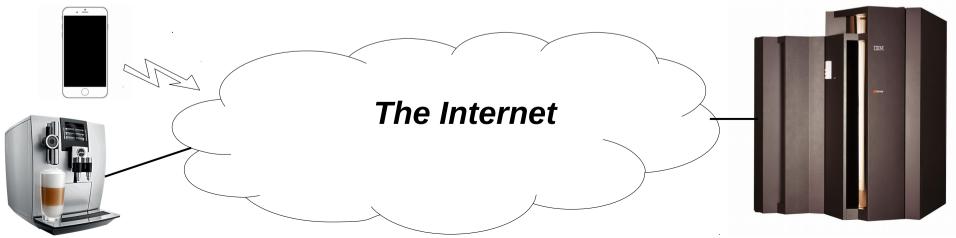
#### The Internet Ecosystem and Evolution


### Contents

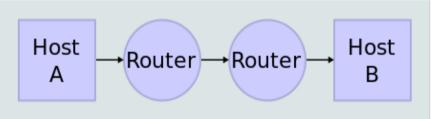
- The TCP/IP protocol suite
- Layered protocol stacks
- The link layer
- The network layer: IP
- The transport layer: TCP/UDP

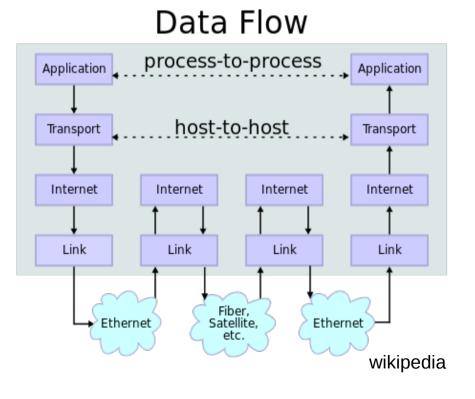
#### **Network layers**

## **Protocols and layers**

- The Internet is a complex system, connecting
  - everthing to everything, from intelligent IoT coffee machines to supercomputers and iPhones
  - every country to every other country (more or less),
     e.g., Palestine to Israel, the USA to China, etc.
- Standard network protocols ensure that any two remote hosts can talk to each other

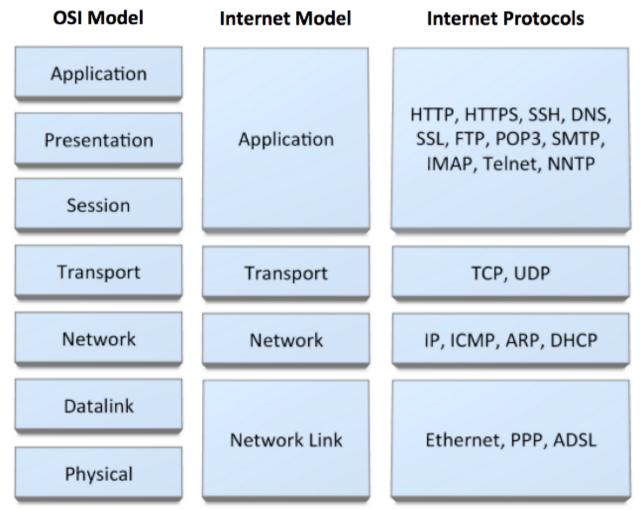



## **Protocols and layers**


Protocol stack:

