

The Internet Ecosystem and Evolution

Contents

● IP router architectures

– general router architectures, linecard/
backplane/control, IP packet forwarding,
router generations

● FIB lookup

– longest prefix matching
– hardware and software realizations for LPM:

TCAMs, prefix trees
– FIB aggregation

IP router architectures

IP packet forwarding

● IP header check: format, version, header
length, options, header checksum

● FIB lookup: find the most specific FIB entry for
the destination IP address in a packet

● TTL handling: if TTL=0 then drop packet and
send an ICMP message, otherwise update TTL:
TTL←TTL – 1

● Recompute header checksum
● Optionally: fragmentation, source routing, etc.

High-performance routers

Cisco GSR
12416 Capacity: 160 Gb/s

Power consumption:
4.2kW

Juniper
M160

Capacity: 80 Gb/s
Power consumption:
2.6kW

Router categories (RFC4098)
● Edge/border router: inter-AS traffic forwarding

(iBGP+eBGP+IGP)
● Core router: handling intra-AS traffic between

different POPs of an ISP (IGP+iBGP)
● Access router: concentrating traffic from the

Internet edge to the core

AS 1

AS 2

AS 3

Access

Core Edge

Router types

● Soft(ware) router: IP router implemented in
software and running on general purpose CPUs

– PC+Linux+Quagga (e.g., our OpenWRT image)
– smaller performance
– for smaller ISPs, IXPs, BGP monitors
– cloud hypervisors(!)

● Hard(ware) router: high-performance router using
special purpose hardware ASICs

– edge/core routers of large ISPs
– access routers concentrating lots of subscribers

General IP router architecture

Control card

Control CPUmanagement, CLI,
configuration, etc.

DRAM

Interconnect

linecard #1

linecard #2

linecard #3

linecard #4

interface ASIC SRAM

interface ASIC SRAM

interfaceASIC SRAM

interfaceASIC SRAM

Data plane

Control plane

General IP router architecture

Control card

Control CPUmanagement, CLI,
configuration, etc.

DRAM Control plane

● Control card: router logics

– running the routing protocols, management
access (CLI: Command Line Interface,
SNMP, etc.), monitoring, extra services

– manage the interconnect, set the FIB
– general purpose CPU/DRAM, even general

purpose OS (like, Linux!)

General IP router architecture

● Interface card (linecard): packet input/output

– one or more physical port (interface) for links
(Serial/FastEthernet/GigabitEthernet)

– basic header parsing/processing functions
– special purpose HW and fast static memory
– most routers extendible with new cards

linecard

interface
network processing

unit (NPU), ASIC, etc.
SRAM

General IP router architecture

● Interconnect/backplane: switching matrix

– communication between linecards and the
control CPU + buffering

– shared bus/internal switch (even Ethernet)
– input buffer (head of line blocking!)/output

buffer/shared memory

Interconnect

Fast path

● Fast path: steps of packet forwarding that are
implemented inside the Data plane (high speed)

– operations that are easy to realize in HW
– header parsing/header checksum computation
– often FIB lookup too, but this requires the FIB

to be downloaded to the linecards!

Interconnectlinecard #1

linecard #2

linecard #3

linecard #4

interface ASIC SRAM

interface ASIC SRAM

interfaceASIC SRAM

interfaceASIC SRAM

Data plane

Slow path

● Slow path: complex operations that require the
intervention of the control CPU (slower!)

● IP options, fragmentation, protocol message
handling, ARP, ICMP packet generation, etc.

Control card

CPU RAM

linecard

linecard

linecard

linecard

Data
plane

Control
plane

1st generation routers

● Every packet goes through the slow path
● Only basic interface functions on the linecards

CPU FIB

linecard #1

in
te

rf
ac

e

MAC

Buffer
memory

data bus

linecard #2

in
te

rf
ac

e

MAC

linecard #3

in
te

rf
ac

e

MAC

2ng generation routers

● Linecards implement input buffering+FIB cache
● Fast path forwarding if destination address is in

FIB cache
CPU FIB

linecard #1

in
te

rf
ac

e

MAC

Buffer
memory

data bus

linecard #2

in
te

rf
ac

e

MAC

linecard #3

in
te

rf
ac

e

MAC

Input queue

FIB cache

Input queue

FIB cache

Input queue

FIB cache

3rd generation routers

● Whole FIB downloaded to the linecard, normal
packet forwarding fully inside the fast path

● The CPU is just another card in the chassis

CPU

RIB

linecard #1

in
te

rf
ac

e

MAC

switched backplane

CPU card linecard #2

in
te

rf
ac

e

MAC

Input queue

FIB

Input queue

FIB

Router generations: the future?

