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IP router architectures



  

IP packet forwarding

● IP header check: format, version, header 
length, options, header checksum

● FIB lookup: find the most specific FIB entry for 
the destination IP address in a packet

● TTL handling: if TTL=0 then drop packet and 
send an ICMP message, otherwise update TTL: 
TTL←TTL – 1

● Recompute header checksum
● Optionally: fragmentation, source routing, etc.



  

High-performance routers

Cisco GSR
12416 Capacity: 160 Gb/s

Power consumption: 
4.2kW

Juniper 
M160

Capacity: 80 Gb/s
Power consumption: 
2.6kW



  

Router categories (RFC4098)
● Edge/border router: inter-AS traffic forwarding 

(iBGP+eBGP+IGP)
● Core router: handling intra-AS traffic between 

different POPs of an ISP (IGP+iBGP)
● Access router: concentrating traffic from the 

Internet edge to the core

AS 1

AS 2

AS 3

Access

Core Edge



  

Router types

● Soft(ware) router: IP router implemented in 
software and running on general purpose CPUs

– PC+Linux+Quagga (e.g., our OpenWRT image)
– smaller performance
– for smaller ISPs, IXPs, BGP monitors
– cloud hypervisors(!)

● Hard(ware) router: high-performance router using 
special purpose hardware ASICs

– edge/core routers of large ISPs
– access routers concentrating lots of subscribers



  

General IP router architecture

Control card

Control CPUmanagement, CLI, 
configuration, etc.

DRAM

Interconnect

linecard #1

linecard #2

linecard #3

linecard #4

interface ASIC SRAM

interface ASIC SRAM

interfaceASIC SRAM

interfaceASIC SRAM

Data plane

Control plane



  

General IP router architecture

Control card

Control CPUmanagement, CLI,
configuration, etc.

DRAM Control plane

● Control card: router logics 

– running the routing protocols, management 
access (CLI: Command Line Interface, 
SNMP, etc.), monitoring, extra services

– manage the interconnect, set the FIB
– general purpose CPU/DRAM, even general 

purpose OS (like, Linux!)



  

General IP router architecture

● Interface card (linecard): packet input/output

– one or more physical port (interface) for links 
(Serial/FastEthernet/GigabitEthernet)

– basic header parsing/processing functions
– special purpose HW and fast static memory
– most routers extendible with new cards

linecard

interface
network processing

unit (NPU), ASIC, etc.
SRAM



  

General IP router architecture

● Interconnect/backplane: switching matrix

– communication between linecards and the  
control CPU + buffering

– shared bus/internal switch (even Ethernet)
– input buffer (head of line blocking!)/output 

buffer/shared memory

Interconnect



  

Fast path

● Fast path: steps of packet forwarding that are 
implemented inside the Data plane (high speed)

– operations that are easy to realize in HW
– header parsing/header checksum computation
– often FIB lookup too, but this requires the FIB 

to be downloaded to the linecards!

Interconnectlinecard #1

linecard #2

linecard #3

linecard #4

interface ASIC SRAM

interface ASIC SRAM

interfaceASIC SRAM

interfaceASIC SRAM

Data plane



  

Slow path

● Slow path: complex operations that require the 
intervention of the control CPU (slower!)

● IP options, fragmentation, protocol message 
handling, ARP, ICMP packet generation, etc.

Control card

CPU RAM

linecard

linecard

linecard

linecard

Data 
plane

Control 
plane



  

1st generation routers

● Every packet goes through the slow path
● Only basic interface functions on the linecards

CPU FIB

linecard #1

in
te
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MAC

Buffer
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data bus
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2ng generation routers

● Linecards implement input buffering+FIB cache
● Fast path forwarding if destination address is in 

FIB cache
CPU FIB

linecard #1

in
te

rf
ac

e

MAC

Buffer
memory

data bus

linecard #2

in
te

rf
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e

MAC

linecard #3
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e

MAC

Input queue

FIB cache

Input queue

FIB cache

Input queue

FIB cache



  

3rd generation routers

● Whole FIB downloaded to the linecard, normal 
packet forwarding fully inside the fast path

● The CPU is just another card in the chassis

CPU

RIB

linecard #1

in
te

rf
ac

e

MAC

switched backplane

CPU card linecard #2

in
te

rf
ac

e

MAC

Input queue

FIB

Input queue

FIB



  

Router generations: the future?

