

The Internet Ecosystem and Evolution

Lab 2

IP addressing

IP subnetting

● “Real” (hosts on same link) or “logical” (created by
the operator for routing purposes) subnets

● Aggregation: hosts aggregated into a single prefix
● CIDR (Classless Interdomain Routing): flexible IP

subnetting
– first X bits: subnet identifier

– remaining 32-X bits: host identifier

– X is marked by the prefix length (pl. /18) or the netmask
(e.g., 255.255.192.0, in dotted-decimal notation)

● Convention: to identify a particular subnet we set the
host identifier to zero

IP subnetting

● Question: how many IP addresses are
aggregated in the 12.130.192.0/21 prefix?

● Answer: the host identifier is of 32 – 21 = 11
bits, consequently there are 211=2048 separate
IP addresses held by the prefix

● Question: how many host identifiers can be
handed out from this prefix?

● Answer: the first address inside the prefix is
reserved as the subnet identifier by convention,
the last is for subnet multicast, so there remain
2048-2=2046 assignable IP addresses

IP subnetting

● Question: which is the first and the last “real”
IP address in the prefix 12.130.192.0/21?

● Answer: use the binary representation

CIDR notation 12.130.192.0/21

Prefix length 21 bits (from the MSB)

 binary 00001100 10000010 11000000 00000000

Subnet mask (binary) 11111111 11111111 11111000 00000000

Subnet mask (dotted) 255.255.248.0

First IP address 12.130.192.1

 binary 00001100 10000010 11000000 00000001

Last IP address 12.130.199.254 (!!!!)

 binary 00001100 10000010 11000111 11111110

IP subnetting

● Question: which /19 prefix contains the IP
address 73.38.171.112?

● Note that there is exactly one such /19!

● Answer: using the binary representation

● Host identifier=000... (last 13 bits)

IP address 73.38.171.112

Binary 01001001 00100110 10101011 01110000

First 19 bits will be the subnet id,
 the rest (host id) is set to 0

01001001 00100110 10100000 00000000

Dotted decimal notation 73.38.160.0/19

IP subnetting

● Question: does the prefix 153.43.255.0/24
contain the IP address 153.47.255.199?

● Answer: since it is a /24, it is enough to look
at the first 3 decimal numbers

● Since these differ, the answer is no

● Question: does the prefix 189.208.40.0/22
contain the IP address 189.208.44.89?

● Answer: no, the first 22 bits differ
Prefix in binary 10111101 11010000 00101000 00000000

IP address in binary 10111101 11010000 00101100 01011001

Subnet id (/22) 10111101 11010000 001011

Most specific prefix

● Forwarding occurs based on the FIB

● Longest Prefix Match (LPM): from the prefixes
that match on all bits of the subnet id, find the
one that matches the address on the most bits

● Can impose specific routing behavior on select
groups of hosts (subnets)

Part of the FIB of a router

IP prefix/length Prefix in binary Next-hop IP addr.

189.110.0.0/15 10111101 0110111 10.0.0.1

189.111.16.0/22 10111101 01101111 000100 10.0.0.2

189.111.18.0/23 10111101 01101111 0001001 10.0.0.3

189.111.17.0/24 10111101 01101111 00010001 10.0.0.4

Most specific prefix

● Question: which is the most specific FIB entry for
the IP address 189.111.19.10?

● Answer: 189.111.19.10 = 10111101
01101111 00010011 00001010

● The first, second, and third entries match on the
subnet id, and the third is the longest matching prefix

● Question: LPM for 189.111.16.110?