● Today's CPUs are as fast as, and cheaper than,
yesterday's special purpose hardware ASICs

– general purpose CPUs improve by Moore's law
– forwarding is a massively parallel process
– we may dedicate a separate CPU per packet

● Router virtualization rules out special purpose HW
● Today's routers are proprietary “black boxes”
● Future routers will adopt an open, programmable

SW/HW design

FIB lookup

FIB lookup

● The most expensive (by a large margin)
operation of IP packet forwarding: find the
most specific FIB entry for the destination IP
address in the packet header (LPM)

● FIB (Forwarding Information Base): the
collection of all forwarding rules for a router

● Built by the routing protocols, downloaded by
the control CPU to the linecards (3rd generation)

● This gives fast-path packet forwarding

FIB lookup: LPM

● Implementing LPM is non-trivial (at best)
● A naïve approach would be to search through

all FIB entries linearly to find the one matching
on the most bits (counted from the MSB)

● Complexity O(N), if number of FIB entries is N
● In practice, N≈105–106, the time budget is

roughly 400 CPU cycles (at line rate 10Gbit/s,
500 byte packet size, 1GHz CPU clock rate)

● The naïve approach is hardly usable

Content addressable memories

● A Content Addressable Memory (CAM) is the
opposite of a typical memory (RAM):

– RAM: find data based on memory address
– CAM: find memory address for data
– if more entries match, find the first match

Addr Data

00 10110

01 01101

10 01100

11 01100

Address: 01 RAM

 Data: 01101

Addr Data

00 10110

01 01101

10 01100

11 01100

Data: 01100

 Address: 10

CAM

Ternary CAM: TCAM

● A CAM can match fully specified data (contain bits
valued 0 or 1) only, while a Ternary Content
Addressable Memory (TCAM) can take as input
patters that contain "Don't care" bits (*) too

● For instance, the input TCAM pattern 101**
matches each of the possible TCAM entries 10100,
10101, 10110 and 10111

● * can appear anywhere in pattern (not just the end)

● Entries at lower addresses matched first and hence
override entries at higher addresses: priority

● Output the address of the first matching entry found

Ternary CAM: TCAM

● For input 00110 the entries at address 00 and
11 both match, since the first address is smaller
the TCAM search result is address 00

● For pattern 11111 result is 10

● For pattern 01110, enties at address 10 and
11 both match, output is: 10

Addr Data

00 *01**

01 0110*

10 *111*

11 0*110

Data

Address

TCAM

TCAM: Implementation

● (#entries * bit_width) TCAM cells, each can
compare against a stored pattern bit 0/1/*

● Cells do the comparison in parallel
● Output logics picks the smallest active address

Addr Data

00 101**

01 0110*

10 011**

11 10011

Data: 01101

 Addr: 01

TCAM

pagiamtzis.com

Implementing FIBs in a TCAM

● Consider the below FIB

● LPM: find the FIB entry matching the
destination IP address on the most bits

● For instance, address 96.128.59.12 matches
entries 2 and 3, the former on more bits

● LPM result: next-hop for entry 2 (10.0.0.2)

IP prefix Binary prefix Next-hop

160.0.0.0/3 101 10.0.0.1

96.0.0.0/4 0110 10.0.0.2

96.0.0.0/3 011 10.0.0.3

184.0.0.0/5 10111 10.0.0.2

Implementing FIBs in a TCAM

● TCAMs are a natural way to implement FIBs
● Fully specified subnet prefix in the entries
● The TCAM matches the prefix bit-by-bit
● Let the host identifier bits as “dont care” (*)
● These bits do not count in LPM lookup
● “Don't care” bits (*) appear at the end of entries

Addr IP prefix TCAM pattern Next-hop

00 160.0.0.0/3 101***** ******** ******** ******** 10.0.0.1

01 96.0.0.0/4 0110**** ******** ******** ******** 10.0.0.2

10 96.0.0.0/3 011***** ******** ******** ******** 10.0.0.3

11 184.0.0.0/5 10111*** ******** ******** ******** 10.0.0.2

Implementing FIBs in a TCAM

● Problem: if we write entries into the TCAM in this order, a
less specific entry may override a more specific one