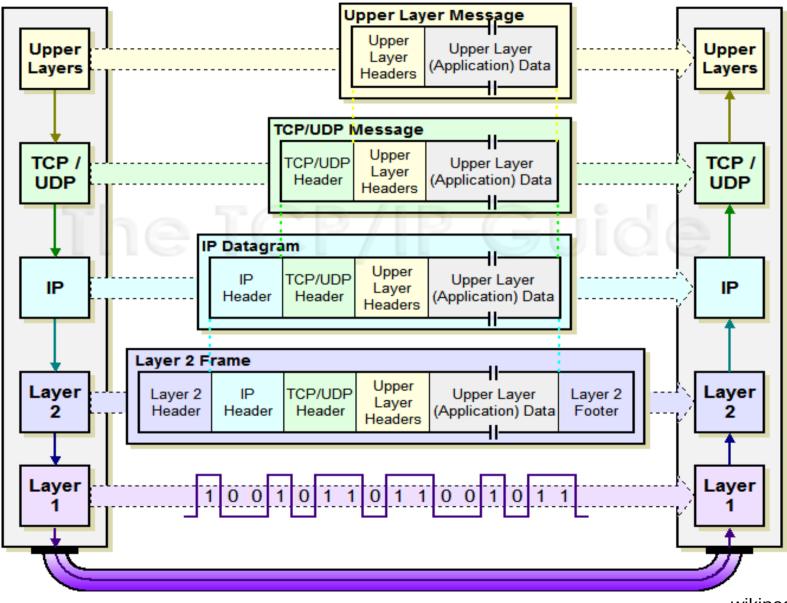
collection of all the functions a host must implement to speak to other hosts

• **Protocol layer:** a module of the protocol suite responsible for a well-defined subset of the protocol stack's functionality









## The TCP/IP protocol suite

• ISO/OSI: an "ideal" design, TCP/IP is different



http://vichargrave.com/network-programming-design-patterns-in-c

#### Encapsulation



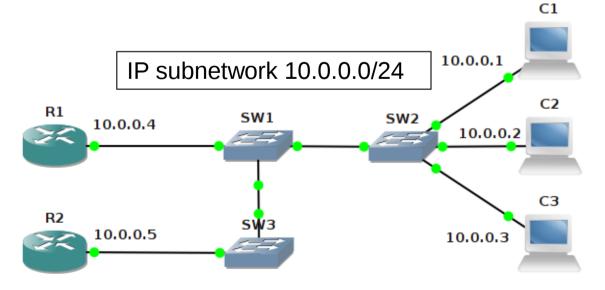
wikipedia

# **TCP/IP: Principles**

- **End-to-end:** per-application "state" only at hosts, the core does not store micro-state (scalability)
- **Connectionless design:** this is a consequence of the E2E principle, the core scales with network size *N*, not with the number of end-users and applications *M* (*M*>>*N*)
- **Resilience:** resilience to large-scale failures (a "cold war" design, under nuclear threat)
  - no central control: completely distributed design
  - dynamic routing: adapt to (changing) topology
  - packets of a single flow may take different routes
- **Robustness:** be conservative in what you send, be liberal in what you accept (Postel's law on extreme interoperability)

## Connectionless vs. connectionoriented protocols

|                                             | Connectionless                                                                         | Connection-oriented                                                                                                    |
|---------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Circuit setup                               | No                                                                                     | Before communication                                                                                                   |
| Addressing                                  | Every packet contains the fully-specified destination address                          | Packets only contain the virtual circuit identifier (shorter than address)                                             |
| Packet forwarding                           | Per-packet forwarding decision                                                         | (Circuit-)switching                                                                                                    |
| State information                           | Forwarding tables: <i>O(N)</i> ,<br>where <i>N</i> is the number of<br>hosts/addresses | Virtual circuit switching<br>tables: <i>O(M)</i> , <i>M</i> is the<br>number of applications in<br>talk: <i>M</i> >> N |
| Admission control and<br>congestion control | Complex (but doable)                                                                   | Simple                                                                                                                 |


#### The link layer

# **Terminology: Hosts and links**

- The Internet is made up by an astronomical number of local-area networks (LANs, like (Ethernet, WiFi, etc.), leased lines, etc., connected into a common network
- Host: a computer with one or more network interfaces/ports endued with a unique IP address
- Link: a LAN infrastructure connecting a subnetwork of hosts

# **Terminology: Hosts and links**

- Interfaces at routers R1 and R2 and terminals C1, C2 and C3 are set with an IP address
- Ethernet switches SW1, SW2, and SW3 do not have an IP addresses
- The LAN that is transparent to the IP hosts



# Link layer

- Layer-2: usually a local-area network (LAN) protocol (Ethernet, PPP, WiFi,...), but can also be a point-to-point (P2P) serial link, a long-haul leased line, etc.
- Function: transport of IP packets between neighboring IP hosts (connected to the same subnet)
- Service model:
  - re/assembly of IP packets to/from L2 frames
  - ordered, reliable (acknowledged) transmission
  - medium access control (MAC): access to the shared the transmission medium is controlled by a MAC
  - potentially, the link layer protocol also provides error detection, error correction, etc.

