
Budapest University of Technology and Economics
Department of
Telecommunications and Media Informatics

TCP advanced
algorithms

BME-TMIT

What is Congestion?

2

● Load on the network is higher than capacity

● Capacity is not uniform across networks

– Modem vs. Cellular vs. Cable vs. Fiber Optics

● There are multiple flows competing for bandwidth

– Residential cable modem vs. corporate datacenter

● Load is not uniform over time

– 10pm, Sunday night = Bittorrent Game of Thrones

BME-TMIT

Why is Congestion Bad?

3

● Results in packet loss

● Routers have finite buffers, packets must be
dropped

● Practical consequences

● Router queues build up, delay increases

● Wasted bandwidth from retransmissions

● Low network goodput

BME-TMIT

The Danger of Increasing Load

4

● Knee – point after
which
● Throughput increases

very slow

● Delay increases fast

● In an M/M/1 queue
● Delay = 1/(1 –

utilization)

● Cliff – point after which
● Throughput  0

● Delay  ∞

Congestion
Collapse

Load

Load

G
o

o
d

p
u

t
D

e
la

y

Knee Cliff

Ideal point

BME-TMIT
Cong. Control vs. Cong. Avoidance

5

Congestion
Collapse

G
o

o
d

p
u

t

Knee Cliff

Load

Congestion Avoidance:
Stay left of the knee

Congestion Control:
Stay left of the cliff

BME-TMIT

Advertised Window, Revisited

6

● Does TCP’s advertised window solve congestion?

NO

● The advertised window only protects the receiver

● A sufficiently fast receiver can max the window

● What if the network is slower than the receiver?

● What if there are other concurrent flows?

● Key points

● Window size determines send rate

● Window must be adjusted to prevent congestion collapse

BME-TMIT

Goals of Congestion Control

7

1. Adjusting to the bottleneck bandwidth

2. Adjusting to variations in bandwidth

3. Sharing bandwidth between flows

4. Maximizing throughput

BME-TMIT

General Approaches

8

● Do nothing, send packets indiscriminately
● Many packets will drop, totally unpredictable performance
● May lead to congestion collapse

● Reservations
● Pre-arrange bandwidth allocations for flows
● Requires negotiation before sending packets
● Must be supported by the network

● Dynamic adjustment
● Use probes to estimate level of congestion
● Speed up when congestion is low
● Slow down when congestion increases
● Messy dynamics, requires distributed coordination

BME-TMIT

TCP Congestion Control

9

● Each TCP connection has a window

● Controls the number of unACKed packets

● Sending rate is ~ window/RTT

● Idea: vary the window size to control the
send rate

● Introduce a congestion window at the sender

● Congestion control is sender-side problem

BME-TMIT

Congestion Window (cwnd)

10

● Limits how much data is in transit

● Denominated in bytes

1. wnd = min(cwnd, adv_wnd);

2. effective_wnd = wnd –

(last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

effective_wnd

BME-TMIT

Two Basic Components

11

1. Detect congestion

● Packet dropping is most reliably signal

– Delay-based methods are hard and risky

● How do you detect packet drops? ACKs

– Timeout after not receiving an ACK

– Several duplicate ACKs in a row (ignore for now)

2. Rate adjustment algorithm

● Modify cwnd

● Probe for bandwidth

● Responding to congestion

Except on
wireless
networks

BME-TMIT

Rate Adjustment

12

● Recall: TCP is ACK clocked

● Congestion = delay = long wait between ACKs

● No congestion = low delay = ACKs arrive quickly

● Basic algorithm

● Upon receipt of ACK: increase cwnd

– Data was delivered, perhaps we can send faster

– cwnd growth is proportional to RTT

● On loss: decrease cwnd

– Data is being lost, there must be congestion

● Question: increase/decrease functions to
use?

BME-TMIT

Implementing Congestion Control

● Maintains three variables:

● cwnd: congestion window

● adv_wnd: receiver advertised window

● ssthresh: threshold size (used to update cwnd)

● For sending, use: wnd = min(cwnd, adv_wnd)

● Two phases of congestion control

1. Slow start (cwnd < ssthresh)

– Probe for bottleneck bandwidth

2. Congestion avoidance (cwnd >= ssthresh)

– AIMD

13

13

BME-TMIT

Slow Start

● Goal: reach knee quickly

● Upon starting (or restarting) a
connection
● cwnd =1

● ssthresh = adv_wnd

● Each time a segment is ACKed, cwnd++

● Continues until…
● ssthresh is reached

● Or a packet is lost

● Slow Start is not actually slow
● cwnd increases exponentially

14

Load

G
o

o
d

p
u

t

Knee Cliff

BME-TMIT

Slow Start Example
15

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

 cwnd grows rapidly

 Slows down when…

 cwnd >= ssthresh

 Or a packet drops

BME-TMIT

Congestion Avoidance

● AIMD mode

● ssthresh is lower-bound guess about location
of the knee

● If cwnd >= ssthresh then
each time a segment is ACKed
increment cwnd by 1/cwnd (cwnd +=

1/cwnd).