● Answer: only the first two entries match, second is
longer

● For IP address 189.111.17.11 the fourth one is
the LPM

Aggregation/deaggregation

● Question: divide the prefix 1.11.112.0/22 into two /24
and one /23 prefixes

● Answer: first, split the /22 into two /23s, by setting bit 23
to 0 and 1, respectively
1.11.112.0/22 =
 1.11.112.0/23 1.11.114.0/23

● Then, split the first /23 to two /24s at bit 24
1.11.112.0/23 =
 1.11.112.0/24 1.11.113.0/24

● We could have split the second /23 as well if we wanted

1.11.114.0/23 =
 1.11.114.0/24 1.11.115.0/24

IP subnetting: Useful tools

● ipcalc(1): conversion between arbitrary
formats: http://jodies.de/ipcalc

● libc: inet_aton(3), inet_ntoa(3), …

● python: from netaddr import *

$ ipcalc 203.123.64.0/19
Address: 203.123.64.0 11001011.01111011.010 00000.00000000
Netmask: 255.255.224.0 = 19 11111111.11111111.111 00000.00000000
Wildcard: 0.0.31.255 00000000.00000000.000 11111.11111111
=>
Network: 203.123.64.0/19 11001011.01111011.010 00000.00000000
HostMin: 203.123.64.1 11001011.01111011.010 00000.00000001
HostMax: 203.123.95.254 11001011.01111011.010 11111.11111110
Broadcast: 203.123.95.255 11001011.01111011.010 11111.11111111
Hosts/Net: 8190 Class C
$ ipcalc 203.123.64.0/19 -s 4000 4000

Typical exam exercises

● How many IP addresses are aggregated into the prefix
 120.1.32.0/19? How many hosts can be assigned
an IP address from this prefix? Which s the first and
the last assignable IP address within the prefix?

● Which /14 prefix contains the address 3.41.11.12?

● Can one aggregate the prefixes 177.143.96.0/21
and 177.143.104.0/21 into a single /20?

● Split the prefix 107.14.64.0/19 into a subnet that
contains at least 2000 host identifiers plus two other
subnets that contain at least 1000 addresses each!

Typical exam exercises

● Which one is the most specific entry in the
below FIB for the IP address 10.100.45.1,
10.100.27.111, and 10.99.5.5
respectively?

Sample from the FIB of a router

IP prefix/prefix length Next-hop IP addr.

10.96.0.0/12 10.0.0.1

10.100.0.0/17 10.0.0.2

10.100.16.0/20 10.0.0.3

10.100.32.0/20 10.0.0.4

Generating IP packets: Scapy

Scapy

● Assembling and sending packets easily with
essentially arbitrary header fields and content

● Simple packet decoding and dumping (even to
pdf!)

● Scanning, fuzzing, traceroute, unit tests
● Protocols/applications/formats supported from the

link layer to the application layer
● Security testing of protocol implementations woth

specially crafted packets
● Integrated into the powerful python programming

language

Scapy

● Scapy is readily available in the OpenWRT
images inside GNS3

● Start the project from the last lab and enter R1

● Packet to host 10.0.1.2 with maximal TTL

root@OpenWrt:/# scapy
Welcome to Scapy (2.3.1)
>>>

>>> packet=IP(dst="10.0.1.2", ttl=255)
>>> packet
<IP ttl=255 dst=10.0.1.2 |>
>>> packet.show()

Scapy

● It is worth saving packets assembled into a variable
● Enough to set essential fields only (rest is automatic)

● Show all headers: p.show()

● Byte stream: str(p)

● Hexadecimal dump: hexdump(p)

● Sending the packet: send(p) (routing table lookup
based on the IP destination address, needs a valid
routing table!)

>>> p = IP(dst="10.0.1.2")
>>> p.ttl
64

Scapy

● Protocols can be combined with the op. ”/”

● Send an HTTP packet to host 10.0.1.2

● Putting an HTTP header into TCP, Scapy sets
the TCP destination port to 80 automatically

● Capturing (sniffing) packets on R2

>>> send(IP(dst="10.0.2.2")/TCP()/"GET / HTTP/1.0\r\n\r\n")

root@OpenWrt:/# tcpdump -nvvvv -s 256 -i eth0
[…] device eth0 entered promiscuous mode
tcpdump: listening on eth0, link-type EN10MB (Ethernet), ...
21:09:00.922471 IP (tos 0x0, ttl 64, …, proto TCP (6), length 58)
 10.0.2.1.20 > 10.0.2.2.80: Flags [S], …, length 18
21:09:00.922508 IP (tos 0x0, ttl 64, …, proto TCP (6), length 40)
 10.0.2.2.80 > 10.0.2.1.20: Flags [R.], …, length 0

