The Internet Ecosystem and Evolution

Contents

- The architecture of the Internet
 - Autonomous Systems (AS) and service providers
 - content/eyeball/transit AS
 - access/edge/core AS
- AS-AS business relationships
 - transit service: definition, notation
 - single-homed/multi-homed AS, PA/PI addressing

Architecture

The Internet: the "network of networks"

- ~50 thousand networks of service providers, acedemia, enterprise, governments, etc., connected into a common infrastructure
- 10 billion connected devices
- 3.5 billion users
- Beyond 100 billion USD business revenue

Opte Project, Wikipedia

Autonomous Systems

- The Internet connects the networks of providers, university campuses, telcos, etc., into a unified network of networks
- Every stakeholder manages and administers his/her own network autononously, independently from the rest of the actors
- Autonomous System (AS): a set of hosts, routers, and networks that an organization
 - owns and administers as a unit
 - exposes a unified routing policy to the rest of the Internet
- Endued with a unique 32 bit AS identifier

Autonomous Systems

• AS1 contains routers R1 and R2, switch SW1, and hosts C1 and C2

Autonomous Systems

- ISP (Internet Service Provider): Comcast (AS6161), Telenor Hungary (AS8448)
- Campus: BME (AS2547), Harvard (AS11), MIT (AS3), UC San Diego (AS7377)
- Enterprise: IBM (AS547, AS763), Apple (AS714)
- Global service provider: Sprint (AS1239, AS1240, AS6211, AS6242, ...), Cogent (AS174, AS2149, AS6494), TeliaSonera (AS1759)
- One ISP can provide service under multiple separate ASes...

Intra-AS and Inter-AS routing

- The Interent routing system handles an AS as a unity, so usually all IP prefixes owned by an AS get the same treatment
- Traffic can either flow though an AS between any two prefixes of two other ASes undisruptedly, or it can not flow at all
- Realized by routing protocols, reponsible for setting up the IP forwarding tables at routers
- Routing inside an AS (intra-domain routing):

- Interior-Gateway Protocol (IGP): OSPF, RIP

- Routing between ASes (inter-domain routing):
 - Exterior Gateway Protocol (EGP): BGP

AS: Routing strategies

- Example: AS2 forwards the AS1—AS3 traffic
- AS is a policy unit: AS2 forwards packets from any host/prefix of AS1 to any host/prefix of AS2
- But AS2 may block AS1-AS4 traffic in its routers

AS taxonomy 1

- **Content AS:** content provider AS
 - egress (out-from-AS) traffic is dominant
 - Youtube, Netflix, HULU
- Eyeball AS: content consumption
 - ISPs serving a huge base of customers
 - ingress (into-the-AS) traffic is dominent, needs small latency to the content
- **Transit AS:** global transit between the above via a world-wide network infrastucture (Cogent,Level3)
- CDN (Content Delivery Network): Akamai
 - content + global transit

AS taxonomy 2: Edge/Access/Core

Edge

- End-devices, terminals, hosts: desktops, laptops, mobiles, PDAs, tablets, etc.
- Residential subscribers, **SOHO** (Small Office/Home Office), mobile, data center, ...
- Local networks, connected to a service provider

Access

- Concentrates traffic from the Edge to the Core
- Access router: first-hop ISP router
- Access link: transit medium to the access router

Internet access

- **CPE** (Customer-premises Equipment): a (often ISP-owned) terminal located at the customer site connecting it to the ISP network
- **Demarcation line:** the boundary between the networks of the provider and the customer

Residential/SOHO access

- Dial-up: POTS (Plain Old Telephone Service)
 - CPE: analog model
 - access link: telehone line
 - ISP/telco access: POTS subscriber card
- DSL (Digital Subscriber Line): ADSL/VDSL
 - CPE: DSL modem
 - access link: local loop, twisted pair
 - ISP/telco access: DSLAM (Digital Subscriber Line Multiplexer)

