Networking
Technologies and
Applications

A /

L

J_I‘_J_J_J

Transport Protocols

UDP — User Datagram Protocol
TCP — Transport Control Protocol

and many others...

{S]1 Model

- M

TCP/IP Model

Application

ADPEca b~ Liwe*

Transport

Internet

e

Network
Access

Diata Flow

UDP

* One of the core transport protocols
— Used by applications to send data (datagrams) between two end-hosts on the IP network
* Connectionless transmission — no preset channel, data path
— No handshaking dialog between sender and receiver, unreliable transmission
— Only data integrity is verified (checksum), not the delivery of the datagram

* No guarantee of delivery or ordering

e Used for....

— Time-sensitive or real-time applications, where there is no possibility for waiting for
retransmissions

— Applications that are based on simple and fast message exchanges
* DHCP, DNS, RIP, etc.

UDP datagram structure

Source port (16 bits)

— Identifies the sender application

Destination port (16 bits)

— Identifies the receiver application

UDP length (16 bits)

— Length of the entire datagram (header + data) in
bytes

* Theoretical maximum size data: 65507 bytes

Minimum value: 8 (no data)

— 1P (20) and UDP (8) headers

Checksum (16 bits)

— Calculated for the header and data together
— If checksum wrong, packet silently discarded

No error message

Bits 0

15

Sowurce Port

la

31

Destination Port

Length (Header + Data)

Checksom

Application Data (Message)

Fragmentation of UDP datagrams

* No fragmentation allowed
for UDP

— Not sure that all fragments
will arrive

— The application has to make
sure that the correct
datagram size is used

+— saig oz —+

Link-layer i Link

Header Data = IP datagram Trailer

Version| IPHL | TOS Total Length
Identification Flags Fragment Offset
TTL | Protocol Header Checksum
Source Address
Destination Address
Options Pad

Data

Flags on 3 bits

Value Bit O Reserved Bit 1 DF Bit 2 MF

0 0
1 0

May Last

Do not More

Fragmentation example

Original IP Datagram

Sequence | |dentifier L-In-eor:;::h May?gon’t Lasth.:"l:m::re Fr;gf;ﬂ:;nt
0 345 5140 0 0 0
IP Fragments (Ethernet)
Sequence | Identifier | 1O DF | MF | Fragment
ength |[May /! Don't| Last! More Offset
00 345 1500 0 1 0
0-1 345 1500 0 1 185
0-2 345 1500 0 1 370
03 345 700 0 0 555

Fragment offset in units of 8 bytes
185 x 8 + 20 (IP header) = 1500 bytes

TCP — Transmission Control Protocol

* Provides a reliable end-to-end connection between two
applications
— Connection-oriented data stream service
— Flow control algorithm
* Before starting data transmission, the TCP connection has to be
built

e Cannot be used for broadcasting and multicasting

 TCP segment encapsulated into an IP packet
* TCP socket — combination of the IP address and TCP port number

TCP acknowledgments

* Full duplex, bi-directional data connection
* No selective ACK

— ACK means that all the bytes until now (but not including
the sent packet number) were received correctly

* No negative ACK

TCP header

Sequence number
— The number of the packet in the

stream

Ack number

— The number of bytes received until

HLEN — Header length

now

Reserved

For future use

) 32 bit _
Source Port Destination Port
Sequence Number
Acknowledgement Number
H |(Reserved| Flags .
LEN| (6 bits) | (6 bits) Window

Checksum

Urgent Pointer

Options

Padding

DATA

TCP header

Flags

6 flags that regulate the behavior of

the TCP segment

1. Urgent (URG)

2. Acknowledgement (ACK)
3. Push (PSH)

4. Reset connection (RST)
5. Synchronous (SYN)

6. Finish (FIN)

) 32 bit _
Source Port Destination Port
Sequence Number

Acknowledgeme

nt Number

H |(Reserved| Flags .
LEN| (6 bits) | (6 bits) Window
Checksum Urgent Pointer
Options Padding

DATA

TCP header

Urgent flag (URG)

— End-points can send a notification
that the data stream contains dat:
that should be urgently handled

Acknowledgement flag (ACK)

— Used to indicate that data has
been successfully received

Push flag (PSH)

— Often set at the end of a block of
data, signaling the receiver to
process the block of data