● E.g., for address 184.1.1.1 the result would be the first
entry in the TCAM, even though the real LPM result would
be entry 4 (matches on more bits)

● Solution: order FIB entries into the decreasing order of
prefix length

– longer (more specific) prefixes go to lower addresses
– shorter prefixes (less specifics) go high addresses
– entries at lower addresses preferred by TCAM = match

on a long prefix overrides match on a short prefix=LPM

Implementing FIBs in a TCAM

● FIB entries can be freely reordered, as the
priority is set firmly by the prefix length

● The FIB after ordering the entries into the
decreasing order of prefix length

● Red columns go into the TCAM verbatim
● Rest are stored in a separate RAM module

Addr IP prefix TCAM pattern Next-hop

00 184.0.0.0/5 10111*** ******** ******** ******** 10.0.0.2

01 96.0.0.0/4 0110**** ******** ******** ******** 10.0.0.2

10 96.0.0.0/3 011***** ******** ******** ******** 10.0.0.3

11 160.0.0.0/3 101***** ******** ******** ******** 10.0.0.1

Implementing FIBs in a TCAM

● HW FIB: a TCAM connected to a RAM
● Result of the TCAM search is used as address

into the RAM to read the next-hop address
● 5-bit wide TCAM is enough (max. prefix length)

Addr Data

00 10111

01 0110*

10 011**

11 101**

TCAM

Addr Data

00 10.0.0.2

01 10.0.0.2

10 10.0.0.3

11 10.0.0.1

RAM

FIBInput: IP address in binary format
Output: the next-hop
IP address for the FIB
entry matching the
input address on the
most bitsAddr

Implementing FIBs in a TCAM

● For the IP address 184.1.1.1=10111... the
TCAM gives result 00

● Next-hop is taken from the RAM at address 00

Addr Data

00 10111

01 0110*

10 011**

11 101**

TCAM

Addr Data

00 10.0.0.2

01 10.0.0.2

10 10.0.0.3

11 10.0.0.1

RAM

FIBInput: 10111...

Output:
10.0.0.2

Addr: 00

Implementing FIBs in a TCAM

● For IP address 97.12.124.45=01100... the
TCAM patterns at address 2 and 3 both match

● Result is address 01, next-hop is 10.0.0.2

Addr Data

00 10111

01 0110*

10 011**

11 101**

TCAM

Addr Data

00 10.0.0.2

01 10.0.0.2

10 10.0.0.3

11 10.0.0.1

RAM

FIBInput: 01100...

Output:
10.0.0.2

Addr: 01

Implementing FIBs in a TCAM

● Router ASICs (Application Specific IC) usually
contain both the TCAM and the RAM

● FIB lookup in a couple of clock cycles: very
efficient fast-path IP packet forwarding

● TCAMs commonly used for other purposes:
Ethernet MAC learning, firewall/ACL rules, etc.

● But TCAMs are complex: 16 transistor/cell
(SRAM: 6, DRAM: 2 transistor/cell): expensive!

● High power consumption (9MB TCAM chip, 100
MHz clock, 10–15W dissipation): cooling!

Implementing LPM in software

● Often, TCAMs are an overkill: soft routers,
simple access routers (e.g., SOHO router),
virtual switches/routers (cloud)

● A FIB data structure is needed that supports
fast LPM on a general purpose CPU

● In software the most expensive operation is
memory accesses (DRAM: ~200 CPU cycles)

● Goal: minimize the number of memory reads
needed for a longest prefix matching lookup

The binary prefix tree

● Data structure optimized for LPM: a content- (or
prefix-)addressable memory

● Storage and search of (prefix→label) pairs
● The prefix tree supports these operations:

– lookup: find the longest prefix matching the
input and read the corresponding label