● Today's CPUs are as fast as, and cheaper than, 
yesterday's special purpose hardware ASICs

– general purpose CPUs improve by Moore's law
– forwarding is a massively parallel process
– we may dedicate a separate CPU per packet

● Router virtualization rules out special purpose HW
● Today's routers are proprietary “black boxes”
● Future routers will adopt an open, programmable 

SW/HW design



  

FIB lookup



  

FIB lookup

● The most expensive (by a large margin) 
operation of IP packet forwarding: find the 
most specific FIB entry for the destination IP 
address in the packet header (LPM)

● FIB (Forwarding Information Base): the 
collection of all forwarding rules for a router

● Built by the routing protocols, downloaded by 
the control CPU to the linecards (3rd generation)

● This gives fast-path packet forwarding



  

FIB lookup: LPM

● Implementing LPM is non-trivial (at best)
● A naïve approach would be to search through 

all FIB entries linearly to find the one matching 
on the most bits (counted from the MSB)

● Complexity O(N), if number of FIB entries is N
● In practice, N≈105–106, the time budget is 

roughly 400 CPU cycles (at line rate 10Gbit/s,  
500 byte packet size, 1GHz CPU clock rate)

● The naïve approach is hardly usable



  

Content addressable memories

● A Content Addressable Memory (CAM) is the 
opposite of a typical memory (RAM):

– RAM: find data based on memory address
– CAM: find memory address for data
– if more entries match, find the first match

Addr Data

00 10110

01 01101

10 01100

11 01100

Address: 01  RAM

        Data: 01101

Addr Data

00 10110

01 01101

10 01100

11 01100

Data: 01100    

    Address: 10

CAM



  

Ternary CAM: TCAM

● A CAM can match fully specified data (contain bits 
valued 0 or 1) only, while a Ternary Content 
Addressable Memory (TCAM) can take as input 
patters that contain "Don't care" bits (*) too

● For instance, the input TCAM pattern 101** 
matches each of the possible TCAM entries 10100, 
10101, 10110 and 10111

● * can appear anywhere in pattern (not just the end)

● Entries at lower addresses matched first and hence 
override  entries at higher addresses: priority

● Output the address of the first matching entry found



  

Ternary CAM: TCAM

● For input 00110 the entries at address 00 and 
11 both match, since the first address is smaller 
the TCAM search result is address 00

● For pattern 11111 result is 10

● For pattern 01110, enties at address 10 and 
11 both match, output is: 10

Addr Data

00 *01**

01 0110*

10 *111*

11 0*110

Data    

Address

TCAM



  

TCAM: Implementation

● (#entries * bit_width) TCAM cells, each can 
compare against a stored pattern bit 0/1/*

● Cells do the comparison in parallel
● Output logics picks the smallest active address

Addr Data

00 101**

01 0110*

10 011**

11 10011

Data: 01101   

  Addr: 01

TCAM

pagiamtzis.com



  

Implementing FIBs in a TCAM

● Consider the below FIB

● LPM: find the FIB entry matching the 
destination IP address on the most bits

● For instance, address 96.128.59.12 matches 
entries 2 and 3, the former on more bits

● LPM result: next-hop for entry 2 (10.0.0.2)

IP prefix Binary prefix Next-hop

160.0.0.0/3 101 10.0.0.1

96.0.0.0/4 0110 10.0.0.2

96.0.0.0/3 011 10.0.0.3

184.0.0.0/5 10111 10.0.0.2



  

Implementing FIBs in a TCAM

● TCAMs are a natural way to implement FIBs
● Fully specified subnet prefix in the entries
● The TCAM matches the prefix bit-by-bit
● Let the host identifier bits as “dont care” (*)
● These bits do not count in LPM lookup
● “Don't care” bits (*) appear at the end of entries

Addr IP prefix TCAM pattern Next-hop

00 160.0.0.0/3 101***** ******** ******** ******** 10.0.0.1

01 96.0.0.0/4 0110**** ******** ******** ******** 10.0.0.2

10 96.0.0.0/3 011***** ******** ******** ******** 10.0.0.3

11 184.0.0.0/5 10111*** ******** ******** ******** 10.0.0.2



  

Implementing FIBs in a TCAM

● Problem: if we write entries into the TCAM in this order, a 
less specific entry may override a more specific one

● E.g., for address 184.1.1.1 the result would be the first 
entry in the TCAM, even though the real LPM result would 
be entry 4 (matches on more bits)

● Solution: order FIB entries into the decreasing order of 
prefix length

– longer (more specific) prefixes go to lower addresses
– shorter prefixes (less specifics) go high addresses
– entries at lower addresses preferred by TCAM = match 

on a long prefix overrides match on a short prefix=LPM



  

Implementing FIBs in a TCAM

● FIB entries can be freely reordered, as the 
priority is set firmly by the prefix length

● The FIB after ordering the entries into the 
decreasing order of prefix length

● Red columns go into the TCAM verbatim
● Rest are stored in a separate RAM module