Exercises

● Set up a GNS3 project with two routers R1 and R2, create IP-layer connectivity
(10.5.0.1/24 – 10.5.0.2/24), generate packets with Scapy on R1 and
sniff traffic with tcpdump on R2!

● Determine the MAC address of the other side!

● Send a valid ICMP „Echo request” packet and observe the response!

● Protocol „fuzzing”: security-test protocol implementations with invalid packets!

● BGP fuzz testing: (let R2 run BGP: vtysh/”conf t”/”router bgp 10”/exit/exit/exit)

>>> sck=socket.socket() # python socket
>>> sck.connect(("10.5.0.2",179)) # connecting to the BGP daemon
>>> str=StreamSocket(sck) # scapy stream for sending pkts
>>> p=IP(dst="10.5.0.2")/TCP(dport=179)/fuzz(Raw()) # „fuzz” BGP pkt
>>> str.send(p) # send packet
273 # BGP resets the connection
>>> sck.close() # close the reset connection

>>> send(ARP(op=ARP.who_has, psrc="10.5.0.1",pdst="10.5.0.2"))

>>> send(fuzz(IP(dst="10.5.0.2",ttl=2)), count=5)

>>> send(IP(dst="10.5.0.2")/ICMP(type=8)/"AAAAAAAAAAA")

IP forwarding

IP Forwarding

● IP forwarding inside links (C1↔C2) and between
directly connected links (R1: Link1↔Link2, R2:
Link2↔Link3) is automatic

● IP forwarding between remote links (Link1↔Link3)
needs a forwarding table (FIB) to be set up at the
intermediate routers (R1 and R2)

Link 1
Ethernet cloud

IP subnet: 10.1.2.0/24

Link 3
Ethernet link

IP subnet: 10.3.4/24
10.1.2.1

10.1.2.2
10.1.2.254 10.3.4.254

10.3.4.1

R2R1
Link 2

Ethernet link
IP subnet: 10.2.3/24

10.2.3.1 10.2.3.2

C1

C2
C3

Dest. prefix Next-hop

10.3.4.0/24 10.2.3.2

Forwarding table: R1
Dest. prefix Next-hop

10.1.2.0/24 10.2.3.1

Forwarding table: R2

Exercise

● Set up the below topology in GNS3, let all hosts and
routers run the OpenWRT image (use “Change
hostname” and “Change symbol”) and assign interface
IP addresses marked in the figure as learned in Lab1!

Exercise

● Set R1 as default gateway on C1

● Similarly, set the default gateway on C2 to R1 and
on C3 to R2!

1) Ping C2 (10.1.2.2) and R1 (10.1.2.254)
from C1 and observe what happens!

2) Ping C3 (10.3.4.1) from C1 and explain what
happens (use tcpdump to capture packets at R1
and R2)!

OpenWrt# vtysh
OpenWrt# conf t
OpenWrt(config)# ip rou 0.0.0.0/0 10.1.2.254
OpenWrt(config)# exit

Exercise

3)Add a forwarding table entry at R1 so that it learn
the whereabouts of Link3

– Ping C3 from C1 and explain what happens now!

4)Add a “reverse” route to R2 so that it learn the
next-hop to Link1

– Ping C3 from C1 now and explain what you see!

OpenWrt# vtysh
OpenWrt# conf t
OpenWrt(config)# ip rou 10.3.4.0/24 10.2.3.2
OpenWrt(config)# exit

OpenWrt# vtysh
OpenWrt# conf t
OpenWrt(config)# ip rou 10.3.4.0/24 10.2.3.2
OpenWrt(config)# exit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