– insert: insert a (prefix→label) pair
– delete: remove prefix and the corresponding

label from the tree
– modify: modify label at prefix

The binary prefix tree

● Consider the previous FIB divided into two parts
● Identify next-hops with unique labels and store

them into a separate next-hop index table

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1
Prefix tree

The binary prefix tree

c

b

a

b

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

Root

IP address: 1st bit

IP address: 2nd bit

IP address: 3rd bit

IP address: 4th bit

IP address: 5th bit

Node with next-hop label

Empty node

Arc label

Internal node

Leaf node

The binary prefix tree

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

● Prefix=sequence of arc labels along a tree path
● Mark the tree node that belongs to each prefix in

the FIB with the next-hop label for the prefix

The binary prefix tree

● Prefix=sequence of arc labels along a tree path
● Mark the tree node that belongs to each prefix in

the FIB with the next-hop label for the prefix

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

The binary prefix tree

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

● Prefix=sequence of arc labels along a tree path
● Mark the tree node that belongs to each prefix in

the FIB with the next-hop label for the prefix

The binary prefix tree

● Empty leaf nodes can be omitted (arcs to empty
nodes will be marked by NULL pointers)

● Smaller tree, less memory

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

 0 1

Prefix tree: Lookup

● Find the most specific entry in the prefix tree for
the IP address 184.1.1.1=10111...

● Start from the root node, output←invalid

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1

1

1

 0

 0

1

1

1

184.1.1.1=10111...
output: invalid

Prefix tree: Lookup

● First bit of the address 184.1.1.1=10111... is
set to 1, so we proceed from the root along the
arc labeled with arc-label 1 to the next node

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1

1

1

 0

 0

1

1

1

184.1.1.1=10111...

output:
invalid

Prefix tree: Lookup

● No label in the current node, output is unchanged

● Second bit is 0, so move to the next node along
the arc with arc-label 0

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1

1

1

 0

 0

1

1

1

184.1.1.1=10111...

output:
invalid

Prefix tree: Lookup

● Third bit is again 1, so proceed along arc with
label 1 to the next-node

● New node has label a, therefore: output ← a

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1

1

1

 0

 0

1

1

1

184.1.1.1=10111...

output: a

Prefix tree: Lookup

● 4th and 5th bits are 11, so move twice along arcs of label
1 to a new node with next-hop label b: output ← b

● New node is a leaf: terminate with output = b

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1

1

1

 0

 0

1

1

1

184.1.1.1=10111...

output: b

Prefix tree: Lookup

● Algorithm: take all bits of the input IP address
● Proceed to the next node along arc labeled 0 or 1

based on the next-bit of the IP address
● Store the last next-hop label found in a variable
output (initialized to “invalid” on start)

● Terminate if a leaf node or a NULL pointer is
encountered and return the current value in output

● On exit, read the next-hop from the next-hop index
corresponding to the label read from the tree

● In our case the LPM result is: b→10.0.0.2

Prefix tree: Lookup

● LPM for the IP address 69.12.75.54=01000...

● No node with valid label along the path traced out
by the input address: output = invalid

c

b

a

b

 0 1

1

1

 0

 0

1

1

1

 0

NULL

Prefix tree: Lookup

● LPM for IP address 178.4.66.19=10110...

● Last label encountered is a: output = a

c

b

a

b

 0 1

1

1

 0

 0

1

1

1 0

NULL

Prefix tree: Insert

● Insert entry 120.0.0.0/5→10.0.0.3 into the FIB

● Follow the path traced out by the prefix, create
missing nodes, set the label of the final node to c

c

b

a

b

 0 1

1

1

 0

 0

1

1

1

c

1

1

120.0.0.0/5=01111...

Prefix tree: Other operations

● Modification goes along similar vein: follow path
traced out by the bits and overwrite label in the
resultant node

● Delete: similar, but after removing label recursively
delete all empty leaves upwards in the tree

● Complexity: we terminate in at most as many
steps as the number of bits in the input

● Theorem: LPM, insert, delete, and modify in a
prefix tree terminate in at most O(W) steps, where
W is the width of the address space (IPv4: 32,
IPv6: 128)

The prefix tree

● In general: in a prefix tree storing N prefixes, the
complexity of lookup, insert, modify, and delete
operations is O(log N)

● Recall, that the naïve table-based FIB scheme
needed a linear sweep throuh the table: O(N)
steps

● But 32 RAM accesses (especially if reads do not
hit the CPU caches) can still be costly for Gbps
line rates

● FIB aggregation: convert the prefix tree into a
smaller but equivalent (as per LPM) form

FIB aggregation

a c

c b c

 0 1

1 0 1

Binary prefix tree c

1

a c c

b

 0 1

 0 1 0 1

 0
Leaf-labeled

normalized prefix tree c

1

c

a

b

 0 1

 0 0

 0
Optimized

binary prefix tree

a c c

b

00 01 10 11

 0
Level-compressed

prefix tree c

1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

