
Management of Information Systems
2019

About the laboratory

This laboratory guide contains 14 exercises. After each exercise you will

find some ideas, some commands that might be handy during the solution.

But, of course, any resources available on the Internet may be used.

The next few tutorials may be helpful during preparing for the laboratory:

1. https://www.digitalocean.com/community/tutorials/how-to-set-up-a-

firewall-using-iptables-on-ubuntu-14-04

2. https://www.digitalocean.com/community/tutorials/how-to-set-up-apache-

virtual-hosts-on-ubuntu-16-04

3. https://www.shellscript.sh

Starting the VM

During the laboratory you will use a virtual machine preinstalled with a

Debian 9.0 system. Note that the virtual machine has no internet

connection, only a direct connection to the host computer is present.

Please do not change this setting. If you have to move files between the

host and the virtual system, please use the WinSCP installed on the host

computer.

You should login as laboruser to the virtual machine.

The password of laboruser is laboruser.

Some exercises might require administrative privileges.

The root password is irulabor.

~~ Exercises ~~

1.1 Check the codename of the system.

lsb_release -da

1.2 List all the installed packages. Is the Midnight Commander file

manager installed?

dpkg -l

1.3 Check the network interfaces of the virtual machine! What is the IP

address of each of them?

ip addr

1.4 According to the policies the ssh service should be reachable only

from the organization’s network. Modify the firewall rules according to the

policy!

iptables -L INPUT, iptables -A INPUT …

1.5 According to the policies the machine should not answer the echo

requests (‘ping’). Modify the firewall rules according to this policy!

1.6 Create a new user called spongebob. The password of spongebob

should be abracadabra11.

adduser

1.7 The new user created in the previous exercise should be allowed the

sud rights!

sudo

2.1 Install the Apache2 webserver!

apt-get install apache2

2.2 Check that the webserver is listening on the port 80!

lsof -i -P

2.3 Create a new virtual host that answers the name irulabor.vmware.

The name irulabor.vmware should be resolved to 127.0.0.1 by the virtual

machine! The webserver should return the pages you can download from the

address https://github.com/ng201/iru.

/etc/hosts, a2ensite

2.4 You can check the working configuration on the virtual and on the

physical machine, too. The page http://irulabor.vmware/vedett can be

reached from both machines. Change the settings of the virtual host in a

way that the content of the vedett directory is available from the virtual

machine (i.e., from the IP address 127.0.0.1)!

Require ip 127.0.0.1

3.1 Write a bash script that prints the vendor id of the processor!

cat /proc/cpuinfo, cut

3.2 Write a bash script that’s input is a file of 5 columns (the number

of rows is unspecified). The columns are separated by spaces and the first

column contains a positive integer value. The script should i) concatenate

https://github.com/ng201/iru
http://irulabor.vmware/vedett

the 4th and 5th columns, ii) multiply the number I the first column by 2 and

iii) write out the result on the standard output as a 4-column dataset.

awk

3.3 Write a bash script that prints out i) the name of user running the

script, ii) the current date in YYYY-mm-dd format and iii) the list of

users logged in to the system. Each user should be only once on the list!

who, date +

Scripting tutorial

Some useful programs

In this section we introduce some useful programs that can serve as

building blocks to write great scripts.

cat

cat concatenates files and prints the result on the standard output.

head

Head is a program that prints the first so many lines of its input. By

default, it will print the first 10 lines, but this behaviour can be

overwritten with a command line argument.

tail

Tail is the opposite of head. Tail is a program that prints the last few

lines of its input. By default, it will print the last 10 lines.

laboruser@iru:~$ tail -3 mydata.txt

Greg pineapples 3

Betty limes 14

laboruser@iru:~$

sort

Sort will sort its input. By default, it will sort alphabetically but there

are many options available to modify the sorting mechanism. See, for

example, the man page of sort for more details.

wc

wc stands for word count and it can print newline, word, and byte counts

for each file.

cut

cut is a little program to separate the content of a file into field

(columns). The field separator character may be defined with the -d command

line option. The -f option allows us to specify which field or fields we

would like to see in the output. If we want the first two column of a space

separated file, we can run the command as follows:

laboruser@iru:~$ cut -f 1,2 -d ' ' mydata.txt

uniq

uniq stands for unique and its job is to remove duplicate lines from the

data. One limitation however is that those lines must be adjacent.

grep

grep is a program which will search a given set of data and print every

line which contains a given pattern. It has many command line options which

modify its behaviour, so it's worth checking out its man page:

laboruser@iru:~$ grep [command line options] <pattern> [path]

In the examples below we will use a sample file as follows:

laboruser@iru:~$ cat mydata.txt

Fred apples 20

Susy oranges 5

Robert pears 4

Terry oranges 9

Lisa peaches 7

Susy oranges 12

Mark grapes 39

Anne mangoes 7

Betty limes 14

Let's say we wished to identify every line which contained the

string oranges:

laboruser@iru:~$ grep 'oranges' mydata.txt

Susy oranges 5

Terry oranges 9

Susy oranges 12

The basic behaviour of grep is that it will print the entire line for every

line which contains a string of characters matching the given pattern. This

is important to note, we are not searching for a word but a string of

characters.

Also note that we included the pattern within quotes. This is not always

required. They are required if your pattern contains characters which have

a special meaning on the command line.