Residential/SOHO access

- Cable(TV):
 - CPE: CATV cable modem
 - link: coaxial or HFC (Hybrid Fiber Coax)
 - ISP/telco access: cable headend
- FTTx (Fiber-to-the-X): access via optics
 - FTTH (Fiber-to-the-Home): optics to CPE
 - FTTP (Fiber-to-the-Premises): optics to building, copper access from there
 - technology: PON (Passive Optical Network)

Enterprise/campus access

- Enterprise: business, corporate, factory,...
- Campus: site consisting of multiple buildings
 - education, military, government, etc.
- Example: university campus Ethernet access

Mobile access (2G, 3G, 4G, WiMAX)

- Internet access over cellular mobile
- 2.5G: General Packet Radio Service (GPRS) packet communicaiton in on the radio interface
- Later: EDGE, UMTS, 4G, 5G, etc.

The Internet backbone: Core

- The Access concentrates traffic from the Edge
 to the Intrernet Core
 Cisco CRS-1, wikipedia
- The core is made up of highperformance, ultra-efficient (>100Tbps) routers connected into a dense mesh topology

• The most important segment **Important Segment** of the Internet by a large margin: our main tpoic

A typical AS: The ISP

- Internet Service Provider:
 - main profile: providing two-way Internet access to a large customer base
 - auxiliary services: domain name registration, email, cloud storage, server colocation,...
- ISP networks are made up by multiple POPs
- **POP (Point of Presence):** a set of routers, switches, etc., operated by the ISP at some physical location (e.g., a data center) to provide a service access point to its networks/services

A global ISP

Internet service model

Internet: Network of ASes

Connecting ASes

- The Internet is shaped by the way
 - ASes physically connect their networks and
 - ASes route traffic along these links
- It is the business interests, political considerations, and reliability and security issues, and not technical reasons like path length, that govern how ASes connect and route traffic
- **Policy routing:** packet forwarding based on policy considerations (business, political, security, etc.)
- Internet traffic does not follow shortest paths (path inflation)!

Routing strategies

- Service model: how an AS decides whether to forward or block other ASes' traffic
- For instance, AS2 may forward AS1—AS3 traffic but it would block AS1—AS4 traffic entirely

Inter-domain routing

- ASes lease IP address ranges from registries
- These ranges are announced by the routing protocol, which ensures that the announcement is communicated to other ASes
- Routers select paths

The provider-customer (transit) AS-AS relationship

The transit service

- Simplest way to connect to Autonomous Systems (ASes)
- One AS acts as a service provider, the other as a customer
- The provider is contracted
 - to deliver all traffic from the customer AS to any host connected to the Internet (egress), and
 - to deliver all traffic from the Internet destined to the customer (ingress) back to it
- The customer is charged by the rate of provider ↔ customer traffic flowing on the inter-AS link

The transit service

Internet Transit is the business relationship whereby an Internet Service Provider provides (usually sells) access to the global Internet.

From a high-level perspective, Internet Transit can be thought of as a pipe in the wall that says "Internet this way". Customers connect their networks to their Transit Provider, and the Transit Provider does the rest.

(DrPeering)

Transit: Addressing

- The provider can lease (delegate) an address prefix for the customer to assign IP addresses to customer hosts
- The task of the transit provider is then to
 - to distribute the BGP routing announcement originated by the customer for this prefix on the Internet,
 - to handle routing announcements from the public Internet to the customer's router, and
 - to transfer all "customer ↔ internet" traffic

Transit: Single-homed ASes

- Simplest way to connect an AS to the Internet: buy transit service from a single provider AS
- **Single-homed (SH) AS:** an AS that connects to the Internet through a single provider AS by buying transit service from that AS

SH AS: Schematic diagram

- Transit relationships are marked by an arrow directed from the customer to the provider
- The direction matches that of the cash-flow(\$\$)

SH transit: Addressing/routing

Incement. 192.