Addr IP prefix TCAM pattern Next-hop

00 184.0.0.0/5 10111*** ******** ******** ******** 10.0.0.2

01 96.0.0.0/4 0110**** ******** ******** ******** 10.0.0.2

10 96.0.0.0/3 011***** ******** ******** ******** 10.0.0.3

11 160.0.0.0/3 101***** ******** ******** ******** 10.0.0.1



  

Implementing FIBs in a TCAM

● HW FIB: a TCAM connected to a RAM
● Result of the TCAM search is used as address 

into the RAM to read the next-hop address
● 5-bit wide TCAM is enough (max. prefix length)

Addr Data

00 10111

01 0110*

10 011**

11 101**

TCAM

Addr Data

00 10.0.0.2

01 10.0.0.2

10 10.0.0.3

11 10.0.0.1

RAM

FIBInput: IP address in binary format
Output: the next-hop 
IP address for the FIB 
entry matching the 
input address on the 
most bitsAddr



  

Implementing FIBs in a TCAM

● For the IP address 184.1.1.1=10111... the 
TCAM gives result 00

● Next-hop is taken from the RAM at address 00

Addr Data

00 10111

01 0110*

10 011**

11 101**

TCAM

Addr Data

00 10.0.0.2

01 10.0.0.2

10 10.0.0.3

11 10.0.0.1

RAM

FIBInput: 10111...

Output: 
10.0.0.2

Addr: 00



  

Implementing FIBs in a TCAM

● For IP address 97.12.124.45=01100... the 
TCAM patterns at address 2 and 3 both match

● Result is address 01, next-hop is 10.0.0.2

Addr Data

00 10111

01 0110*

10 011**

11 101**

TCAM

Addr Data

00 10.0.0.2

01 10.0.0.2

10 10.0.0.3

11 10.0.0.1

RAM

FIBInput: 01100...

Output: 
10.0.0.2

Addr: 01



  

Implementing FIBs in a TCAM

● Router ASICs (Application Specific IC) usually 
contain both the TCAM and the RAM

● FIB lookup in a couple of clock cycles: very 
efficient fast-path IP packet forwarding

● TCAMs commonly used for other purposes: 
Ethernet MAC learning, firewall/ACL rules, etc.

● But TCAMs are complex: 16 transistor/cell 
(SRAM: 6, DRAM: 2 transistor/cell): expensive!

● High power consumption (9MB TCAM chip, 100 
MHz clock, 10–15W dissipation): cooling!



  

Implementing LPM in software

● Often, TCAMs are an overkill: soft routers, 
simple access routers (e.g., SOHO router), 
virtual switches/routers (cloud)

● A FIB data structure is needed that supports 
fast LPM on a general purpose CPU

● In software the most expensive operation is 
memory accesses (DRAM: ~200 CPU cycles)

● Goal: minimize the number of memory reads 
needed for a longest prefix matching lookup 



  

The binary prefix tree

● Data structure optimized for LPM: a content- (or 
prefix-)addressable memory

● Storage and search of (prefix→label) pairs
● The prefix tree supports these operations:

– lookup: find the longest prefix matching the 
input and read the corresponding label

– insert: insert a (prefix→label) pair
– delete: remove prefix and the corresponding 

label from the tree
– modify: modify label at prefix



  

The binary prefix tree

● Consider the previous FIB divided into two parts
● Identify next-hops with unique labels and store 

them into a separate next-hop index table

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1 

      0 1    

     0 1    

     0 1    

     0 1     

     0 1    

     0 1     

     0 1     
Prefix tree



  

The binary prefix tree

c

b

a

b

 0 1 

      0 1    

     0 1    

     0 1    

     0 1     

     0 1    

     0 1     

     0 1     

Root

IP address: 1st bit

IP address: 2nd bit

IP address: 3rd bit

IP address: 4th bit

IP address: 5th bit

Node with next-hop label

Empty node

Arc label

Internal node

Leaf node



  

The binary prefix tree

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1 

      0 1    

     0 1    

     0 1    

     0 1     

     0 1    

     0 1     

     0 1     

● Prefix=sequence of arc labels along a tree path
● Mark the tree node that belongs to each prefix in 

the FIB with the next-hop label for the prefix



  

The binary prefix tree

● Prefix=sequence of arc labels along a tree path
● Mark the tree node that belongs to each prefix in 

the FIB with the next-hop label for the prefix

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1 

      0 1    

     0 1    

     0 1    

     0 1     

     0 1    

     0 1     

     0 1     



  

The binary prefix tree

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1 

      0 1    

     0 1    

     0 1    

     0 1     

     0 1    

     0 1     

     0 1     

● Prefix=sequence of arc labels along a tree path
● Mark the tree node that belongs to each prefix in 

the FIB with the next-hop label for the prefix



  

The binary prefix tree

● Empty leaf nodes can be omitted (arcs to empty 
nodes will be marked by NULL pointers)

● Smaller tree, less memory

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

Label Next-hop

a 10.0.0.1

b 10.0.0.2

c 10.0.0.3

Next-hop index

FIB

a

b

 0 1 

      0 1    

     0 1    

     0 1    

     0 1     

     0 1    

     0 1     

     0 1     



  

Prefix tree: Lookup

● Find the most specific entry in the prefix tree for 
the IP address 184.1.1.1=10111...