● So cwnd is increased by one only if all
segments have been acknowledged

16

BME-TMIT

Congestion Avoidance Example

17

0

2

4

6

8

10

12

14

t=
0

t=
2

t=
4

t=
6

Round Trip
Times

c
w

n
d

(i
n

s
e

g
m

e
n

ts
)

Slow
Start

cwnd >=
ssthresh

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

ssthresh = 8

BME-TMIT

TCP Pseudocode

Initially:
cwnd = 1;
ssthresh = adv_wnd;

New ack received:
if (cwnd < ssthresh)

/* Slow Start*/
cwnd = cwnd + 1;

else
/* Congestion Avoidance */
cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */
ssthresh = cwnd/2;
cwnd = 1;

18

BME-TMIT

The Big Picture

Time

c
w

n
d

Timeout

Slow Start

Congestion
Avoidance

19

ssthresh

BME-TMIT

The Evolution of TCP

20

● Thus far, we have discussed TCP Tahoe

● Original version of TCP

● However, TCP was invented in 1974!

● Today, there are many variants of TCP

● Early, popular variant: TCP Reno

● Tahoe features, plus…

● Fast retransmit

● Fast recovery

BME-TMIT

TCP Reno: Fast Retransmit
21

 Problem: in Tahoe,
if segment is lost,
there is a long wait
until the RTO

 Reno: retransmit
after 3 duplicate
ACKs

cwnd = 1

cwnd = 2

cwnd = 4

3
Duplicate

ACKs

BME-TMIT

TCP Reno: Fast Recovery

● After a fast-retransmit set cwnd to ssthresh/2

● i.e. don’t reset cwnd to 1

● Avoid unnecessary return to slow start

● Prevents expensive timeouts

● But when RTO expires still do cwnd = 1

● Return to slow start, same as Tahoe

● Indicates packets aren’t being delivered at all

● i.e. congestion must be really bad

22

BME-TMIT

Fast Retransmit and Fast Recovery

● At steady state, cwnd oscillates around the
optimal window size

● TCP always forces packet drops

23

Time

c
w

n
d

Timeout

Slow Start

Congestion Avoidance
Fast

Retransmit/Recovery

ssthresh

Timeout

BME-TMIT

Many TCP Variants…

24

● Tahoe: the original
● Slow start with AIMD

● Dynamic RTO based on RTT estimate

● Reno: fast retransmit and fast recovery

● NewReno: improved fast retransmit
● Each duplicate ACK triggers a retransmission

● Problem: >3 out-of-order packets causes
pathological retransmissions

● Vegas: delay-based congestion avoidance

● And many, many, many more…

BME-TMIT

High Bandwidth-Delay Product

25

● Key Problem: TCP performs poorly when

● The capacity of the network (bandwidth) is large

● The delay (RTT) of the network is large

● Or, when bandwidth * delay is large

– b * d = maximum amount of in-flight data in the network

– a.k.a. the bandwidth-delay product

● Why does TCP perform poorly?

● Slow start and additive increase are slow to converge

● TCP is ACK clocked

– i.e. TCP can only react as quickly as ACKs are received

– Large RTT  ACKs are delayed  TCP is slow to react

BME-TMIT

Common TCP Options

26

● Window scaling

● SACK: selective acknowledgement

● Maximum segment size (MSS)

● Timestamp

Options

Destination Port

0 16 31

Sequence Number

Source Port

Acknowledgement Number

Advertised Window

Urgent Pointer

Flags

Checksum

4

HLen

BME-TMIT

Window Scaling

27

● Problem: the advertised window is only 16-
bits

● Effectively caps the window at 65536B, 64KB

● Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB

64KB / 94KB = 68% of maximum possible
speed

● Solution: introduce a window scaling value

● wnd = adv_wnd << wnd_scale;

● Maximum shift is 14 bits, 1GB maximum window

BME-TMIT

SACK: Selective Acknowledgment

28

● Problem: duplicate ACKs only
tell us about 1 missing packet

● Multiple rounds of dup ACKs
needed to fill all holes

● Solution: selective ACK

● Include received, out-of-order
sequence numbers in TCP
header

● Explicitly tells the sender about
holes in the sequence

BME-TMIT

Other Common Options

29

● Maximum segment size (MSS)

● Essentially, what is the hosts MTU

● Saves on path discovery overhead

● Timestamp

● When was the packet sent (approximately)?

● Used to prevent sequence number wraparound

● PAWS algorithm

Budapest University of Technology and Economics
Department of
Telecommunications and Media Informatics

Thank You!

- End -