Provi

Stub AS

۵S

192.168.67.0/24

192.168.0.0/16

- Addressing: the SH AS typically receives a subnet prefix from the provider's IP address prefix
- **Routing:** the SH AS sets the provider as default gateway
- The provider does not announce the customer's prefix separately, as that is part of its own address range, and hence of its own routing announcement

SH transit: Example

- Suppose the Provider AS uses the prefix 192.168.0.0/16
- It can hand out 256 /24 address ranges

- Suppose Customer AS gets the prefix 192.168.67.0/24
- Address of the border routers:
 - R1:192.168.6.1
 - R2:192.168.6.2

SH transit: Example

• The provider does not announce the customer's prefix separately into the routing system, as it is part of its own BGP announcement

SH transit: Ingress traffic

 The provider forwards the customer's ingress traffic to it by using a more specific entry in the FIB of its border routers

• This will apply to all traffic of the customer, but not to the provider's own traffic

• E.g., the FIB at R1

Prefix	Next-hop	
192.168.67.0/24	192.168.6.2	

SH transit: Egress

- The customer sets a **default gateway** towards the provider (less specific than any other entry)
- Forwards all traffic to the provider whose destination is not **inside** the customer AS

•	R2	FI	В
	R2		В

Prefix	Next-hop	
0.0.0/0	192.168.6.1	

 The SH AS does not even need to run a routing protocol

Single-homing: Pros and cons

- Advantages
 - minimal configuration and maintenance in the SH AS, does not need expert IT staff
 - does not create a separate, customerspecific routing table entry in the Internet
- Disadvantages
 - single point-of-failure, poor resilience (if the provider goes away, Internet connectivity is lost)
 - can be pricey

Multi-homed ASes

- Internet connectivity of an SH AS depends on a single provider's availability
- Multi-homed (MH) AS: connects to the Internet by purchasing transit from more than one providers

MH AS: Schematic diagram

Schematic diagram

Provider AS2

Provider AS1

- Arrow from the customer AS to each provider AS
- Arrow points to the direction of the cash-flow (\$\$)

MH AS addressing: PA

- **Provider Aggregatable Addressing:** the MH AS receives a prefix from one of the providers
 - prefix aggregatable to one of the providers
 - but not aggregatable to the other!
- Customer's prefix must be announced separately

MH AS PA addressing: Example

- The prefix 192.168.45.0/24 leased by Provider1 to Customer1 cannot be aggregated into the prefix of Provider2
- Provider2 must announce separately that it has a route to prefix 192.168.45.0/24
- Plus one FIB entry throughout the Internet

MH AS addressing: PI

- **Provider Independent Addressing:** the prefix of the customer is not aggregatable into any of the address ranges of the providers
 - providers announce the PI prefix separately
 - plus one global FIB entry

PA versus PI addressing

- If a customer uses a PA address prefix, it is tied to the provider: every interface/host in the customer's AS gets an IP address from the provider's prefix
 - difficult to change provider (renumbering)
 - all hosts/routers must be reconfigured
- changing providers is simpler with a PI prefix
 - no need for renumbering/reconfiguration
 - but PI addressing puts huge strain on the routing system (separate announcement)

MH transit: Example

- 3 ASes: AS1 (prefix: 192.168.0.0/16), AS2 (10.0.0.0/16) and AS3 (10.1.0.0/16)
- AS1: two border routers (R1 and R2) and one LAN (prefix: 192.168.2.0/24)

MH transit: Example

R1 FIB			
Prefix	Next-hop	Note	
0.0.0/0	10.2.2.6	Default gateway to R3 (AS2 is primary provider)	
10.0.0/16	10.2.2.6	Traffic to AS2 through R3 (optional, due to the default gw)	
10.1.0.0/16	192.168.1.2	Traffic to AS3 through R2	
192.168.2.0/24	local	LAN is local, no separate FIB entry for the two hosts	

Multi-homing: Pros and cons

- Advantages of multi-homing
 - greater availability: switch to the secondary provider if connection to the primary is lost
 - cost optimization: choose less expensive provider as primary
 - load balancing between providers
- Disadvantages:
 - complex configuration: border routers need dynamic routing protocols to do the swtich-over when the primary provider dies
 - the prefix of the multi-homed AS is announced separately: increases FIB size throughout the Internet!