## **The Ethernet**

- The IEEE 802.3 protocol suite
  - 3 Mbit/sec ↔ 100 Gbit/sec, 48 bit flat address space
- CSMA/CD medium access by default
- Ethernet segments can be interconnected:
  - hub/repeater: all Ethernet frames are "blindly" repeated to all connected segments
  - switch: just frames whose destination is on segment (Spanning Tree Protocol, SP Bridging)

|                                               |                                | · ·                            |                             |                        |         | • /                                      |
|-----------------------------------------------|--------------------------------|--------------------------------|-----------------------------|------------------------|---------|------------------------------------------|
| Preamble<br>& Frame-<br>delimiter<br>(8 byte) | Dst MAC<br>address<br>(6 byte) | Src MAC<br>address<br>(6 byte) | Type/<br>length<br>(2 byte) | Data<br>(46-1500 byte) | Padding | Frame<br>check seq.<br>(CRC)<br>(4 byte) |
| Ethernet frame                                |                                |                                |                             |                        |         |                                          |

#### The network layer

## **Network layer: Internet Protocol**

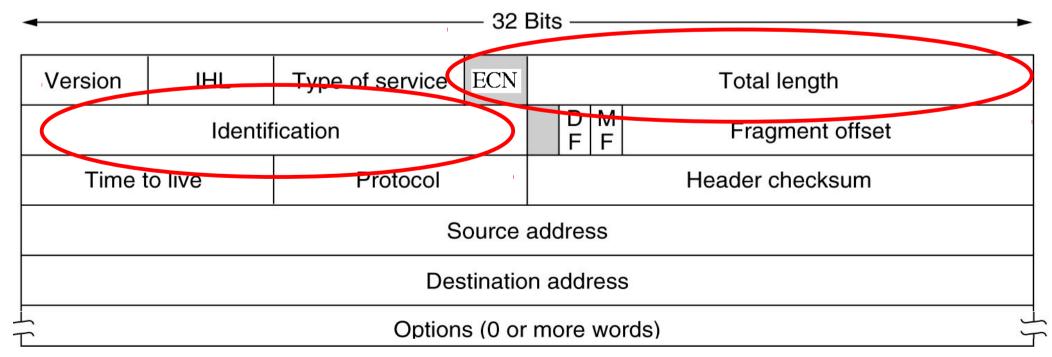
- The "lingua franca" of all hosts connected to the Internet: IPv4 (slow transition on the way to IPv6)
- Functions: unreliable, connectionless, besteffort datagram service for the transport layer
  - unreliable: no error detection/correction (only header chksum!)
  - connectionless: no connection setup/tead-down before/after communication
  - datagram: every packet's IP header contains the destination IP address, packets are routed individually
  - **best-effort:** "all packets are created equal" (?!)

## **Network layer: Services**

- Internetworking: world-wide connectivity
  - global routing of traffic between heterogeneous devices, subnets, operating systems, link later protocols, etc.
- Addressing: global location/identification of hosts
  - host ports are endued with unique IP addresses
- Routing & forwarding: between any(?) two hosts
  - forwarding: done one-by-one at routers, by looking up the destination address in the forwarding tables, to the next-hop IP address
  - routing: maintenance of the forwarding tables
- Other: fragmentation (IPv4: R2R, IPv6: E2E), etc.

### IPv4 and IPv6

- Conventionally, IP as of version 4 uses 32-bit addresses
- Allows to connect roughly 4 billion hosts to the Internet
- Internet registries have long run out of new IP address ranges that can be handed out to hosts
- IPv6 introduced a 128-bit address space (enough to address any particle in the Universe)
- Transition to IPv6 is ongoing, use of IPv4 is still pervasive and is not expected to go away soon