● Start from the root node, output←invalid

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1 

1    

1    

     0

     0

1    

1     

1     

184.1.1.1=10111...
output: invalid



  

Prefix tree: Lookup

● First bit of the address 184.1.1.1=10111... is 
set to 1, so we proceed from the root along the 
arc labeled with arc-label 1 to the next node

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1 

1    

1    

     0

     0

1    

1     

1     

184.1.1.1=10111...

output:
invalid



  

Prefix tree: Lookup

● No label in the current node, output is unchanged

● Second bit is 0, so move to the next node along 
the arc with arc-label 0

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1 

1    

1    

     0

      0

1    

1     

1     

184.1.1.1=10111...

output:
invalid



  

Prefix tree: Lookup

● Third bit is again 1, so proceed along arc with 
label 1 to the next-node

● New node has label a, therefore: output ← a

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1 

1    

1    

     0

      0

1    

1     

1     

184.1.1.1=10111...

output: a



  

Prefix tree: Lookup

● 4th and 5th bits are 11, so move twice along arcs of label 
1 to a new node with next-hop label b: output ← b

● New node is a leaf: terminate with output = b

IP prefix Prefix Label

160.0.0.0/3 101 a

96.0.0.0/4 0110 b

96.0.0.0/3 011 c

184.0.0.0/5 10111 b

c

b

FIB

a

b

 0 1 

1    

1    

     0

      0

1    

1     

1     

184.1.1.1=10111...

output: b



  

Prefix tree: Lookup

● Algorithm: take all bits of the input IP address
● Proceed to the next node along arc labeled 0 or 1 

based on the next-bit of the IP address
● Store the last next-hop label found in a variable 
output (initialized to “invalid” on start)

● Terminate if a leaf node or a NULL pointer is 
encountered and return the current value in output

● On exit, read the next-hop from the next-hop index 
corresponding to the label read from the tree

● In our case the LPM result is: b→10.0.0.2 



  

Prefix tree: Lookup

● LPM for the IP address 69.12.75.54=01000...

● No node with valid label along the path traced out 
by the input address: output = invalid

c

b

a

b

 0 1 

1     

1    

     0

      0

1    

1     

1     

      0

NULL



  

Prefix tree: Lookup

● LPM for IP address 178.4.66.19=10110...

● Last label encountered is a: output = a

c

b

a

b

 0 1 

1    

1    

     0

      0

1    

1     

1          0

NULL



  

Prefix tree: Insert

● Insert entry 120.0.0.0/5→10.0.0.3 into the FIB

● Follow the path traced out by the prefix, create 
missing nodes, set the label of the final node to c

c

b

a

b

 0 1 

1     

1     

     0

      0

1    

1     

1     

c

1      

1     

120.0.0.0/5=01111...



  

Prefix tree: Other operations

● Modification goes along similar vein: follow path 
traced out by the bits and overwrite label in the 
resultant node

● Delete: similar, but after removing label recursively 
delete all empty leaves upwards in the tree

● Complexity: we terminate in at most as many 
steps as the number of bits in the input 

● Theorem: LPM, insert, delete, and modify in a 
prefix tree terminate in at most O(W) steps, where 
W is the width of the address space (IPv4: 32, 
IPv6: 128)



  

The prefix tree

● In general: in a prefix tree storing N prefixes, the 
complexity of lookup, insert, modify, and delete 
operations is O(log N)

● Recall, that the naïve table-based FIB scheme 
needed a linear sweep throuh the table: O(N) 
steps

● But 32 RAM accesses (especially if reads do not 
hit the CPU caches) can still be costly for Gbps 
line rates

● FIB aggregation: convert the prefix tree into a 
smaller but equivalent (as per LPM) form



  

FIB aggregation

a c

c b c

 0 1 

1         0 1     

Binary prefix tree c

1    

a c c

b

 0 1 

      0 1         0 1     

     0
Leaf-labeled

normalized prefix tree c

1    

c

a

b

 0 1 

      0      0

     0
Optimized

binary prefix tree

a c c

b

00       01            10            11

     0
Level-compressed

prefix tree c

1    
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