Sometimes we are not interested in seeing the matched lines but wish to

know how many lines did match.

laboruser@iru:~$ grep -c 'orange' mydata.txt

3

sed

sed (stream editor) is a Linux/Unix utility that parses and transforms

text. The following example shows a typical, and the most common, use of

sed, for substitution:

laboruser@iru:~$ sed 's/regexp/replacement/g' inFName > outFName

Besides substitution, other forms of simple processing are possible, too.

For example, the following uses the d command to delete lines that are

either blank or only contain spaces:

laboruser@iru:~$ sed '/^ *$/d' inFName

This example uses some of the following regular expression:

- the caret (^) matches the beginning of the line.

- the dollar sign ($) matches the end of the line.

- the asterisk (*) matches zero or more occurrences of the previous

character.

awk

Awk is a good program to use if you need to work with data that is

organized into records with fields. It allows you to filter the data and

control how it is displayed.

Now let's say we want to print the order but only if the order is above 10.

We also wish to reformat the output a little.

laboruser@iru:~$ awk '$3 > 10 {print $1 " - " $2 ": " $3}' mydata.txt

Fred - apples: 20

Susy - oranges: 12

Mark - grapes: 39

Betty - limes: 14

Piping and Redirection

Every program we run on the command line automatically has three data

streams connected to it.

STDIN (0) - Standard input (data

fed into the program)

STDOUT (1) - Standard output

(data printed by the program,

defaults to the terminal)

STDERR (2) - Standard error (for

error messages, also defaults to

the terminal)

Piping and redirection is the means by which we may connect these streams

between programs and files to direct data in interesting and useful ways.

Redirecting to a File

Normally, we will get our output on the screen, which is convenient most of

the time, but sometimes we may wish to save it into a file to keep as a

record, feed into another system, or send to someone else. The greater than

operator (>) indicates to the command line that we wish the programs output

(or whatever it sends to STDOUT) to be saved in a file instead of printed

to the screen. Let's see an example.

laboruser@iru:~$ ls

sponge.txt bob example.png firstfile foo1 video.mpeg

laboruser@iru:~$ ls > myoutput

laboruser@iru:~$ ls

laboruser@iru:~$ sponge.txt bob example.png firstfile foo1 myoutput

video.mpeg

laboruser@iru:~$ cat myoutput

sponge.txt

bob

example.png

firstfile

foo1

myoutput

video.mpeg

Piping

Piping is a mechanism for sending data from one program to another. The

operator we use is |. What this operator does is feed the output from the

program on the left as input to the program on the right. In the example

below we will list only the first 3 files in the directory.

laboruser@iru:~$ ls

sponge.txt bob example.png firstfile foo1 myoutput video.mpeg

laboruser@iru:~$ ls | head -3

sponge.txt

bob

example.png

We may pipe as many programs together as we like:

laboruser@iru:~$ ls | head -3 | tail -1

example.png

Bash Scripting

Bash is a Unix/Linux shell and command language. Bash is a command

processor that typically runs in a text window where the user types

commands that cause actions.

Bash can also read and execute commands from a file, called a shell script.

Like all Linux/Unix shells, it supports filename globbing (wildcard

matching), piping, here documents, command substitution, variables, and

control structures for condition-testing and iteration.

The Shebang

The very first line of a script should tell the system which interpreter

should be used on this file. It is important that this is the very first

line of the script. The first two characters #! (the shebang) tell the

system that directly after it will be a path to the interpreter to be used.

#!/bin/bash

Comments

A comment is just a note in the script that does not get run, it is merely

there for your benefit. Comments are easy to put in, all you need to do is

place a hash (#) then anything after that is considered a comment. A

comment can be a whole line or at the end of a line.

laboruser@iru:~$ cat myscript.sh

#!/bin/bash

A comment which takes up a whole line

ls # A comment at the end of the line

Variables

A variable is a container for a simple piece of data. Variables are easy to

set and refer to but they have a specific syntax that must be followed

exactly for them to work.

When we set a variable, we specify its name, followed directly by an equal

sign (=) followed directly by the value. Thus, no spaces on either side of

the = sign.

When we refer to a variable, we must place a dollar sign before the

variable name.

laboruser@iru:~$ cat variableexample.sh

#!/bin/bash

A simple demonstration of variables

Ryan 29/3/2019

name='SpongeBob'

echo Hello $name

laboruser@iru:~$./variableexample.sh

Hello SpongeBob

Command line arguments

When we run a script, there are several variables that get set

automatically for us. Here are some of them:

$0 - The name of the script.

$1 - $9 - Any command line arguments given to the script. $1 is the first

argument, $2 the second and so on.

$# - How many command line arguments were given to the script.

$* - All of the command line arguments.

laboruser@iru:~$ cat morevariables.sh

#!/bin/bash

A simple demonstration of variables

Ryan 29/3/2019

echo My name is $0 and I have been given $# command line arguments

echo Here they are: $*

echo And the 2nd command line argument is $2

laboruser@iru:~$./morevariables.sh bob fred sally

My name is morevariables.sh and I have been given 3 command line arguments

Here they are: bob fred sally

And the 2nd command line argument is fred

Back ticks or $()

It is also possible to save the output of a command to a variable and the

mechanism we use for that is the backtick (`) or the $() construct:

laboruser@iru:~$ cat backticks.sh

#!/bin/bash

A simple demonstration of using backticks

Ryan 29/3/2019

lines=`cat $1 | wc -l`

or you may use:

lines=$(cat $1 | wc -l)

echo The number of lines in the file $1 is $lines

./backticks.sh testfile.txt

The number of lines in the file testfile.txt is 12