#### **IPv4: Header**

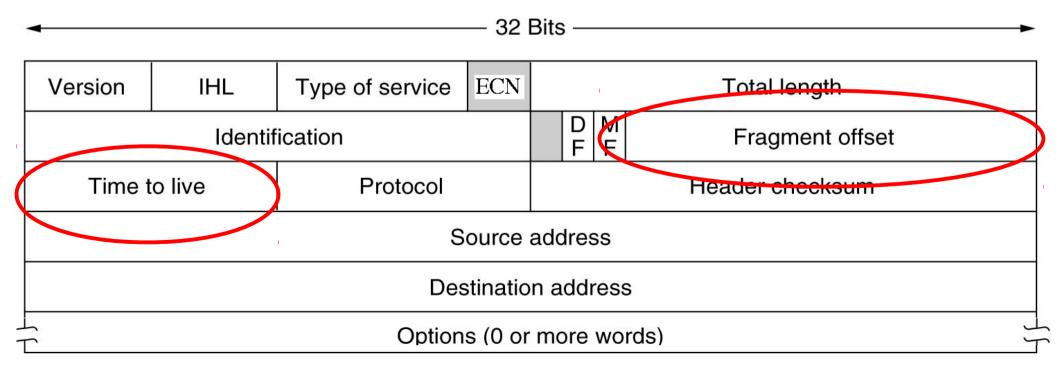
- Version (4 bit): always set to 0100 (binary 4)
- Internet Header Length (IHL, 4 bit): header length of 4 byte words (min 20, max 60 byte)
- Type of Service (ToS/DiffServ codepoint, 6 bit)

|        | <ul> <li>✓ 32 Bits</li> </ul> |        |                              |                 |  |
|--------|-------------------------------|--------|------------------------------|-----------------|--|
|        | Version                       | IHL    | Type of service BCN          | Total length    |  |
|        | Identification                |        | D M<br>F F F Fragment offset |                 |  |
|        | Time t                        | o live | Protocol                     | Header checksum |  |
|        | Source address                |        |                              |                 |  |
|        | Destination address           |        |                              |                 |  |
| ]<br>T | Coptions (0 or more words)    |        |                              |                 |  |

#### **IPv4: Header**

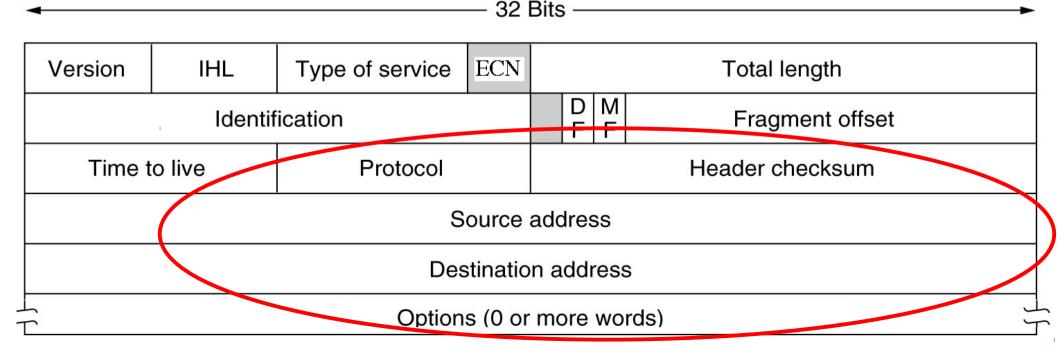
- Explicit Congestion Notification (ECN, 2 bits): congestion signal from network, rarely used
- Total length (16 bit): length of pkt in bytes
- Identification (16 bit): identify fragmented packets




### **IPv4: Header flags**

- bit 0: reserved, always 0
- bit 1: "Don't fragment" (DF)
- bit 2: "More fragments" (MF)

| ◄ 32 Bits                   |                |                 |     |                 |  |
|-----------------------------|----------------|-----------------|-----|-----------------|--|
| Version                     | IHL            | Type of service | ECN | Total length    |  |
|                             | Identification |                 |     | Fragment offset |  |
| Time t                      | o live         | Protocol        |     | Header checksum |  |
| Source address              |                |                 |     |                 |  |
| Destination address         |                |                 |     |                 |  |
| C Options (0 or more words) |                |                 |     |                 |  |