) 32 bit _
Source Port Destination Port
Sequence Number

Acknowledgeme

nt Number

H |(Reserved| Flags .
LEN| (6 bits) | (6 bits) Window
Checksum Urgent Pointer
Options Padding

DATA

TCP header

Reset flag (RST)

used to inform the receiver that
the sender has shut this
connection down

Synchronous flag (SYN)

used at the start of the TCP handshake
to establish the connection

Finish flag (FIN)

Used to gracefully tear connections
down

Each side of the connection sends a
FIN, followed by an ACK, then the
connection is finished

F

32 bi

A

L
il

v
M

L
i

v ¥

Source Port

Destination Port

Sequence N

umber

Acknowledgeme

nt Number

LEN

Reserved| Flags
(6 bits) | (8 bits)

Window

Checksum

Urgent Pointer

Options

Padding

DATA

TCP header

) 32 bi _
* Window (16 bitS)Z < ><€ > < >< >
— Indicates how many bytes can still be . N
fit in the buffer of the receiver Source Port Destination Port
* Checksum (16 bits): Sequence Number
— To check the integrity of the TCP 20
header Acknowledgement Number \ bytes
e Urgent Pointer (16 bits): H |Reserved| Flags Wind
— If the segment contains urgent data (URG LEN| (6 bits) | (6 bits) ndow
flag set), it tells where the urgent data :
starts in the payload Checksum Urgent Pointer)
* Options o Options Padding
— The most often used option is MSS -
maximum segment size
— Provides the maximum segment size the
receiver would like to receive DATA

Building a TCP connection

 The TCP protocols handles the following steps:
— Building the connection
— Advertising the window size and the Maximum Segment Size
— Sending the data
— Sending acknowledgements
— Tearing down the connection at the end

Simple flow control

e Stop-and-wait protocol
— Send a data segment
— Wiait for an ack
— If ack arrives, send next data segment

— If no ack until timer expires —resend the
data segment and wait for an ack

* Properties
— Ack for each individual segment
— lvery slow if large distances

TCP flow control

e Sliding window

* Ackis not expected for each individual segment
— There can be many unacknowledged segments , on the road”
— The same segment might be sent several times
— Acknowledgements might arrive in a burst

* Faster data transfer
— If the number of segments ,,on the road” is somehow controlled

Fast sender, slow receiver

* Sender sends according to the advertised window size
— To fill up the receiver’s buffer

 Sender waits for the ack

* The receiver is slow, cannot forward the segments to the application —
buffer remains full

— The receiver sets in its ack the , advertised window size” to O
 The sender does not send any more segments

e Later, the sender should be triggered to start sending again

— If the buffer of the receiver gets empty, it sends a Window Update message
* A new ack, to the same segment, but with a new adv. Window size

Sliding window

offered window

~ (advertised by receiver) =
usable window
|
1 2 3 4 o] 6 |, 7 8 9 10 11
|
L can’t send until
sentand ™ sent, not ACKed » window moves

acknowledged can send ASAP

1 1024|1025 2048 | 2049 3072|3073 4096 | 4097 512015121 6144 | 6145 7168|7169 8192

r—- "= "= "=-"=-"=-"="=-"="="~"="=~"=~"="¥="="7"====»&—- A
| L : |
Windowadvertised by segment 2 1 The sender does not have to use the
|_ﬁ data sent in -] entire advertised window
segments 4, 5, 6
1
-- i:e E;EEL? ;_. -- -HL window advertised by segment 7 J|
i ACKedby M~~~ -~~~ ~----=--=--"-= L
When an ACK arrives, the < - - - 2w window advertised by segment 8 |
window slides to the right seementd ___________~__~____ J
|data semml
. . segment 9
The size of the window ACKedby M~~~ """ "~"-T-------------o- A
- - = window advertised by segment 10 I
can also decrease segment10 __ ____________ " " a
%7 data sent in
segments 11,12, 13 "l
Not mandatory to send ACKs about _ __ACKedby " window advertised
: segment 14 by segment 14
all the sent segments — there can be S L —gﬂnﬂﬂ—-;_—--
. dia sent in
an ACK also about just part of them |"—>|5‘E,g,,,ua,111t 2
ACKed by
I e e - Rl - E—

