems:

- When the core network is digital, the D/A/D/A/D transmission sounds not too good ☺
 - Not effective: 33 kb/s instead of 64 kb/s
- Solution: ISDN Digital Subscriber Loop

ISDN – digital transmission

- Data path is digital all along the way!
- Voice codecs in terminals
- Then, why do we need a modem? ISDN signalling: connection establishment, release Data transmission interface
 - □ PC: e.g.. RS-232
 - ISDN: D channels

ISDN implementation

- (Re)usage of the existing copper wire pairs in digital subscr. loops
 - Though only several km, but expensive (copper, lay down,...)
 - Half (!!) of the total cost of a telephony network lays in the copper wires of the subscriber loops!
- Digital transmission instead of analogue
- Speed depends on the number of channels
- Two channel types:
 - B channel: 64 kb/s, bidirectional (full duplex), voice OR digital data OR video
 - D channel: 16 or 64 kb/s: signalling (e.g. call establishment, release, etc.) 1 D channel is enough for SEVERAL B channels
 - o more details later

ISDN implementation

Allowed combinations:

- 2B+D16: BRA/BRI: Basic Rate Access/Interface,
 - 144 kb/s useful speed
 - o on one wire pair bandwidth of the copper pair is more than enough
 - tipically for individuals / small companies
 - possible combinations:
 - 2 independent voice connections
 - 1 voice + 1 fax
 - 1 voice + 64 kb/s data transfer (e.g. Internet access)
 - 128 kb/s data transfer
 - can be changed dynamically
- 30B+D64 (Eu, 23B+D US): PRA/PRI Primary Rate Access/Interface
 - o 1984 kb/s ~2 Mb/s
 - typically on 1, 2 or 3 wire pairs: depending on the quality of wire, length, encoding
 - o for large companies, 30 independent channels
 - typically controlled by a P(A)BX

ISDN BRA

- BRA Basic Rate Access
- In practice it often provides other features:
 - S₀ bus, but often provides direct connetions for ISDN terminals
 - may contain 1-2 Terminal Adaptor (TA) to connect analogue equipments (telephone, fax)
 - may contain PC plug-in (RS-232, or USB), so it serves as a modem, too

S₀ bus

- Speed: 2B + D16 + synchronisation (48 kb/s) = 192 kb/s
- 4 wire cable, closed by a proper impedancy
- Max. 8 terminals (TE) can be connected to it
- But terminals can also be connected directly to switch (NT)
 - 1 TE: point-point topology
 - more TEs: star topology

Telephone numbers

- Max. 10 tel. number may be assigned to 1 BRA subscription (in Hungary, but this is typical)
- Max. 8 terminals
- We may use max. 2 B channels in parallel
- ...?!
- Simple!
 - TEs are programmed which number they recognize ("ring")
 - In case of an analogue equipment TA
 - Any (of max. 10) number is called, the message is transmitted to ALL TE
 - That will answer the call, which is programmed for that number
 - Without PBX (Private Branch Exchange 'company owned switch')!
 - (This is the Multiple Subscriber Number (MSN) ISDN service)

ISDN past, present, future

- Enormous technological progress
- in 1990s-2000 that was the "high speed" Internet access for homes/small companies
- But only 10% of the PSTN subscriber lines
 - in Western Europe 25%
- Reasons:
 - most popular supplementary services can be reached nowadays by analogue equipments
 - plus functionalities in switches
 - digital elements in analogue equipments (display, SMS, memory)
 - In 1990s: much more expensive equipments
 - For Internet-access ADSL/cable TV etc. better
 - Because of mobiles no need for two telephone lines

ISDN past, present, future

ISDN = dead end?

- No!
 - > 100 million B channels worldwide
 - network services can be used by analogue equipments
 - ISDN interswitch signalling system is still the universal telecommunications signalling system (chapter 6)
 - provided the basics for GSM networks
- But: it is the technology of the present and near past, but not of the future