#### **IPv4: Header**

- Fragment offset (13 bit): offset into original payload for the actual fragment
- Time to live (TTL, 8 bit): routers decrement TTL and drop pkt when TTL reaches zero (avoid loops)



#### **IPv4: Header**

- Protocol (8 bit): id of the upper layer protocol the payload is to sent to (TCP, UDP, ICMP, ...)
- Header checksum (16 bit)
- Source and destination addresses (32 bit each)



## **IPv4: Adressing & subnets**

- IPv4 address: 32 bit unsigned integer, in total 4294967296 (2<sup>32</sup>) distinct addresses
- But the form 2554524783 is hard to remember
  - decimal notation: 2554524783
  - binary: 10011000 01000010 11110100 01101111
  - "dotted decimal": broken to four 1-byte decimal
     numbers, separated by a dot: 152.66.244.111

| 152        | 66       | 244      | 111      |  |
|------------|----------|----------|----------|--|
| 10011000   | 01000010 | 11110100 | 01101111 |  |
| 2554524783 |          |          |          |  |

## **IPv4: Addressing & subnets**

- "Classful" until 1993, since then "classless" (CIDR)
- Sets of consecutive IP addresses make up **subnets** 
  - **physical subnet:** for hosts connected to the same link
  - **logical subnet:** created by the operator for routing purposes
- Subnets appear to the rest of the Internet as a single IP address prefix instead of separate per-host IP addresses
- Aggregation: one prefix for potentially thousands of hosts!
- The two parts of the IPv4 address:
  - first X bits (the prefix): subnet identifier
  - remaining 32-X bits: host identifier (withing subnet)
  - X is called the prefix length (e.g., /18) or the netmask (in dotted decimal notation, e.g., 255.255.192.0 = /18)

## **IPv4: Classful addresses**

• Classful: address communicates prefix length

| Class                | Address domain                       | Mask/CIDR     | Example                      |
|----------------------|--------------------------------------|---------------|------------------------------|
| Class A              | 0*****/8                             | 255.0.0.0     | 17.0.0.0/8                   |
|                      | 0.0.0.0/8 - 127.0.0.0/8              | (/8)          | (Apple Inc.)                 |
| Class B              | 10***** ******/16                    | 255.255.0.0   | 152.66.0.0/16                |
|                      | 128.0.0.0/16 - 191.255.0.0/16        | (/16)         | (BMENET)                     |
| Class C              | 110**** ******* ******/24            | 255.255.255.0 | 192.160.172.0/               |
|                      | 192.0.0.0/24 - 223.255.0.0/24        | (/24)         | 24 <b>(SOTE)</b>             |
| Class D<br>multicast | 1110*<br>224.0.0.0 - 239.255.255.255 | _             | 224.0.0.5 (All OSPF Routers) |
| Class E<br>foglalt   | 1111*<br>240.0.0.0 - 255.255.255.255 | —             | —                            |

• Historical: 195.1.0.0/16 would be Class C, but used as Class B

## **IPv4: CIDR**

- Classless Inter-domain Routing: any address range goes with any prefix length
- Variable Length Subnet Masking (VLSM)

| CIDR notation                           | 192.168.192.0/18                                                                                                                                                    |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prefix length                           | 18 bit (counted from the Most Significant Bit (MSB))                                                                                                                |
| binary                                  | 11000000 10101000 11000000 00000000                                                                                                                                 |
| Subnet mask (binary)                    | 11111111 1111111 11000000 0000000                                                                                                                                   |
| Subnet mask (dotted)                    | 255.255.192.0                                                                                                                                                       |
| Number of unique IP addresses in subnet | 2 <sup>32-18</sup> =2 <sup>14</sup> =16384 (in fact, only 2 <sup>14</sup> -2: first address is reserved for subnet id and last addess for subnet multicast address) |
| First IP address                        | 192.168.192.1                                                                                                                                                       |
| binary                                  | 11000000 10101000 11000000 00000001                                                                                                                                 |
| Last IP address                         | 192.168.255.254                                                                                                                                                     |
| binary                                  | 11000000 10101000 11111111 1111110                                                                                                                                  |

## **IPv4: Masking**

 Does address 192.168.199.100 belong to the subnet 192.168.192.0/18?

| Subnet                           | 192.168.192.0/18                    |
|----------------------------------|-------------------------------------|
| Binary                           | 11000000 10101000 11000000 00000000 |
| Subnet id<br>18 bit from the MSB | 11000000 10101000 11                |
| IP address                       | 192.168.199.100                     |
| Binary                           | 11000000 10101000 11000111 01100100 |
| First 18 bit equals subnet id    | 11000000 10101000 11                |

- Subnet ids match (first 18 bits = prefix): yes, address belongs to the subnet
- Can be tricky!

