The Internet Ecosystem and Evolution

Lab 1

GNS3: Installation and configuration

GNS3: Network simulator

- Real router and host images connected into an emulated network: CISCO, Juniper, Vyatta, Linux, etc.
- Traffic analysis: traffic capture (WireShark)
- Fast and responsive GUI, projects, labs, etc.
- Complex network topologies, arbitrary network layers, guests can be connected to the Internet
- Simple router configuration through CLIs (Command Line Interface)
- For learning and testing

GNS3: Network simulator

GNS3: Installation

- See the guide at: http://www.tmit.bme.hu/internet_english?langu age=en
- Commercial switch/router images require a lot of resources, but here is a free Cisco image: http://heszi.tmit.bme.hu/klima/hda.qcow2.tar.gz
- We use a hand-crafted Linux/OpenWRT image instead, with only open and free software tools
- Routing protocols are supplied by Quagga
- Download the image at: http://heszi.tmit.bme.hu/klima/openwrt_internet_v1_1.zip

Quagga basics

Quagga

- Free and open source routing protocol package for all operating systems (UNIX/Linux/Win/OSX)
- Config modeled after Cisco "industry-standard" CLI
- Syntax/config files are usually portable between Quagga and Cisco with little work
- Routing protocols in separate processes:
 - OSPF protocol: ospfd (port: 2604)
 - BGP protocol: bgpd (port: 2605)
 - RIP (ripd), IS-IS (isisd), etc.
 - Zebra: miscellaneous services, interface management, kernel FIB, timers, threads, etc. (port: 2601)

Quagga

Quagga automatically starts in the OpenWRT images

root@OpenWrt:/# netstat -tanp							
Active Internet connections (servers and established)							
Proto	Local Address	Foreign Address	State	PID/Program name			
tcp	0.0.0.0:2601	0.0.0.0:*	LISTEN	1061/zebra			
tcp	0.0.0.0:2604	0.0.0.0:*	LISTEN	1065/ospfd			
tcp	0.0.0.0:2605	0.0.0.0:*	LISTEN	1069/bgpd			
tcp	:::2601	:::*	LISTEN	1061/zebra			
tcp	:::2604	:::*	LISTEN	1065/ospfd			
tcp	:::2605	:::*	LISTEN	1069/bgpd			
tcp	:::23	:::*	LISTEN	976/telnetd			

 Default configuration files: /etc/quagga/ {zebra,bgpd}.conf

Quagga configuration

- Configure the below network:
 - router image: openwrt
 - router name: "Change hostname"
 - links: FastEthernet
 - IP addresses as shown on figure

Quagga configuration

- It is advised to mark IP addresses alongside the interfaces, makes configuration simpler
- Use the Quagga <code>vtysh</code> terminal for config:
 - simple Cisco-like CLI
 - saved into the config files for the project
 - config files are automatically loaded next time you open the project, so settings are preserved
- You can also use standard Linux sysadmin commands as well (ip(8), ifconfig(8)) or edit the OpenWRT config files manually

Quagga configuration

- vtysh uses the Cisco "extended" (enable) mode automatically, all commands available
- Enough to specify only the first couple of characters of each command: enable = en
- TAB completes the command names in a context sensitive manner, ? gives help

OpenWrt# show	/ i <tab></tab>					
interface ip	o ipv6					
OpenWrt# show i						
interface	Interface status	and	configuration			
ip	IP information					
ipv6	IPv6 information					

Setting IP addresses

- Change the host names to R1, R2, and R3 (right button on router icon and see the context menu)
- Fire up a terminal at router $\ensuremath{\mathbb{R}1}$
- Enter configuration mode: vtysh
- Enter configuration mode: configure terminal (conf t)
- Start the configuration of the interface called eth0: interface eth0

Setting IP addresses

- Set IP address: ip address <cím/prefix-length>
- Set interface UP: no shutdown (needed on Cisco only, Quagga sets this automatically)
- Exit interface configuration mode: exit
- Same for the other interface: interface eth1
- Exit from config mode: exit
- Dump config to terminal: write terminal
- Save actual config: copy running-config startup-config

Setting IP addresses: R1

root@OpenWrt:/# vtysh **OpenWrt# configure terminal OpenWrt(config) # interface eth0** OpenWrt(config-if) # ip address 10.0.1.1/24 OpenWrt(config-if)# no shutdown # optional OpenWrt(config-if)# exit OpenWrt(config)# interface eth1 OpenWrt(config-if) # ip address 10.2.0.1/24 OpenWrt(config-if) # no shutdown # optional OpenWrt(config-if)# exit OpenWrt(config)# exit OpenWrt# copy running-config startup-config Configuration saved to /etc/quagga/zebra.conf **OpenWrt# exit** Connection closed by foreign host

Important notice

- Saving a config file (copy running-config startup-config) will in theory preserve your settings between invocations of GNS3
- Problem is, Quagga sometimes fails to write the new config file into the router image (sync)
- One way to make sure your settings are not lost between GNS3 sessions is to exit the virtual machines "gracefully": exit from vtysh and then issue the command halt in the shell
- If you're lucky, you can get away without this...

Assignments

- Configure router R2 and R3 as marked in the figure!
- Check the link-layer connectivity using the ping command in the Linux console shell!
- Save the network and the configuration into a GNS3 project, close GNS3, then reload the project and make sure the configurations are preserved! (note the trick on the previous slide)
- For professionals: configure IP routing with OSPF and check remote connectivity by ping!