# Terminology

- Routing table = Routing Information Base (RIB)
  - unique for each running routing protocol
- Forwarding table = Forwarding Information Base (FIB)
  - by distilling multiple RIBs into a single FIB
  - consulted for each packet passing the router
- Routing ≠ Forwarding
  - forwarding: pass packet to the next-hop
  - **routing:** compute forwarding paths/tables and find next-hop (fill the FIB!)

## **IPv4 Forwarding**

- **IP Router:** devices dedicated to IP-level packet processing and forwarding
  - passing packets between subnets: router ports connected to distinct subnets, each with unique IP
  - forwards packets based on the FIB
  - FIB maintenance: statically or dynamically, running a dedicated routing protocol for filling the FIBs
  - miscellaneous services: management (SNMP, CLI), monitoring (SNMP), misc. protocols (IGMP, CDP), access control, NAT, etc.

# **IPv4: Routing**

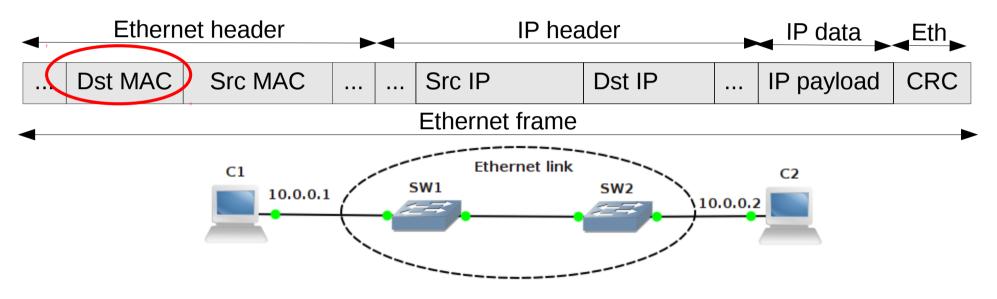
- Routing protocols (optionally more than one per router: OSPF + BGP) exchange topology descriptors between neighboring routers
- 2) Each routing protocol **sets up its own RIB** based on the information learned
- 3) Router **distills a FIB** by selecting the "best" next-hop to each subnet prefix from each RIB
- 4) Downloads the (prefix → next-hop) pairs to the FIB and constantly updates these assotiations whenever a topology change is learned

# **IPv4: Forwarding**

- 1) Checks packet's validity (version, options, etc.)
- 2) Performs FIB lookup for each received IP packet
  - based on the destination address in the IPv4 header
  - **longest prefix match (LSB):** the smallest known (to the router) subnet that still contains the address
- 3) Handles packet (decrement TTL-t, set chksum)
- 4) Forward packet to the next-hop as found in FIB
- Hop-by-hop routing: routers know only the next-hop along the forwarding path, not the forwarding path itself (explicit routing)

# Longest prefix match

- If multiple subnets match IP address in the FIB
- The most specific match is preferred: the subnet whose subnet id matches IP address on the most bits (counted from the MSB)
- Smallest subnet still containing the address
- Longest Prefix Match (LPM): key to IP!!
  - can be used to implement a lot of useful tricks
  - but makes IP packet forwarding pretty complex, as
     FIB lookup is nontrivial due to LPM


#### LPM: Example

| Router FIB            |                       |                   |  |  |
|-----------------------|-----------------------|-------------------|--|--|
| IP prefix/prefix len. | Subnet identifier     | Next-hop IP addr. |  |  |
| 192.168.0.0/16        | 11000000 10101000     | 10.0.1            |  |  |
| 192.168.0.0/17        | 11000000 10101000 0   | 10.0.2            |  |  |
| 192.168.64.0/18       | 11000000 10101000 01  | 10.0.3            |  |  |
| 192.168.96.0/19       | 11000000 10101000 011 | 10.0.4            |  |  |

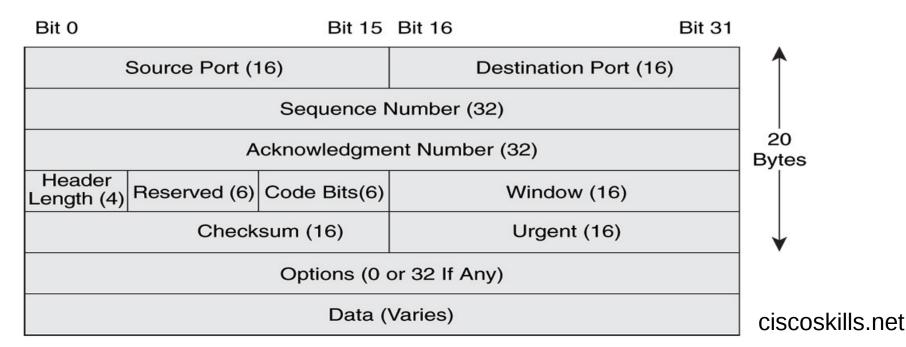
- Address 192.168.1.1=x.x.00000001.000000001 matches first two entries, entries 3 and 4 differ on bit positions in marked red: entry 2 preferred
- Address 192.168.95.2=x.x.01011111.000000010
   LPM is entry 3, for 192.168.97.3=x.x.
   01100001.00000011 LPM is entry 4

## **IP over Ethernet**

• IP usually runs in top of an Ethernet link layer

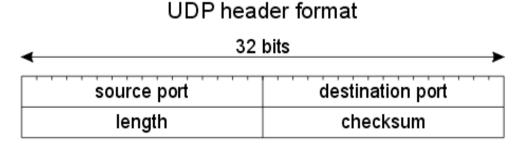


- Hosts C1 and C2 are on the same link: switches SW1 and SW2 transparent to these hosts
- Address Resolution Protocol (ARP): C1 queries all hosts on the link, which Ethernet MAC address belongs to IP address 10.0.0.2?


#### **Transport layer**

## **Transport layer**

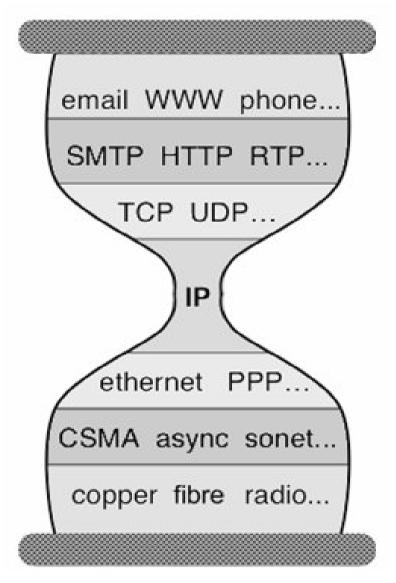
- For communication between specific users/ apps on the hosts: apps can originate/send traffic on a specific **port** (UDP/TCP port)
- TCP/IP: two popular transport protocols
- Transmission Control Protocol (TCP): connection-oriented, reliable stream transport between two unique TCP ports
- User Datagram Protocol (UDP): connectionless, non-reliable datagram service between UDP ports


## **Transmission Control Protocol**

- Connection-oriented, reliable data stream
  - flow control (avoid flooding slow receiver with data)
  - congestion control by rate-control at sending host
  - multiplexing multiple connections to a single TCP connection (used extensively in HTTP, for instance)



## **User Datagram Protocol**


- Connectionless, datagram service
  - error detection (CRC)
  - but not reliable in the face of packet loss, packets may not arrive to receiver in the same order as sender sent, no protection to packet duplication
  - no connection setup (handshake, etc.)



wenk.be

# IP "hourglass" model

- IP: largest common divisor
  - every packet passes the IP layer
  - every host speaks IP: true "internetworking"
- But next to impossible to alter/change/innovate:
  - IP multicast, IPv6,...
  - "internet ossification"



Trilogy project